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Matematica. —■ Local forms of invariant differential operators. 
Nota di R obert C arroll n , p resen tata^  dal Socio Straniero 
A. W e in s t e in .

RIASSUNTO. — Si dà una caratterizzazione dei coefficienti locali degli operatori invarianti 
differenziali e si stabiliscono alcune proprietà degli operatori stessi.

1. Let G be a Lie group, H C G  a closed (Lie) subgroup, and write 
h~ C g~  for the corresponding Lie algebras. Let V and W  be finite dim en
sional (irreducible) complex H modules and write, for example, V (G) =  
=  G x h V for the associated homogeneous vector bundle over M =  G/H 
(cfr. [9]); we recall th a t V (G) =  (GxV)/H for the right H action 
(g >v) h =  {gh , h~x v) on G x V  (thus points of V (G) can be exhibited as 
{g >v)>H =  {{gh , h r 1 v)}). Given a representation a of H on V (defining 
V as an H module) one has an induced representation p of G on C°° (V (G)) 
by the rule (p {g) t|>) {p) =  g- ^ {g* 1 p )  where g- (g  , v)-H  =  { g g , v)-H  and 
4* € C°° (V (G)) is a C°° section of V (G). A linear differential operator 
D : C°° (V (G)) ->C°° (W  (G)) is called invariant if Dp {g) =  p (g) D acting 
on sections W e give a characterization of the local coefficients of such 
invarian t operators and indicate some of their properties in various low rank  
situations. T he details and further results will appear in [2, 3].

2. L et g~ =  hT -)- m~  be a vector space direct sum with X,- (1 <  i  <  r) 
a basis of m r"J and Xy+i ? * * * > X Ä a basis of h~ . Then one can choose local 
coordinates (^U  , <pf) on M where U  is a suitable open neighborhood of 
6 =  tu (e) (tu being the canonical m ap G ->M ) and : 7u (^ e x p  ( ^  X ± +  • • •

r

• • • +  £r Xr)) (£1, • • •, Q  (see [7] -  recall also that the map \  -» exp Ç,. X,- •
n 1

•exp X,- will provide local coordinates on G in a neighborhood of è). 
,r+1

One knows (cfr. [9]) th a t sections ^ of V  (G) are in 1 —  1 correspondence 
with m aps $ : G -> V  satisfying $ (gh) =  h r 1 4» {g) (the rule is determ ined 
by (^H ) =  {g , $ (g)) • H). Let g% == exp ( ^  X x +  • • • +  Xy) and for 
p  ~  tu {g) =  tu {gf) define a trivialization of V (G) over U  at p  by the rule 
Tp {(g , v)-H) =  g~xgv  w ith inverse m ap T ^ 1 (y) =  {g% , z/)-H; one translates 
this to any  in an obvious way. If  $ denotes the corresponding trivializa
tion in W  (G) one writes D =  DT where D is the local expression 
for P  of the form D — S  aa (Ç) D a over U  with D a =  D “*- • -D ^  and

(*) Research supported in part by NSF grants GP 7374 and GP 11798.
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Dk — d/di^k (aaQi) eL (V ,W )). W e will consider m ainly first order operators D 
in this note. Now, corresponding to p, we have a representation p of G on 
functions $ as above given by (p (g) $) (g~) =  $ (g " 1 g~)- Then writing out 
the invariance condition p Çg) D. =  Dp (g) in local coordinates (U , <ptf) we 
obtain

LEMMA i. ? (g) ( D $ ) ( ^ )  =  Dp (g) $ (g,f) whenever g^ 0 and g~xg  0 
belong to U.

Thus localized one easily establishes contact with the fram ework of 
[4, 12] where G =  P =  T x y L i s  the Poincaré group (cfr. also [8]); in fact 
the calculations of [4, 8, 12] have a version for any semidirect product 
G =  K x y H and this is partia lly  developed in [2]. Now we recall some alge
braic constructions from [14]. Thus let g~  denote the complexification of g~ 
with Up (g~) the elements in the universal enveloping algebra U  (g^)  of length 
not exceeding p  and set ]p (g~*) =  Up (g~ff  (vector space dual). Define an 
action of he on U (£-~)®V* (® =  ®c) b y > v# (Y) {u®v') = r ( Y )  u ® v '+ u ® Y v f 
where r (Y )  u =  — u Y  and for <x®v e ]p (g~*)®V one determ ines ry (Y) (a®v) 
by the rule <  ry (Y) (a ® v) , u ® z />  =  <  a ® v , (Y*) (u ® v’) >  where
Y *=  —  Y and u® v' e UP- i  (g~) ® V*. The subspace of ]p (g£*) ® V  annihilat
ed by ry (Y) for y  e he is denoted by ]p ( ^ * ) 0 ^ V  and is called a cotensor 
product (for p = o  one identifies J0 (g~'*)®Â?  V with V). For u ® v r e U (gç)®V*  
we write 0V* (Y) (u ®v') =  0 (Y) u® v'  +  u® Y v r where 0 (Y) (X r  • • X^) =  
=  2  X r  • *[Y , X,-]; • • X^ and then ]p (gç*)®h~ V  becomes an he m odule 
under the action of 0V (Y) where <  0V (Y) (<x.®v) , u®v'  >  =  <  ol® v , 0V* (Y*) 
(u®v')  >  for u® v' 6 Up (gç)® V*  (for ^  =  o , 0v (Y) action coincides with 
Y action).

