ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

ROBERT W. CARROLL

Local forms of invariant differential operators

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **48** (1970), n.6, p. 566–571.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1970_8_48_6_566_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Matematica.** — Local forms of invariant differential operators. Nota di ROBERT CARROLL^(*), presentata^(**) dal Socio Straniero A. WEINSTEIN.

RIASSUNTO. — Si dà una caratterizzazione dei coefficienti locali degli operatori invarianti differenziali e si stabiliscono alcune proprietà degli operatori stessi.

1. Let G be a Lie group, $H \subset G$ a closed (Lie) subgroup, and write $h \subset g \sim$ for the corresponding Lie algebras. Let V and W be finite dimensional (irreducible) complex H modules and write, for example, $V(G) = G \times_H V$ for the associated homogeneous vector bundle over M = G/H (cfr. [9]); we recall that $V(G) = (G \times V)/H$ for the right H action $(g, v) h = (gh, h^{-1}v)$ on $G \times V$ (thus points of V(G) can be exhibited as $(g, v) \cdot H = \{(gh, h^{-1}v)\}$). Given a representation σ of H on V (defining V as an H module) one has an induced representation ρ of G on $C^{\infty}(V(G))$ by the rule $(\rho(g)\psi)(p) = g \cdot \psi(g^{-1}p)$ where $g \cdot (\hat{g}, v) \cdot H = (g\hat{g}, v) \cdot H$ and $\psi \in C^{\infty}(V(G))$ is a C^{∞} section of V(G). A linear differential operator $D: C^{\infty}(V(G)) \to C^{\infty}(W(G))$ is called invariant if $D\rho(g) = \rho(g)D$ acting on sections ψ . We give a characterization of the local coefficients of such invariant operators and indicate some of their properties in various low rank situations. The details and further results will appear in [2, 3].

2. Let $g^{\sim} = h^{\sim} + m^{\sim}$ be a vector space direct sum with X_i $(1 \le i \le r)$ a basis of m^{\sim} and X_{r+1}, \cdots, X_n a basis of h^{\sim} . Then one can choose local coordinates (gU, φ_g) on M where U is a suitable open neighborhood of $\theta = \pi(e)$ (π being the canonical map $G \to M$) and $\varphi_g : \pi(g \exp(\xi_1 X_1 + \cdots + \xi_r X_r)) \to (\xi_1, \cdots, \xi_r)$ (see [7] – recall also that the map $\xi \to \exp \sum_{i=1}^{r} \xi_i X_i \cdot \cdots + \xi_r X_r)$) $\to (\xi_1, \cdots, \xi_r)$ (see [7] – recall also that the map $\xi \to \exp \sum_{i=1}^{r} \xi_i X_i \cdot \cdots + \xi_r X_r)$) $\to (\xi_1, \cdots, \xi_r)$ (see [7] – recall also that the map $\xi \to \exp \sum_{i=1}^{r} \xi_i X_i \cdot \cdots + \xi_r X_r)$) $\to (\xi_1, \cdots, \xi_r)$ (see [7] – recall also that the map $\xi \to \exp \sum_{i=1}^{r} \xi_i X_i \cdot \cdots + \xi_r X_r)$) $\to (\xi_1, \cdots, \xi_r)$ (see [7] – recall also that the map $\xi \to \exp \sum_{i=1}^{r} \xi_i X_i \cdot \cdots + \xi_r X_r)$) and for $\psi(gH) = (g, \hat{\psi}(g)) \cdot H$). Let $g_{\xi} = \exp(\xi_1 X_1 + \cdots + \xi_r X_r)$ and for $p = \pi(g) = \pi(g_{\xi})$ define a trivialization of V (G) over U at p by the rule $T_p((g, v) \cdot H) = g_{\xi}^{-1} gv$ with inverse map $T_p^{-1}(v) = (g_{\xi}, v) \cdot H$; one translates this to any \tilde{g} U in an obvious way. If \Im denotes the corresponding trivialization in W (G) one writes $D = \Im^{-1} \tilde{D}T$ where \tilde{D} is the local expression for D of the form $\tilde{D} = \Sigma a_a(\xi) D^a$ over U with $D^a = D_1^{\alpha_1} \cdots D_r^{\alpha_r}$ and

(**) Nella seduta del 13 giugno 1970.

