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Algebra. — A generalization of the l—algebra of a commutative
semi-group. Nota di OLusoLA AKINYELE, presentata ® dal Socio
G. SANSONE.:

RI1ASSUNTO. — Dato un semigruppo commutativo discreto S, e un’algebra di Banach
commutativa A con o senza identitd, consideriamo il convoluto in algebra di Banach /1 (S, A),
consistente di tutte le funzioni f definite in S con valori di A tali che ¥ ‘| f(s)]a sia finito.

s€ES

Nel lavoro S indica I'insieme di tutti gli ideali massimi regolari dell’algebra A. Nella 3 parte
abbiamo dimostrato il seguente teorema: per ogni f e /1 (S, A) si definisca la « trasformata »
di f rispetto a un punto fisso (M, x) di M (A)XS come

Jatn = T on(FENx()

dove ¢, ¢ un omomorfismo continuo di A sui numeri complessi. Allora j(M, 0 ¢ un omomor-
fismo continuo non nullo di /1 (S, A). Reciprocamente, dato un omomorfismo continuo non
nullo 2 su /1(S,A),3(M, ) e (A)xé, tale che per feli(S,A), 2 (f)= J(M,x)(f)'
Nella quarta parte, sotto le condizioni che S ha la proprieta che xy = x2 = »2 comporta che
x =y per x,y€S, otteniamo una condizione necessaria e sufficiente perché /1 (S, A) sia
semisemplice.

§ 1. INTRODUCTION

Let G be a locally compact Abelian group and let L (G) denote the algebra,
under convolution, of all absolutely integrable complex-valued functions
on G. Itis known [4, Theorem 34 B] that there exists a one-to-one correspon-
dence between the regular maximal ideals of L'(G) and the set of all characters
of the group G.

Suppose S is a discrete commutative semigroup. Hewitt and Zuckerman
in [3] have considered the convolution Banach algebra / (S) defined as the
set of all complex-valued functions f on S that vanish except on a countable

subset of S and for which || f| = Y | f ()] is finite. They show that there
x€S

exists a one-to-one correspondence between the space of regular maximal
ideals of /1 (S) and the set of all semicharacters of the semigroup S.
Hausner in [2] has extended the result for L (G) to the algebra B" (G , A)
consisting of all of Bochner integrable functions defined on a locally compact
Abelian group with values in an arbitrary Banach algebra A. The work in
this paper was motivated by the results of Hausner and that of Hewitt and
Zuckerman. Throughout this paper it will be assumed that S is a discrete
commutative semigroup and that A is a commutative Banach algebra with
or without an identity. We consider the convolution algebra /1 (S, A) which

consists of all functions f defined on S with values in A such that E VAN
s€S

is finite. In Section 3, we discuss the complex homomorphisms on 4 (S, A)
~and obtain a result analogous to that obtained by Hausner for B’ (G, A).

(*) Nella seduta del 13 giugno 1970.

2. — RENDICONTI 1970, Vol. XLIX, fasc. 1-2.
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Furthermore in Section 4, we obtain a necessary and sufficient condition for
A (S,A) to be semi-simple.

The author is deeply indebted to Professor A. Olubummyg for his guidance
in the preparation of this paper.

§ 2. PRELIMINARIES

Let S be a semigroup, and A a Banach algebra. Denote by 4 (S, A)
the set of all functions on S with values in A, that vanish except on a coun-
table subset of S and for which

0 17l= T I @)l <.

The sum here is taken to mean that f vanishes outside a countable set

{A“l Y Sgst s Sy, ey and Y, ||/ (sa)ll, is finite. The sum is independent of
ael

the arrangement of {s;, sy, -+ 5., - -} since the sum is absolutely convergent.
If we define addition and scalar multiplication as follows:

(1 72 () =/1() + /2 (),
(of1) (8) = a-f1 (5) for all s€S and «

a complex number, then 4 (5, A) becomes a complex linear space.
With the norm in 4 (S, A) defined by (1), 4 (S, A) becomes a complete
normed linear space.
For f,g€/(S,A) let product be defined by convolution as follows:
fre@=_3  fag®.

u, 0, uv=s

LEMMA 2.1. For f,g€h (S, A), fxg€h(S,A) and | fxgl < If]l1gll-
The proof is straightforward.

It is easy to verify that with product defined as above, /1 (S, A) is an
algebra. Furthermore if S and A are both commutative, then 4 (S, A) is
commutative and 4 (S, A) becomes a complex commutative Banach algebra,
which specializes to 4 (S) when A is taken to be the complex numbers.

