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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Derivative and continuity in a lincar topological
space. Nota di NAN1GOPAL Biswas, presentata @ dal Socio M. PiconE.

RIASSUNTO. — Vi si definisce la derivata di una funzione che trasforma in s¢ medesimo
uno spazio topologico lineare in maniera che, se lo spazio &, in particolare, I’asse reale, si
perviene alla nozione elementare di derivata.

In recent years some authors (see for example [1], [2]) have attempted
to introduce the definition of the derivative of a function in a linear topological
space X. It appears that none of them have shown the connection between
their definitions of derivatives and the ordinary definition of derivatives
when X is the real number space with the natural topology. The main purpose
of the present paper is to show that it is possible to define the derivative of
a function mapping a linear topological space into itself in such a way that
the definition coincides with the ordinary definition of derivative when X
is the real number space with the natural topology. Our approach is axiomatic
and the conditions used here may be compared with the corresponding
conditions in [3] where F. W. Perkins has characterized by a set of conditions
those real functions of the real variable x which are everywhere differentiable.
Also we have obtained certain conditions which characterize the set of all
continuous functions f: X — X,

Let X be a linear topological space over a scalar field ® of real numbers.
By a linear topological space we mean an abstract space with a topology
in which the functions x + y and Ax where x, y € X and A € ® are continuous
functions of both the variables.

{*) Nella seduta dell’r1 aprile 1970.

38. — RENDICONTI 1970, Vol. XLVIII, fasc. 5.
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SECTION I. We consider a set D of functions /: X — X. We suppose
that to every function f belonging to D there corresponds a unique function
f:X — X (not necessarily belonging to D). We suppose that the set D of
functions and the correspondence between f and f satisfy the following con-
ditions.

(1) (a) The identity function I (x) =« is in D.
(b) For any element x1 € X, I (1) is a fixed non-null element of X which
we denote by o.

(2) Given any element x3 € X and any function f €D, then F(x) = f(x + x2)
is a function in D and F(x) = [ (x + x2).

(3) There exists an element x3 € X such that if /3 and f2 are functions in D
and 4 an arbitrary element of @, then the function F(x) = f1 (x) 4 %f2 (%)
is a function in D and F(xs) = f1 (x3) + £/2 (x3).

(4) There exists a constant x4 such that if /1 and f» belong to D and if /1 (xg) =
= f2 (x4) = f1 (%) = 0 and fs (xs) == 6, then corresponding to every such
pair of functions and any neighbourhood A of f; (x,) there exists a neigh-
bourhood 8 of x; such that

AGY C{AG}U{—AG)CA
for any neighbourhood &1 where x4 € 8, C 3.

PrOPOSITION 1. If f1(x) and f2 (x) be any two functions in D and if A
and 'p be any two elements of @, then G(x) = M1 (x) + w/f2 (x) is a function
in D and G(x) = Af1 (%) + wfe (%).

Proof. Replacing f1(x) and fo(x) by I(x) and putting K = —1 in con-
dition 3, we get that the function y (x) = 0 belongs to D and ¥ (x3) =0. Putting
AA(x) =x(x) in condition 3 we get that F(x) = y (») + pnfe (x) = pwfe (x)
belongs to D and F(xs) = wfa (x3). Similarly it follows that ¥ (x) = AA (%)
belongs to D and ¥(x3) = Afi (x3). Thus G(x) = M1(x) + pfe(x) belongs
to D and G (x3) = Af1 (x3) + wf2 (x3). We now prove that for any arbitrary
element & of X, G (£) =Af1(§) + u/2(§). By condition 2, the functions
§1(8) = fi (6 +E—13), ga(x) = fo(x + E— 1) and go(x) = G (x + &— 1)
(where £ is any element of X) belong to D. So, by our previous considerations,
the functions Agy(x), pga(x) and consequently g3(x) = Agy (%) + pgs (%)
belong to D. By condition 3, we get ga(x3) = Ag1(x3) + pfa(xs). This
implies however that G (§) = Af1 () + p./f2 (B).

PROPOSITION 2. If A(x) = ax + bo where @ and & are any two elements
of ®, then A (x) belongs to D and A(x) = ax.

Proof. Consider the function B(x) = ba. We write B(x) =1 (x+-b0)—1(x).
Therefore by conditions 1, 2 and 3 B (x) is in D. Since for any element
%3€X, B(x +x2) =B (x) and so B(x+ x2) =B (x), B(x) is a constant
function. In particular, the function ¥ (x) =« is in D and 2(x) = a constant
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which we denote by 2. We have B(x) = b = 6% () and so B (x) = 4.
Now I(x+ ) =z +a = I(x)-+AU(x). Forany element x; € X I(x1+ o) =
= I (#1) + @ (x1), which by condition 1 (4) becomes & = « + @ (x1). There-
fore AU(x1) = 0 for any x1. Since A (¥) = ax + ba = al (x) + 6% (x), we
have A (x1) = al (#1) + 6% (x1) = ao. for any z1 € X.

COROLLARY. Awny constant function f(x) =B, where p € X belongs to D
and [(x) = 0 for any x€X.