^(*) Research supported in part by NSF grants GP 7374 and GP 11798.

 $D_k = \partial/\partial \xi_k \ (a_\alpha(\xi) \in L(V,W))$. We will consider mainly first order operators D in this note. Now, corresponding to ρ , we have a representation $\hat{\rho}$ of G on functions $\hat{\psi}$ as above given by $(\hat{\rho}(g)\hat{\psi})(g^{\sim}) = \hat{\psi}(g^{-1}g^{\sim})$. Then writing out the invariance condition $\rho(g) D = D\rho(g)$ in local coordinates (U, φ_e) we obtain

LEMMA I. $\hat{\rho}(g)(\tilde{D}\hat{\psi})(g_{\xi}) = \tilde{D}\hat{\rho}(g)\hat{\psi}(g_{\xi})$ whenever $g_{\xi}\theta$ and $g^{-1}g_{\xi}\theta$ belong to U.

Thus localized one easily establishes contact with the framework of [4, 12] where $G = P = T \times_v L$ is the Poincaré group (cfr. also [8]); in fact the calculations of [4, 8, 12] have a version for any semidirect product $G = K \times_{\gamma} H$ and this is partially developed in [2]. Now we recall some algebraic constructions from [14]. Thus let $g_{\rm C}^{\sim}$ denote the complexification of g^{\sim} with $U_p(g_C^{\sim})$ the elements in the universal enveloping algebra $U(g_C^{\sim})$ of length not exceeding p and set $J_p(g_c^{\sim}) = U_p(g_c^{\sim})^*$ (vector space dual). Define an action of $h_{\mathbf{C}}^{\sim}$ on $U(g_{\mathbf{C}}^{\sim}) \otimes V^{*}(\otimes = \otimes_{\mathbf{C}})$ by $r_{\mathbf{v}^{*}}(\mathbf{Y})(u \otimes v') = r(\mathbf{Y}) u \otimes v' + u \otimes \mathbf{Y}v'$ where r(Y) u = -uY and for $\alpha \otimes v \in J_p(g_C^*) \otimes V$ one determines $r_V(Y)(\alpha \otimes v)$ by the rule $< r_{\mathbf{V}}(\mathbf{Y}) (\mathbf{a} \otimes v)$, $u \otimes v' > = < \mathbf{a} \otimes v$, $r_{\mathbf{V}^*}(\mathbf{Y}^*) (u \otimes v') >$ where $Y^* = -Y$ and $u \otimes v' \in U_{p-1}(g_C^{\sim}) \otimes V^*$. The subspace of $J_p(g_C^{\sim *}) \otimes V$ annihilated by $r_{V}(Y)$ for $y \in h_{C}^{\sim}$ is denoted by $J_{p}(g_{C}^{\sim}) \otimes {}^{h_{C}^{\sim}}V$ and is called a cotensor product (for p = 0 one identifies $J_0(g_C^{\sim *}) \otimes {}^{k_C} V$ with V). For $u \otimes v' \in U(g_C^{\sim}) \otimes V^*$ we write $\theta_{\mathbf{V}^*}(\mathbf{Y})(u \otimes v') = \theta(\mathbf{Y}) u \otimes v' + u \otimes \mathbf{Y}v'$ where $\theta(\mathbf{Y})(\mathbf{X}_1 \cdots \mathbf{X}_p) =$ $= \Sigma X_1 \cdots [Y, X_i] \cdots X_p$ and then $J_p(g_C^{\sim *}) \otimes {}^{h_C^{\sim}} V$ becomes an h_C^{\sim} module under the action of $\theta_{V}(Y)$ where $< \theta_{V}(Y)(\alpha \otimes v)$, $u \otimes v' > = < \alpha \otimes v$, $\theta_{V^{*}}(Y^{*})$ $(u \otimes v') > \text{ for } u \otimes v' \in U_p(g_C^{\sim}) \otimes V^* \text{ (for } p = 0, \theta_V(Y) \text{ action coincides with }$ Y action).

