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Matematica. — Local forms of invariant differential operators.
Nota di RoBerT CarRrOLL ), presentata ™ dal Socio Straniero
A. WEINSTEIN.

RIASSUNTO. — Si da una caratterizzazione dei coefficienti locali degli operatori invarianti
differenziali e si stabiliscono alcune proprietd degli operatori stessi.

1. Let G be a Lie group, HCG a closed (Lie) subgroup, and write
A~ C g~ for the corresponding Lie algebras. Let V and W be finite dimen-
sional (irreducible) complex H modules and write, for example, V (G) =
= GXnuV for the associated homogeneous vector bundle over M = G/H
(cfr. [9]); we recall that V (G)= (GXV)/H for the right H action
(g,9) 2= (gh, i v) on GXV (thus points of V (G) can be exhibited as
(¢,v)-H=1{(gh,”v)}). Given a representation ¢ of H on V (defining
V as an H module) one has an induced representation p of G on C(V (G))
by the rule (p(£)4) (5) =g-Y (gL p) where g- (¢ ,9)-H =(g&,0)-H and
$eC®(V(G)) is a C” section of V(G). A linear differential operator
D:C®(V(G)) - C* (W (G)) is called invariant if Dp(g) = ¢ (g) D acting
on sections ¢. We give a characterization of the local coefficients of such
invariant operators and indicate some of their properties in various low rank
situations. The details and further results will appear in [2, 3].

2. Let g~=/" +m™~ be a vector space direct sum with X, (1< 7 <#)
a basis of 7~ and X,,;, -+, X, a basis of #~. Then one can choose local
coordinates (¢U, ¢,) on M where U is a suitable open neighborhood of
0 = m (¢) ( being the canonical map G —~M) and ¢,: 7 (gexp E X+

4+ E. X)) = (1, -, &) (see [7] — recall also that the map & — exp E £, X;-

-exp %E X; will provide local coordinates on G in a neighborhood of e).

One knows (cfr. [9]) that sections ¢ of V (G) are in 1—1 correspondence
with maps §:G -V satisfying kp(g/z) —h‘lnp(g) (the rule is determined
by ¢ (¢H) = (g, b(g)-H). Let g =exp( X, -+ +5X,) and for
p=mn(g) == (g.) define a trivialization of V (G) over U at p by the rule

T,(g,v)-H) = ggl gv with inverse map T, (v) = (&> v)-H; one translates
this to any £U in an obvious way. If 3 denotes the corresponding trivializa-
tion in W (G) one writes D = 81 DT where D is the local expression
for D of the form D =X a, () D* over U with D* = D{*...D* and
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D, =23/3; (2, () € L(V,W)). We will consider mainly first order operators D
in this note. Now, corresponding to e, we have a representatlon ¢ of G on
functions L[J as above given by (¢ (g) Lp) (™) = Lp( ! ¢~). Then writing out
the invariance condition p(g)D = Dp (g) in local coordinates (U, ¢,) we
obtain

LemMMA 1. § (g) (DJ)( &) = D¢ (&) Y (g) whenever &0 and g1 &9
belong to U.

Thus localized one easily establishes contact with the framework of
[4, 12] where G = P = T, L is the Poincaré group (cfr. also [8]); in fact
the calculations of [4, 8, 12] have a version for any semidirect product
G = KX, H and this is partially developed in [2]. Now we recall some alge-
braic constructions from [14]. Thus let g7 denote the complexification of g~
with U, (g¢) the elements in the universal enveloping algebra U (g) of length
not exceeding p and set J, (¢5*)=U, (g2)* (vector space dual). Define an
action of /¢ on U (g5)®V* (®=®&) by 7, (Y) (#®7) = (V) u®v' +u® Yo'
where 7 (Y) # = —«Y and for a®v € J, (¢5*)®V one determines », (Y) (¢®v)
by the rule <7y (V) (@®2),2®9'> = <a®uv,ry (Y*) (#®v) > where
Y*= —Y and #®v' € Uy_1(gZ) ®V*. The subspace of J, (g5*)®V annihilat-
ed by 7 (Y) for y € 4c is denoted by J, (¢2™)®%V and is called a cotensor
product (for p=o0 one identifies J, (¢5*)®% V with V). For z®v' €U (g5)®V*
we write Oy (V) (x ®2") = 0 (Y) #®v'+ 2#® Yo' where 0(Y) (X;---X,) =
=X Xy---[Y,X;]:--X, and then J,(¢2*)®%*V becomes an /43 module
under the action of Oy (Y) where < Oy (Y) (x®v) , #®v' > = < a®u, Oy« (Y¥)
(u®v") > for u®v' €U, (¢7)®V* (for p=o0, Oy (Y) action coincides with
Y action).