Now the jet bundle Jp (V (G)) is a homogeneous vector bundle G X h Z  
where Z =  ]p (gç*)®)Â~ V  and invarian t D of first order as above are associated 
with he m odule hom om orphisms Q1 : J 1 ( ^ * ) 0 Ä~ V  -> W  (see [14]). We
show th a t (under suitable identifications) Q (ji ,e =  (D<j;) (fi) and hence
from lem m a 1 it follows th a t Q± ( j le  $) =■ 2  aa (o) D a $ (g%) |^=0 . One now
chooses = f ® v  w ith /  (e) =  o and /  depending in our local coordinates 
on G only on (1 < m  < r )  and there results

T h e o re m  i. The local coefficients am (o) of an invariant first order D are 
characterized by the rule Q1 (d%m ® v) =  am (o) v.

r

Assum e now th a t hT is reductive in g~  so th a t [Y , X,] =  2  (Y) x y
^  _ J — 1

for Y e he (this will occur for exam ple if H is semisimple or com pact or if 
G =  K X y H). U sing the fact tha t Qj is an he module hom om orphism  one 
proves

C o r o l l a r y  i. For hT reductive in g~ the characterization of theorem I 
yields the multiplication table

r

(2* 0  [Y , (O)] =  —  X  Bim (Y) a,- (o) .
7 = 1
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We note th a t the invariance condition of lemma 1 for E, =  o describes 
local D action in term s of the a{ (o) (cfr. also [7]). One can in fact derive 
(2.1) directly from this invariance statem ent in case G =  K x Y H for example 
(see [2]) and the calculations reduce to those of [8] when G =  P; we also 
show th a t the a{ (£) are constant when K is abelian. A  characterization 
Qp (d£a0z/) — p \ a a (o) v for | a | =  p  with Qp an he module hom om orphism  
also holds for the top order coefficients aa (o) when D is of order p  and 
corollary 1 has an analogue for such aa

(d£a =  d i;/1 • • • d £ >  is the product in L  (/T*)) .I n  ^

3. Now (2.1) describes a representation of he on the complex vector 
subspace & of L (V , W) spanned by the a^(o). Thus, assuming h~ is semisimple 
from now on, reduction of this representation involves classifying irreducible 
representations of hZ =  n~ on such & for n~ either a simple complex Lie algebra 
s~ or for (cfr. [6]). Then let be a C artan subalgebra with
n~ =  -{-.Un* a root space decomposition (see [6, 7, 10, 13] for background
here). If  oq , • • •, oq is a base of roots with m  >  /  positive roots R+ one finds 
elements X a G na , Ya G n~a, and H a e c~ (a g R+) such th a t n~ is generated by 
the X a/ , Y a. and H a. (1 <  i <  /) subject to the relations [H a , H ß] — o, 
[Xa , Ya] -  H a , [Xa , Yp] -  o if a 4= ß , [H a , X p] == * (a , ß) X ß , [H a , Yß] -  
=  — n (  a , ß ) Y ß , for a 4= ß> ■ ad (Xa) - ^ a’ß) + 1 (Xß) =  o, and for a 4= ß 
ad (Ya)“ ^(̂a’ß) + 1 (Yß) =  o where a , ß G R+ , n (a , ß) =■ o ,' — 1, —  2 or —  3 
for a 4= ß, and n (a , a) — 2. Irreducible representations of complex semi
simple Lie algebras are characterized by a prim itive element /  of dom inant 
weight w  (thus X a/  — o and H / =  w  ( H ) /  for H G c~) while elements /m  —

m.
=  ( I I Y a ! ) / , I <  i  <  m, will span the representation space F. Now choose 
suitable bases vm and w 'm for V  and W  from among the vm and wm indicated 
and try  to find a suitable basis of m atrices for & from am ong the 
indicated, such th a t [Xa , z\ — o and [H , z] =  w  (H) z  for the prim itive 
element z  while certain “ cutoff equa tions” indicated below are also satisfied. 
The zm will eventually be linear combinations of the (o) if an irreducible 
ta b le ’(2.1) is given and, suitably ordered by z, will correspond (heuristically) 
to the local coefficients of 3/ 9y]x- after a complex linear change of local coordi
nates ,£->*/). We will only concentrate on natural choices and properties 
of the -s’m although examples are worked out relating the z 'm to the a{ (o).