Now the jet bundle $J^{p}(V(G))$ is a homogeneous vector bundle $G \times_{\mathrm{H}} Z$ where $Z = J_{p}(g_{C}^{\sim *}) \otimes^{k_{C}} V$ and invariant D of first order as above are associated with k_{C}^{\sim} module homomorphisms $Q_{1}: J_{1}(g_{C}^{\sim *}) \otimes^{k_{C}} V \to W$ (see [14]). We show that (under suitable identifications) $Q_{1}(j_{1,e}\hat{\psi}) = (\widetilde{D}\hat{\psi})(e)$ and hence from lemma I it follows that $Q_{1}(j_{1,e}\hat{\psi}) = \Sigma a_{\alpha}(o) D^{\alpha}\hat{\psi}(g_{\xi})|_{\xi=0}$. One now chooses $\hat{\psi} = f \otimes v$ with f(e) = o and f depending in our local coordinates on G only on ξ_{m} (I $\leq m \leq r$) and there results

THEOREM 1. The local coefficients $a_m(0)$ of an invariant first order D are characterized by the rule $Q_1(d\xi_m \otimes v) = a_m(0)v$.

Assume now that h^{\sim} is reductive in g^{\sim} so that $[Y, X_i] = \sum_{j=1}^{r} B_{ij}(Y) X_j$ for $Y \in h_{\mathbb{C}}^{\sim}$ (this will occur for example if H is semisimple or compact or if $G = K \times_{\gamma} H$). Using the fact that Q_1 is an $h_{\mathbb{C}}^{\sim}$ module homomorphism one proves

COROLLARY I. For h^{\sim} reductive in g^{\sim} the characterization of theorem I yields the multiplication table

(2.1)
$$[Y, a_m(0)] = -\sum_{i=1}^r B_{im}(Y) a_i(0).$$

We note that the invariance condition of lemma 1 for $\xi = 0$ describes local D action in terms of the a_i (0) (cfr. also [7]). One can in fact derive (2.1) directly from this invariance statement in case $G = K \times_{\gamma} H$ for example (see [2]) and the calculations reduce to those of [8] when G = P; we also show that the a_i (ξ) are constant when K is abelian. A characterization Q_p (d $\xi^{\alpha} \otimes v$) = $p ! a_{\alpha}$ (0) v for $|\alpha| = p$ with Q_p an $h_{\widetilde{C}}$ module homomorphism also holds for the top order coefficients a_{α} (0) when D is of order p and corollary I has an analogue for such a_{α}

$$(\mathrm{d}\xi^{\alpha} = \mathrm{d}\xi^{\alpha_{i_1}}_{i_1} \cdots \mathrm{d}\xi^{\alpha_{i_n}}_{i_n} \text{ is the product in } J_p\left(g^{\sim *}_{\mathrm{C}}\right)\right).$$