Now the jet bundle J?(V (G)) is a homogeneous vector bundle G Xy Z
where Z=],(g0*)®% V and invariant D of first order as above are associated
with /4c" module homomorphisms Q,: J, (4o ®%V - W (see [14]). We
show that (under suitable identifications) Q, (ji.. LI/) D u[)) (¢) and hence
from lemma 1 it follows that Q, Uy, {) == a, (0) D (&) [E o- One now

chooses kIJ = f®uv with f(¢) = o0 and f depending in our local coordinates
on G only on £, (1 <m <7) and there results

THEOREM 1. The local coefficients a,, (0) of an invariant first order D are
characterized by the rule Q, (d€,, ® v) = a,, (0) v.

Assume now that 4~ is reductive in g~ so that [Y, X;] = E B,; (Y) X;

for Y € 4¢’ (this will occur for example if H is semisimple or compact or if

G = KX, H). Using the fact that Q; is an 4 module homomorphism one
proves

COROLLARY 1. For h™ reductive in g~ the characterization of theorem 1
ytelds the multiplication table

(2.1) Y, @ (0)] = — gl Bim (Y) @ (0).
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We note that the invariance condition of lemma 1 for £ = o describes
local D action in terms of the &; (0) (cfr. also [7]). One can in fact derive
(2.1) directly from this invariance statement in case G = K X, H for example
(see [2]) and the calculations reduce to those of [8] when G = P; we also
show that the @; (§) are constant when K is abelian. A characterization
Q, (d&*®v) = pla, (0)v for |a|= p with Q, an 4¢ module homomorphism
also holds for the top order coefficients @, (0) when D is of order p and
corollary 1 has an analogue for such a,

(2" = dE -+ dZ;™n is the product in J, (¢5%) .

3. Now (2.1) describes a representation of 4c on the complex vector
subspace & of L (V, W) spanned by the #;(0). Thus, assuming /4~ is semisimple
from now on, reduction of this representation involves classifying irreducible
representations of /¢’ =7~ on such & for z~ either a simple complex Lie algebra
s~ or for #~=ys~Xs~ (cfr. [6]). Then let c~C#»~ be a Cartan subalgebra with
n~ =~ + Xn* a root space decomposition (see [6, 7, 10, 13] for background
here). If oy, -, o, is a base of roots with 7 >/ positive roots R, one finds
elements X, €7*, Y, €7 and H, €~ (x€R,) such that »~ is generated by
the X, , Y, and H,, (1 <7 </) subject to the relations [H,, Hg] = o,
[Xa’Ya]:Ha’[Xa’Yﬁ]:O if OC:"—‘B, [Ha’Xﬁ]:n<‘x’B) Xﬁ’[Ha!Yﬁ] =
=—mn(,B) Y, for a=d=p, ad (X,)*@P+1(Xz) =0, and for a==B
ad (Yg) "@P+1(Yg) =0 where « ,B€R, ,7(¢,Bf)=0, —I, —2 or — 3
for a==8, and 7 («, «) = 2. Irreducible representations of complex semi-
simple Lie algebras are characterized by a primitive element f of dominant
weight @ (thus X,/ =0 and Hf= @ (H) # for H € ¢~) while elements fy =

= (HYZ;) S, 1 <7 <m, will span the representation space F. Now choose

suitable bases vm and wy for V and W from among the zy and wy indicated
and try to find a suitable basis of matrices sy for @ from among the zy
indicated, such that [X,,z] =0 and [H,z] = @ (H)z for the primitive
element z while certain indicated below are also satisfied.
The 2y will eventually be linear combinations of the a; (0) if an irreducible
table |(2.1) is given and, suitably ordered by 7, will correspond (heuristically)
to the local coefficients of 9/dn, after a complex linear change of local coordi-
nates & —v. We will only concentrate on natural choices and properties
of the sm although examples are worked out relating the zy to the «; (0).

First one looks at the lowest rank case A1 = s/(2,C) = s50(3,C) =4~
(eventually we will treat all A, , B, ,C,, etc. in varying degrees of comple-
teness—see [3]—but in this note only results for A, will be indicated). Thus
let o5 =v€V (resp. wy=w € W) be primitive and choose basis vectors
v;= Y/ v (resp. w; = Y'w) where 0 <j <24 (resp. 0 <7 <24 with £
(resp. £) an integer or half integer. Let there be » = 2 &' -+ 1 linear
operators z,, = [Y , 2,_1] (g, = 2) satisfying [X ,2]=o0,[H,2z] =@ (H)z =
=24k"2= (r—1)z and the “ cutoff equation” [Y,z_;] =0. We write

LR

cutoff equations
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20, = X Y, ;; and determine the matrix entries Y, ; (p = row index and
J = column mdex)

THEOREM 2. Yg,j:o unless p—j =08+ k—~ where Bz(r_l)

2
and under this stipulation it is further necessary that the “ cutoff condition”