DEFINITION 2.2. A function f on S to A is simple if it is a constant on

n
each of a finite number of subsets E; of S and equal to zeroon S~ U E;. A
Ly J=1
function f is a countably-valued function if it assumes at most a countable

set of values in A, assuming each value different from zero on a subset E;
of S.

LEMMA 2.3. The simple functions are dense in (S, A).

Proof. Given f€/(S,A), f is a countably-valued function.
Suppose f takes non-zero values {@,, a9, -+, a;,---}on {E;, Ey, Es ..
-E;---} where

E;={s€S:f(s) =a,}.
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Define a function g, on S by setting

n

g = E a; &g, where EEk is the characteristic function of the subset E,

of S. For each finite 7, g, is a simple function in 4 (S,A). We will now
show that g,—f as #—oco. Let s €S, then f(s) is either o or s belongs to
one of the sets {E; , Ey,- -+, E;,---} where f(s)5=0. Suppose f (s) = o, then
£ (s)—gu(s)[=o0. Suppose f(s)==0, then s€E, for some integer .
Set N, = £ then

lf(s)—g. ()] =0 provided > N,.
Thus

(2.3.1) lim [|f(s)—g, ()| =0  for each s€S.

Now X [|f(s) —gu(s)|| < co for each fixed #, since f, g, €/, S,A). It
s€S

follows that the series E | f (s2) — gn (s5)|| of non-negative real numbers is

convergent for each ﬁxed 7.
But [|[f(s) —g. &I < || f ()] for each s€ S and for all . This means

that E I/ (s2) —&n (s&)|| is convergent for all » and hence the sequence
=1

of partial sums Ju. = X |l (s) —gx (so)|| for finite 7 and 7, converges
=

as (m ,n)—>oco. By a double limit theorem [1;p 371, Theorem 12-39] we
have

lim  Jimm = lim (Iim ](m,,,)').

(m,yn)—>o00 n—>00 \m-—>00

A similar result holds if we interchange the roles of # and 7; i.e.

lim  Jou,n = lim (hm Jom, ")>

(myn)—>00 m—>00 \n—>00
Hence we have

lim E 17 (52) — £ (sl = lim ~ lim Z 1 (52) — £ ()l

n—>00 k=1

=g&;ggW@—&mw

oo

E m [/ (s —gu (oI

This  lim E ILF (52) — g (s0) | ~2 lim [} (58) —gn (sl

n—>00 k= =1n—>
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|
i

and  lim 3 1If () —g. )| )} Lim [/ () —g. ()]l

n—>00 s € sE€S
= 0 by (2.3.1).
Hence lim [ f—g,| = o, and the proof is complete.
7 —> 00

REMARK 1. Define a function af on S by setting af(s) = a-f(s) for a € A

and €/ (S). The simple functions are of the form g, = E a; &g, where &g,

is the characteristic function of the subset E, of S and «, € A Denote by P
the set of all finite linear combinations of af, a €A , f€/1(S). It is easy to see
that the set P contains the simple functions, and hence dense in /4 (S, A),
since the simple functions are dense in 4 (S, A).

§ 3. COMPLEX HOMOMORPHISMS OF /4 (S, A)

DEFINITION 3.1. A multiplicative function on a semigroup S is any
complex function = on S satisfying the functional equation = (xy) = 7 (x)
T (y) for all x,y €S. A multiplicative function is called a semicharacter if
it is different from o at some point and is bounded. If y is a semicharacter on S,
then it can be easily shown that |y ()| <|7(x)| for all x€S. Furthermore
a semicharacter of a group is a character.

DEFINITION 3.2. Let S be the set of all semicharacters of S and 91 (A)
the set of all maximal regular ideals of the Banach algebra A with or without
a unit element. Denote by 9 (A) X S the Cartesian product of M (A) and
S, ie. the set of pairs (M, 3) with M € 9T (A) and y €S. The following is
our main theorem.

THEOREM 3.3. Let S and O (A) be as defined above. For any f€ 1, (S, A)
define'the ‘transform’ of f with respect to a fixed point (M ,y) of M (A) XS by

Joap (f) = <PM FEDx )

where' ©y, is a continuous homomorphism of A onto the complex numbers. Then
Jory 2 @ non-zero continuous homomorphism on (S, A). Conversely given
a non-zero continuous homomorphism h on L (S,A),I(M,y) € M (A)xS
such that for feh (S,A), % (f) = Jo.p (f)

Note: The series Y, @y (f () % (s) is absolutely convergent| .
s€S

Proof. That Jor,, is a non-zero continuous homomorphism on 4 (S, A)
can be shown easily and we omit the proof. Now let / be a non-zero continuous
homomorphism on/; (S, A). Letf€A(S,A)3% (f)==o0. Foranyg €A G,A)
and @ €A, the function a¢ defined on S by setting ag (s) = a-g (s) is an

clement of 7 (S,A). Let f€A(S,A)5%(f)==0 and consider Z(&Q. It




[21] OLUSOLA AKINYI(;“,LE, A genscralization of the h-algebra, ecc. 21

can be easily shown that Z (‘;) is independent of the choice of f€/ (S, A).