3. Now (2.1) describes a representation of $h_{\rm C}^{\sim}$ on the complex vector subspace \mathfrak{A} of L(V, W) spanned by the a_i (0). Thus, assuming h^{\sim} is semisimple from now on, reduction of this representation involves classifying irreducible representations of $h_{\rm C}^{\sim} = n^{\sim}$ on such \mathfrak{A} for n^{\sim} either a simple complex Lie algebra s[~] or for $n^{\sim}=s^{\sim}\times s^{\sim}$ (cfr. [6]). Then let $c^{\sim}\subset n^{\sim}$ be a Cartan subalgebra with $n^{\sim} = c^{\sim} + \Sigma n^{\alpha}$ a root space decomposition (see [6, 7, 10, 13] for background here). If $\alpha_1, \dots, \alpha_l$ is a base of roots with $m \ge l$ positive roots \mathbb{R}_+ one finds elements $X_{\alpha} \in n^{\alpha}$, $Y_{\alpha} \in n^{-\alpha}$, and $H_{\alpha} \in c^{\sim}$ ($\alpha \in R_{+}$) such that n^{\sim} is generated by the X_{α_i} , Y_{α_i} and H_{α_i} ($I \leq i \leq l$) subject to the relations $[H_{\alpha}, H_{\beta}] = 0$, $[\mathrm{X}_{\alpha}\,,\,\mathrm{Y}_{\alpha}] = \mathrm{H}_{\alpha}\,,\,[\mathrm{X}_{\alpha}\,,\,\mathrm{Y}_{\beta}] = 0 \ \text{ if } \ \alpha \neq \beta\,,\,[\mathrm{H}_{\alpha}\,,\,\mathrm{X}_{\beta}] = n\ (\alpha\,,\,\beta)\ \mathrm{X}_{\beta}\,,\,[\mathrm{H}_{\alpha}\,,\,\mathrm{Y}_{\beta}] = n\ (\alpha\,,\,\beta)\ \mathrm{Y}_{\beta}\,,\,[\mathrm{H}_{\alpha}\,,\,\mathrm{Y}_{\beta}] = n\ (\alpha\,,\,\beta)\ \mathrm{Y}_{\beta}\,,\,[\mathrm{H}_{\alpha}\,,\,\mathrm{Y}_{\beta}\,,\,\mathrm{$ $= -n(\alpha, \beta) Y_{\beta}$, for $\alpha \neq \beta$, ad $(X_{\alpha})^{-n(\alpha, \beta)+1}(X_{\beta}) = 0$, and for $\alpha \neq \beta$ ad $(Y_{\alpha})^{-n(\alpha,\beta)+1}(Y_{\beta}) = 0$ where $\alpha, \beta \in \mathbb{R}_{+}, n(\alpha, \beta) = 0, -1, -2$ or -3for $\alpha \neq \beta$, and $n(\alpha, \alpha) = 2$. Irreducible representations of complex semisimple Lie algebras are characterized by a primitive element f of dominant weight \widetilde{w} (thus $X_{\alpha}f = o$ and $Hf = \widetilde{w}(H)f$ for $H \in c^{\sim}$) while elements $f_{M} =$ $=(\Pi Y_{a_i}^{m_i})f$, $\mathbf{I} \leq i \leq m$, will span the representation space F. Now choose suitable bases v'_{M} and w'_{M} for V and W from among the v_{M} and w_{M} indicated and try to find a suitable basis of matrices $z'_{\rm M}$ for \mathfrak{A} from among the $z_{\rm M}$ indicated, such that $[X_{\alpha}, z] = 0$ and $[H, z] = \widetilde{w}(H)z$ for the primitive element z while certain "cutoff equations" indicated below are also satisfied. The z_{M} will eventually be linear combinations of the a_{i} (o) if an irreducible table (2.1) is given and, suitably ordered by i, will correspond (heuristically) to the local coefficients of $\partial/\partial \eta_i$ after a complex linear change of local coordinates $\xi \rightarrow \eta$. We will only concentrate on natural choices and properties of the $z'_{\rm M}$ although examples are worked out relating the $z'_{\rm M}$ to the a_i (0).

First one looks at the lowest rank case $A_1 = sl(2, C) = so(3, C) = h^{\sim}$ (eventually we will treat all A_n , B_n , C_n , etc. in varying degrees of completeness—see [3]—but in this note only results for A_n will be indicated). Thus let $v_0 = v \in V$ (resp. $w_0 = w \in W$) be primitive and choose basis vectors $v_j = Y^j v$ (resp. $w_i = Y^i w$) where $0 \le j \le 2k$ (resp. $0 \le i \le 2k'$) with k (resp. k') an integer or half integer. Let there be r = 2k'' + 1 linear operators $z_m = [Y, z_{m-1}] (z_0 = z)$ satisfying [X, z] = 0, $[H, z] = \tilde{w} (H) z =$ = 2k'' z = (r - 1)z, and the "cutoff equation" $[Y, z_{r-1}] = 0$. We write $z_i v_p = \sum \gamma_{p,j}^i w_j$ and determine the matrix entries $\gamma_{p,j}^i$ (p = row index and j = column index).

THEOREM 2. $\gamma_{p,j}^0 = 0$ unless $p - j = \beta + k - k'$ where $\beta = \left(\frac{r-1}{2}\right)$ and under this stipulation it is further necessary that the "cutoff condition"

$$I + \sum_{s=1}^{r} (-I) {r \choose s} \cdot \frac{(p+s)\cdots(p+1)(2k-p)\cdots(2k-p-s+1)}{(k'-k+p-\beta+1)\cdots(k'-k+p-\beta+s)(k'+k-p+\beta-s+1)\cdots(k'+k-p+\beta)} = 0$$