Proof. We have f(x) =B =1(x +8)—I1(*). By conditions 2 and 3
f(x) belongs to D and f(x)=T(x +B)—1(x) = a— a = 0.

ProPOSITION 3. Let fi1(x) and fa(x) belong to D and let § be any element
of X such that £(8) = f2(8) = f1(§) = 0 and [2(§) &=0. Then corresponding to
every neighbourhood A of f1(£) there exists a neighbourhood 8 of £ such that

AG)C{AGU{—/AG)ICA
for any neighbourhood &: where & € 3; C3.

Proof. Let g1(x) =f1(x —2x4 + &) and go(x) =fa(x — x4 + &) where
x4 is the constant of condition 4. By condition 2 we have g;(x) and go(x)
belong to D and g, (x) = fi (x —xs + &) and go(x) = fo (x — x4 + £). Now
&1(xg) = ga(xy) = g1(xy).= 0, Fa(xs)==6. Hence by the condition 4, corre-
sponding to a neighbourhood A of gy(x4) there exists a neighbourhood &’
of x4 such that

21 C{e(G}U {—£()} CA  for xedC¥.

This is equivalent to
AB) C{AGYU{—AG)} CA for Eedes.

DEFINITION. Let f(x) be a function mapping X into itself. We say that
f(x) is differentiable in X if f(x) belongs to some set D for which the condi-
tions 1—4 hold and in this case the associated function [(x) is said to be the
derivative of f(x).

When X is the real number space with the natural topology, the justi-
fication of the'definition of the derivative follows from the following theorem.

THEOREM 1. Let X be the real number space with the natural topology
and let o. = 1. Then a necessary and suficient condition that a function f(x)
has a derivative for every value of x is that f(x) belongs to some set D for which
conditions 1—4 hold. If f(x) belongs to any such set D, then the associated function
f(x) s mecessarily the derivative of f(x). -

Proof. If; D' is the set of all real functions f(x) which are everywhere
differentiable and f'(x) = [ (x), then clearly the conditions 1, 2, 3 are satisfied.
That condition 4 is also satisfied can be seen as follows. Let fi(x) and f2(x)
be two functions such that fi (x1) = fa(x1) = fi(xs) =0 and fa(xs)==o0,
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then it is clear that there exists a neighbourhood 8, | x —x4| < e say, such
that 1 () < |/ (x)| for x in 3. Replacing f1(x) by —f1(x) we have for x
in 8§, —fi(x) <|fa()]|. Therefore —|f(@)| <Ak <|f@&)]| ie
fi(®)] < |fe()|. This shows that A(®) C {A®} U{—f(®)} The
result is clearly true for any neighbourhood 81 such that x4 € 8;C3. Since
fi(x) and f2 (x) are continuous functions, corresponding to a neighbourhood
3 of o (= /i1 (x4)) the neighbourhood 3 can be so adjusted that the condition
4 holds.

We now show that if f(x) € D, then f(x) is differentiable everywhere
and f'(£) = f(£) for arbitrary £. Let f2 (x) = Ax — AE where A is any positive
constant and let A (x) =f(x)—{fE)x + [fE) —EJ(E)]}. Then fi(x)
is in Dand fi(x) =[x —/ ). Since f1(5) =/f2 () = f1(§) = o and
f2(€) = A =k o, we have by proposition 3, corresponding to any neighbourhood
A of f1 (E) there exists a neighbourhood & = (£—,& + %) of & such that

AG)C{AG)IU{—FfG)}CA where £€8C3.
Therefore for all x in [§—x/, £ +7'], o<n' <%, we have
AE—1)—M <filx) <ME+1)—2 or, —M <A() <M

— o SAE ) —AE <K (ince fi() =0)
AEFD—AG) | o

’

N

Since A > o is arbitrary, we have f{(§) = o. This implies that f'(§) exists

and f'(€) =] (®)

SecTiON II. Let C be the set of functions f/: X — X such that
(i) for any A € X the constant function f(x) =2 is in C.

(i) if /1 and f2 belong to C and if fi(§) =/2(€) then for any neighbourhood A
of £1(€) there exists a neighbourhood 8§ of & such that f1(8), f2 (8) CA.

THEOREM 2. A wnecessary and sufficient condition that f:X —X be

continuous is that f(x) belongs to some set C for which the conditions i) and ii)
hold.

Proof. Tt is clear that if C' is the set of all functions which are conti-
nuous then the conditions i) and ii) are satisfied.

Conversely, let us suppose that f(x) is an arbitrary function in C and
let #(£) = A. Let us consider the constant function fi(x) = A. Then f and ¥
belong to C and f (£) = /1 (§). Thus corresponding to any neighbourhood A
of f(E) there exists a neighbourhood 8§ of & such that f(8), /1 (§) CA. This
shows that f (x) is continuous at &. Since & is an arbitrary point, the theorem
follows.
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THEOREM 3. If a function f:X — X is differentiable, then it is conti-
nuous.

Proof. Since f (x) is differentiable, f (x) € D. It follows from the discussions

on the conditions and with the help of proposition 3 that D CC. Consequently
f(x) is continuous. ‘

The author is grateful to Dr. B. K. Lahiri for his kind help and guidance
in the preparation of the paper.
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