F irst one looks at the lowest rank  case A i =  si (2 , C) =  so (3 , C) =  h~ 
(eventually we will treat all A n , Bn , Cn , etc. in varying degrees of comple
teness— see [3]— but in this note only results for A* will be indicated). Thus 
let v0 =  v G V  (resp. w 0 =  w  G W) be prim itive and choose basis vectors 
Vj =  Y J v (resp. =  Y * w) where o < j  <  2 k (resp. o <  i <  2 k') w ith k 
(resp. k') an integer or half integer. Let there be r =  2 k n +  1 linear 
operators zm — [Y , zm-i] (z0 =  z) satisfying [X , z\ =  o , [H , z] — w  (H) z =  
— 2 k" z =  ( r —  1) z, and the “ cutoff equation ” [Y , zr- 1] =  o. We write
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zi =  Tpj v>j and determ ine the m atrix  entries f p . ( p  =  row index and 
j  =  column index).

T h eo rem  2. =  o unless p  — j  =  ß -+- k —  k' where ß =  1 j

and under this stipulation it is further necessary that the “ cutoff condition ”

1 + S ( - I ) ( n '
__________ (fi +  s) • • • (fi +  1) (2 k — fi) • » • (2 k — f i — s -f- 1)___________  __
(k —k~\-fi— ß +  i) • • • (kt— k-\-fi— ß+d') (k' Ark— fi-\-ß — J + i )  • • • (kr -\-k—fi-f-ß) ^

holds. U nder these circum stances one can prescribe arb itrarily  the y^ . of 
m inim al j  index, for example, satisfying p  — j  =  ß +  k —  k ' and then the 
rem aining nonzero y ^y are determ ined by the relation y£ ( j  -f  i) (2 k '— j )  =

=  P (2 ^ /  +  0 - The yJF for 1 <  m <  r  1 are determ ined recur
sively from the equation y j y =  y j j ^  —  Y ^ y  or directly from the formula

m /  \

=  'y^+s.j-m+s  and Yj.y =  0 unless p — j =  ß + ^  —  k'— m.

As an example, when r  =  3 the cutoff condition holds when k — k!,
3

k =  k ' i ,  or k =  k ’— I. T hen write, D (y)) — T] z{ and, taking /è =  k!,
1

set A =  det D (73). In case G =  T x Y SO (3) is the natural semidirect product 
of the translations in R 3 with the rotation group one has z0 =  — iax +  a2} 
z i — 2 and z2 =  2 iai +  2^2 (note tha t the matrices for the will have 
complex entries). M aking a suitable linear change of variables E, -> Ç , D

becomes D =  ^  z{ d/ a n d  at the symbol level the variable change

y  I =  —  ïri0 +  2 iv\2 , y 2 =  Y)0 +  2 y]2 , and y 3 =  2 i ^  (y  real) yields D (y)  =

=  2  aiVi =  £) (y)). U sing the fact th a t — r\\ +  2 y]q 7]2== —- I \y\ one can 
prove

T h eo rem  3. Let^ r =  3 and k =  k' with G =  T  x  Y SO (3). Then fo r  
k =  integer, A =  det D (Y) =  o while fo r  k =  (2 n T  i)/2 D is elliptic with 
A =  c (L y ^y +1 where c =  {2 n —  i)2 - • • 32/4"+1 {2 n +  i)2n fo r  >  r —  * =

=  — fo r  n =^=oj .