holds. Under these circumstances one can prescribe arbitrarily the $\gamma^0_{p,j}$ of minimal j index, for example, satisfying $p - j = \beta + k - k'$ and then the remaining nonzero $\gamma_{p,j}^0$ are determined by the relation $\gamma_{p,j+1}^0 (j + I) (2 k' - j) =$ $=\gamma_{p-1,j}^{0} p (2 k - p + 1)$. The $\gamma_{p,j}^{m}$ for $1 \leq m \leq r - 1$ are determined recursively from the equation $\gamma_{p,j}^m = \gamma_{p,j-1}^{m-1} - \gamma_{p+1,j}^{m-1}$ or directly from the formula $\gamma_{p,j}^{m} = \sum_{s=0}^{m} \binom{m}{s} (-1)^{s} \gamma_{p+s,j-m+s}^{0} \text{ and } \gamma_{p,j}^{m} = 0 \text{ unless } p-j = \beta + k - k' - m.$ As an example, when r = 3 the cutoff condition holds when k = k', k = k' + 1, or k = k' - 1. Then write, $\check{\mathbf{D}}(\eta) = \sum_{i=1}^{n} z_i \eta_i$ and, taking k = k', set $\Delta = \det \check{D}(\eta)$. In case $G = T \times_{\gamma} SO(\mathfrak{z})$ is the natural semidirect product of the translations in \mathbb{R}^3 with the rotation group one has $z_0 = -ia_1 + a_2$, $z_1 = 2 i a_3$, and $z_2 = 2 i a_1 + 2 a_2$ (note that the matrices for the a_i will have complex entries). Making a suitable linear change of variables $\xi\to\zeta\,,\,\widetilde{D}$ becomes $\check{\mathrm{D}} = \sum_{i} z_i \, \partial/\partial \zeta_i$ and at the symbol level the variable change $y_1 = -i\eta_0 + 2i\eta_2$, $y_2 = \eta_0 + 2\eta_2$, and $y_3 = 2i\eta_1(y \text{ real})$ yields $\widetilde{D}(y) = -i\eta_1(y \text{ real})$ $= \Sigma a_i y_i = \check{D}(\eta)$. Using the fact that $-\eta_1^2 + 2\eta_0 \eta_2 = \frac{1}{4} \Sigma y_i^2$ one can prove

THEOREM 3. Let r = 3 and k = k' with $G = T \times_{\gamma} SO(3)$. Then for k = integer, $\Delta = \det \widetilde{D}(Y) = 0$ while for k = (2 n + 1)/2 \widetilde{D} is elliptic with $\Delta = c (\Sigma y_i^2)^{n+1}$ where $c = (2 n - 1)^2 \cdots 3^2/4^{n+1} (2 n + 1)^{2n}$ for $(n \ge 1 - c = \frac{1}{4} \text{ for } n = 0)$.

4. Going next to $A_2 = sl(3, C)$ there are two basic roots α_1 and α_2 with $n(\alpha_1, \alpha_2) = n(\alpha_2, \alpha_1) = -1$ while $\alpha_1 + \alpha_2 = \alpha_3$ is also a root. If \tilde{w} is the dominant weight for F with $\tilde{w}(H_1) = r$ and $\tilde{w}(H_2) = s(H_i = H_{a_i})$ then a basis for F can be expressed in the form $f_{i,j,k} = Y_3^i Y_2^j Y_1^k f$ where $0 \le k \le r, 0 \le j \le s$, and $0 \le i \le r + s - j - k$ (see [I, II]). Thus one seeks $z_{i'',j'',k''} = (ad Y_3)^{i''} (ad Y_2)^{j''} (ad Y_1)^{k''} z \in L(V, W)$ with $[X_1, z] = [X_2, z] = 0$, $[H_1, z] = r''z$, and $[H_2, z] = s''z$, while z must satisfy

the cutoff equations $(ad \ Y_1)^{r''+1} z = (ad \ Y_2)^{s''+1} z = 0$ (cfr. [10]). The representations of A₂ on V and W are supposed given here in terms of parameters (r, s) and (r', s') respectively. Then write $zv_{i,j,k} = \sum \gamma_{i',j',k'}^{i,j',k'} w_{i',j',k'}$ and set $p = i + 2 \ k - j$ with $q = i + 2 \ j - k$; one uses indices p, q, i or i, j, k interchangeably.