1+§1<—1>(§)-

, (P49) (P DNCE—P - @h—p—st))
E—F+p—BF1) - (F —htp—B+5) (¥ HA—pHB—st1) - (B +h—pTB)

holds. Under these circumstances one can prescribe arbitrarily the ng of

minimal ; index, for example, satisfying p—; = p -+ £— £ and then the
remaining nonzero Y . are determined by the relation 1 G+ D EE—)) =

=Yy_,,;2(2k—p+1). The v, for 1 <m <7—1 are determined recur-

sively from the equation Yy, = Zl;ll—YpH . or directly from the formula

Yy, = E{)( )(—— DY) e jmys and v ;=0 unless p—; =8 +k—k'—m.
As an example, when » = 3 the cutoff condition holds when 2= £,
k= k41, or £=F—1. Then write, D () = ? 2%, and, taking £ = £,

set A = detD (v). In case G = T>< SO (3) is the natural semidirect product

of the translations in R® with the rotat1on group one has gy = — ia;+ ay,

2y = 27as, and 23 = 2 7a; + 24, (note that the matrices for the z; will have

complex entries). Making a suitable linear change of variables ¢ — ¢, D
2

becomes D = > 2,9/3¢, and at the symbol level the variable change
0
Yp=—my+2m,,y, =y +2m,, and y, = 20, (y real) yields D (y) =

=3Xay; =D (). Using the fact that — n + 27 n,= %Zy‘;’. one can
prove

THEOREM 3. Let r =3 and k= Fk with G = Tx,SO (3). Then for
k = integer, A = detD (Y) = o while for = (2n + I)/z D is elliptic with

A=¢ (Eyf)“ﬂ where ¢ = (2n—1)% - 32471 (2 % + 1)2” for (% >1—c=

1
= — Jor n =— O] .
4f )

4. Going next to Ay= s/(3,C) there are two basic roots «; and oy

with 7 (¢, ag) = 7 (a9, @;) = — 1 while o, + oy = a3 is also a root. If %@
is the dommant weight for F with @ (Hy) =7 and @ (Hs) = s (H; = H,,)
then a ba51s for F can be expressed in the form Jign= Y5 Y, Y2 f where

o<t<r,o<j<s,ando<i<r-t+s—j—=# (see [1, 11]). Thus one
seeks B, i g = (aa’ Y3>i” <(Zd Yz)ju (dd’ Yl)k” z€eL (V ’ W) with [Xl , Z] =
= [X2,2] =0, [Hi1,2] =#"2, and [Ha,z] = "2, while # must satisfy
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the cutoff equations (ad Y1)tz = (ad Yo)"'*+1z=o0 (cfr. [10]). The
representations of Ap on V and W are supposed given here in terms of para-
meters (r,s) and (»/,s’) respectively. Then write 2 = b Y:,fj,k PRI
and set p =7 24 —j with ¢ =7 -+ 27— 4; one uses indices p,¢,7 or
7,7, # interchangeably.

THEOREM 4. There are possible nonzero Y% ., only when p— p' = R =
=7v"+r—r and g—q'=S=s"+s—s". These v entries can then be
computed from the equations [Xi,z] = [Xs,2] = 0 in the form

(4.1) F+D )Y o T DY =
=k(—Fk+ D)y 2 iyt Berbicl

* (]/+ I) (S"‘[" k,‘*—j/— Z'I) Y?’,i’li,q’—k&{’ - (2,_'_ I) Yﬁ"£’]iq’+2,i’+l =

= (s b i D) YR g i)

provided these equations have nontrivial solutions. Finally the cutoff condi-
tions on the y entries arising from the cutoff equations must be satisfied.
The matrix entries for the remaining By i g CAN then be computed recur-
sively from the definition of 2 o o

Various natural orderings of basis elements v; ;4 €tc. can be found
for any given nontrivial example in which symmetry properties etc. of the
B ju g ATE clearly exhibited; this will be developed in [3] and wvarious
patterns and qualitative features are visible. Now for # > 2 one does not
have a table of basis vectors worked out in general for the irreducible represen-
tations of A, = s/ (% 4 1,C) although presumably this could be done (after
considerable calculation). Thus we have only studied examples involving
fundamental weights @; (ie., @w;(Hy) = 9§;; with 1 <j,2<n=17). If
one writes ¢; (H)=2; for H = diag ((\;))€c~ then

n+1

/ 7
= t1—-NXa—; X a
\ = =7

[+

and we obtain the other (equivalent and simple) weights in the representation
determined by @; by the Weyl reflections corresponding to the independent
permutations of the components ¢, of @; (cfr. [5]). This enables one to readily
determine natural basis vectors for #; and thence to obtain good matrices
for the zm. Again various symmetry patterns are visible and properties
of the zy will be discussed in [3].
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