4 (af)

In view of this we know that () depends only on @. We now define a

function ¢, on A onto the complex numbers by setting o, (2) = %, for
a € A. Assume temporarily that A has a unit element ¢. Then o, (¢) = 1
and ¢, 4= 0. Further g, is easily seen to be well-defined, continuous and linear.

Now for a;, ay € A.

_ Alaaf) _ Raaf) A(f) . hia
¢, (a1 az) = }Ll(fz) - /zl(f) '/l(f> A

A
AL

so that ¢, is multiplicative.

Thus ¢, is a non-zero continuous homorphism of A onto the complex
numbers, and as is well known there exists M € 9 (A) (depending only on %) 5

¢, (@) = ¢y (@.
Finally let 2 € A and g€/ (S), then
h(ag«f) = h(acg«f) = h(egxaf) =k (eg) h (af).
Hence % (ag) & (f) = % (eg) % (af)
(3:3.1) and % (ag) = % (eg) oy (@)  for g€/ (S).

But the set ¢4 (S) = {eg €1 (S, A): g€/ (S)} is isomorphic and isometric
with /1 (S). " Since % is a non-zero continuous homomorphism on 4 (S, A),
it is not zero identically on ¢/ (S) in view of (3.3.1) and because linear combi-
nations of functions ag with ¢ € /1 (S) 2 € A are dense in /1 (S, A) (see Remark 1).
It follows that /% is a non-zero continuous homomorphism on ¢/ (S). By the
isometric isomorphism of ¢/ (S) with 4 (S) it follows that 3y €S

ke (eg) = ;S AOVAO) for all g€/ (S) and then
(3.32)  h(ag) = oy (a) /i (eg) = X;S Py (g () % () = Jan.p (ag)
Suppose f €4 (S, A), then 3 a sequence of simple functions
(&} CLGS,A)38,~f as n—>o0o. By (332) %(g)=Janp (g

Hence A (f) = Joryp ()

Suppose now that A has no unit element; then by Theorem 20 ¢ (page 39)
of [4] we can embed A isometrically and isomorphically in a Banach algebra
A* with unit e in such a way that the maximal ideals in A* are the maximal
regular ideals of A and A itself. The homomorphisms of A* onto the complex
numbers are the ¢, (M € 9 (A)) and ¢, where ¢, (¢ +re) =X, for a €A
and A a complex number. By what has been proved, the non-zero conti-
nuous homomorphism on /4 (S, A*) are the Ja,, and additional functionals
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Ja.p. Butfor f€4(S,A), Jap () — ;s @, (f(5)) x(s)=o0. However, the

functionals Ja,, are identically zero on /4 (S,A) and thus the non-zero
continuous homomorphisms are the J,y, which completes the proof.

COROLLARY 3.4. There is a one-to-one correspondence between the points of
M (A (S A), that is the space of maximal regular ideals of L (S,A) and
oM (A) x S.

§4. THE RADICAL AND SEMISIMPLICITY OF / (S, A)

THEOREM 4.1. Let S be a discrete commutative semigroup with the property
that xy = x% = y? implies that x = y for x ,y €S. Then a necessary and suffi-
cient condition that a function f be in the radical of h (S, A) is that the range
of [ be in the radical of A.

Progf. Let R be the radical of A, then R= N M. Suppose f€4 (S, A)
M e oA
has its range in R; then Jat,p (f)=o, for all (M, 3) € O (A) x S. It follows
then that f belongs to the radical of 4 (S, A).

Suppose f belongs to the radical of 4 (S,A), then Ja,y (f) =0 for
every (M, y) € 9 (A) X S. This implies ;S @y (f () 1. (s) = o for arbitrary

(M, y) €9 (A)x S. If we define a function ¢y S on S by setting o f(s) =
= ¢y (f (5)), then ¢, f€A(s). Also ¢, f belongs to the radical of / (s) [3,
Theorem 2.8]. By the assumption on S, / (S) is semisimple [3, Theorem 35.8].
Hence o, f(s) = o for an arbitrary M € 91T (A). It follows that f has its
range in R.

The following corollary follows readily from the last theorem.

COROLLARY 4.2. If S is as in Theorem 4.1, then h (S, A) is semisimple
if and only if A is semisimple.
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