THEOREM 4. There are possible nonzero $\gamma_{p',q',i'}^{p,q,i}$ only when $p - p' = \mathbf{R} = r'' + r - r'$ and $q - q' = \mathbf{S} = s'' + s - s'$. These γ entries can then be computed from the equations $[X_1, z] = [X_2, z] = 0$ in the form

$$(4.1) \qquad (k'+1) (r'-k') \gamma_{p'+2,q'-1,i'}^{p,q,i} + (i'+1) \gamma_{p'+2,q'-1,i'+1}^{p,q,i} = \\ = k (r-k+1) \gamma_{p',q',i'}^{p-2,q+1,i} + i \gamma_{p',q',i'}^{p-2,q+1,i-1} . \\ \cdot (j'+1) (s'+k'-j'-i') \gamma_{p'-1,q'+2,i'}^{p,q,i} - (i'+1) \gamma_{p'-1,q'+2,i'+1}^{p,q,i} = \\ = j (s+k-j-i+1) \gamma_{p',q',i'}^{p+1,q-2,i} - i \gamma_{p',q',i'}^{p+1,q-2,i-1}$$

provided these equations have nontrivial solutions. Finally the cutoff conditions on the γ entries arising from the cutoff equations must be satisfied. The matrix entries for the remaining $z_{i'',j'',k''}$ can then be computed recursively from the definition of $z_{i'',j'',k''}$.

Various natural orderings of basis elements $v_{i,j,k}$ etc. can be found for any given nontrivial example in which symmetry properties etc. of the $z_{i'',j'',k''}$ are clearly exhibited; this will be developed in [3] and various patterns and qualitative features are visible. Now for n > 2 one does not have a table of basis vectors worked out in general for the irreducible representations of $A_n = sl(n + I, C)$ although presumably this could be done (after considerable calculation). Thus we have only studied examples involving fundamental weights \tilde{w}_j (i.e., $\tilde{w}_j(H_k) = \delta_{j,k}$ with $I \leq j, k \leq n = l$). If one writes $e_j(H) = \lambda_j$ for $H = \text{diag}((\lambda_k)) \in c^{\sim}$ then

$$\widetilde{w}_{j} = \left\{ (n+1-j) \sum_{k=1}^{j} e_{k} - j \sum_{k=j+1}^{n+1} e_{k} \right\} \left| (n+1) \right|$$

and we obtain the other (equivalent and simple) weights in the representation determined by \widetilde{w}_j by the Weyl reflections corresponding to the independent permutations of the components e_k of \widetilde{w}_j (cfr. [5]). This enables one to readily determine natural basis vectors for \widetilde{w}_j and thence to obtain good matrices for the $z'_{\rm M}$. Again various symmetry patterns are visible and properties of the $z'_{\rm M}$ will be discussed in [3].

References.

- B. BRADEN, Restricted representations of classical Lie algebras of types A₂ and B₂, « Bull. Amer. Math. Soc. », 73, 482–486 (1967).
- [2] R. CARROLL, Local forms of invariant operators. I, «Annali di Mat. », to appear.
- [3] R. CARROLL and C. WANG, Local forms of invariant operators, II, In preparation.
- [4] I. GELFAND, R. MINLOS, and Z. SHAPIRO, *Representations of the rotation and Lorentz groups*, Moscow 1958.
- [5] M. GOURDIN, Unitary symmetries and their application to high energy physics, North-Holland, Amsterdam 1967.
- [6] M. HAUSNER and J. SCHWARTZ, Lie groups; Lie algebras, Gordon-Breach, New York 1968.
- [7] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, New York 1962.
- [8] R. HERMANN, Lie groups for physicists, Benjamin, New York 1966.
- [9] D. HUSEMOLLER, Fibre bundles, McGraw-Hill, New York 1966.
- [10] N. JACOBSON, Lie algebras, «Interscience», New York 1962.
- [11] T. KEARNS, On representations of Lie algebras of classical type, Thesis, Univ. of Illinois, 1968.
- [12] M. NAIMARK, Linear representations of the Lorentz group, Moscow, 1958.
- [13] J. SERRE, Algèbres de Lie semisimples complexes, Benjamin, New York 1966.
- [14] W. SMOKE, Invariant differential operators, «Trans. Amer. Math. Soc. », 127, 460-494 (1967).