4. Going next to A 2 =  j /  (3 , C) there are two basic roots oq and oc2 
with n (oq , a 2) =  n (a2 , oq) =  —  1 while oq T  a2 =  oc3 is also a root. If  w 
is the dom inant weight for F  with w  (H i) =  r  and w  (H 2) =  s (H,. =  H Œj.)
then a basis! for F  can be expressed in the form f .  . k =  Y* Y> Y^ f  where
° < & < r , o < j < s ,  and o <  i <  r  +  — j  — Æ (see [1, 11 ]). Thus one
seeks Ziu j^y ,  =  (<*/ Y3)*" (a d Y 2y "  {ad Yi)*" z e L  (V , W ) with [ X i , s] =  
— [X2 , -s-] =  o , [H i , z] — r"zy and [H 2 , z] =  s"z , while z m ust satisfy
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the cutoff equations (ad Y { )r" +1 z — (ad Y2)J,,+1 z  =  o (cfr. [10]). The 
representations of A2 on V  and W  are supposed given, here in term s of para
meters (r , s) and (V, s') respectively. Then write zv. . k ~  S  y k,w .t k,
and set p  =  i 2 k — j  w ith q =  i +  2 j  — k\ one uses indices p  ,q  , i  or
i , j  , k interchangeably.

THEOREM 4 . There are possible nonzero ypq’f only when p  —  p' — R =

=  r 'rjr r  —  r' and q —  qr= = S = s " - \ - s  —  s'. These y entries can then be 
computed from the equations [X x , z] =  [X2 , z] =  o in the form

(4-0 ( / § ' +  I )  (r1—  k ‘)  +  ( * ' +  0  V ^ L ’-U '+ i =

k ( r — k +  i) Yp- ' f f i 1,' +  i

( j  + 0 (S + k  J  O y P - ì , q '  + 2,i' (* + 0 Y p l l tq> + 2>lw + 1 :

=j ( s  +  k — j — i +  1) y|,+V v2,2 — i y p ll 'S %i-1

provided these equations have nontrivial solutions. F inally the cutoff condi
tions on the y entries arising from the cutoff equations m ust be satisfied. 
The m atrix  entries for the rem aining z.n , k„ can then be com puted recur
sively from the definition of z .n k„ .

Various natural orderings of basis elements v. . , etc. can be found2 ij j k
for any given nontrivial exam ple in which sym m etry properties etc. of the 

are clearly exhibited; this will be developed in [3] and various 
patterns and qualitative features are visible. Now for n >  2 one does not 
have a table of basis vectors worked out in general for the irreducible represen
tations of A n =  s i (n + .  I , C) although presum ably this could be done (after 
considerable calculation). Thus we have only studied examples involving 
fundam ental weights Wj  (i.e., WjQif)  =  with 1 < j  , k <  n =  I). If
one writes ej (H) =  Ay for H =  diag ((A*)) e then

%= j(» + 1 — j ) 2 ek— j  2  ei\  I (n +  0
( k=i k=j+1 y I

and we obtain the other (equivalent and simple) weights in the representation 
determ ined by Wj by the W eyl reflections corresponding to the independent 
perm utations of the components ek of Wj (cfr. [5]). This enables one to readily 
determ ine natural basis vectors for wj and thence to obtain good m atrices 
for the z 'm . A gain various sym m etry patterns are visible and properties 
of the z'yi will be discussed in [3].



[ 297] R ob ert C a r r o ll,  Local form s o f invariant differential operators 571

R e f e r e n c e s .

[1] B. BRADEN, Restricted representations o f classical Lie algebras o f types A2 and B2, « Bull. 
Amer. Math. Soc. », y 3, 482-486 (1967).

[2] R. CARROLL, Local forms o f invariant operators. I, «Annali di Mat.», to appear.
[3] R. CARROLL and C. WANG, Local form s o f invariant operators, II, In preparation.
[4] I. Gelfand, R. M iNLOS, and Z. Shapiro , Representations o f the rotation and Lorentz 

groups, Moscow 1958.
[5] M. Gourdin, Unitary symmetries and their application to high energy physics, North-

Holland, Amsterdam 1967.
[6] M. H a u sn e r  and J. S chw artz , Lie groups', Lie algebras, Gordon-Breach, New York 1968.
[7] S. H elgason, Differential geometry and symmetric spaces, Academic Press, New York

1962.
[8] R. H ermann, Lie groups fo r  physicists, Benjamin, New York 1966.
[9] D. H usemOLLER, Fibre bundles, McGraw-Hill, New York 1966.

[10] N. JACOBSON, Lie algebras,_ « Interscience », New York 1962.
[11 ] T. Kearns, On representations o f Lie algebras o f classical type, Thesis, Univ. of Illinois, 

1968.
[12] M. Naim ARK, Linear representations o f the Lorentz group, Moscow, 1958.
[ ï3] J. SERRE, Algèbres de Lie semisimples complexes, Benjamin, New York 1966.
[14] W. Smoke, Invariant differential operators, «Trans. Amer. Math. Soc.», 12J, 460-494 

(1967).


