ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

GIUSEPPE FILIPPINI, CARLO MARIA GRAMACCIOLI, MASSIMO SIMONETTA

La struttura elettronica dello ione $C_{10}H_{12}O_8N_3^-$ in cristalli del sale potassico di Meisenheimer

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **48** (1970), n.3, p. 353–357. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1970_8_48_3_353_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1970.

SEZIONE II

(Fisica, chimica, geologia, paleontologia e mineralogia)

Chimica fisica. — La struttura elettronica dello ione $C_{10}H_{12}O_8N_3^-$ in cristalli del sale potassico di Meisenheimer. Nota di Giuseppe Filippini, Carlo Maria Gramaccioli e Massimo Simonetta ^(*), presentata ^(**) dal Corrisp. M. Simonetta.

SUMMARY. — The distribution of π -electrons in the $C_{10}H_{12}O_8N_3^-$ ion in crystals of one 'Meisenheimer salt' has been calculated according to the Hückel method; the influence of charges of neighbouring atoms on each ion has been taken into account by modifying the values of Coulomb integrals. Significative differences have been observed between these results and π -electron distribution in the isolated ion, as well as between the two symmetrically 'independent' ions in the crystal: such differences can be ascribed to the different electric field and geometry of the ions. In all these cases the C atoms have a positive π -electron charge.

Negli ultimi anni la struttura dei sali di Meisenheimer [1] è stata oggetto di numerosi studi di tipo cinetico [2], basati sull'interpretazione di spettri N.M.R. [3], e sulla teoria degli orbitali molecolari [4], e infine sulla diffrattometria di raggi X [5]. Gli studi teorici precedenti hanno avuto lo scopo di giungere ad una interpretazione degli spettri N.M.R. di questi composti [4 a] o alla determinazione della geometria dello ione C10H12O8N3 isolato. Dai calcoli menzionati è anche risultato che nella formazione di questo ione da trinitro fenetolo e etilato sodico si ha una fuga di elettroni dall'anello benzenico, con aumento della carica negativa sui nitrogruppi. Scopo del presente lavoro è la determinazione della distribuzione della carica π sullo ione quando questo si trova impaccato in cristalli di un suo sale. Abbiamo scelto il sale potassico la cui struttura cristallina e molecolare è stata determinata recentemente [5 d]. Un calcolo di questo genere presenta la difficoltà che la distribuzione elettronica in ciascun ione è dipendente anche dalla distribuzione di carica degli ioni vicini. L'effetto dell'ambiente sulla struttura elettronica di ioni complessi nei cristalli è stato sinora studiato in pochi casi e per ioni particolarmente semplici, quali I_3^- e SO₄⁻⁻[6].

Metodo e risultati.

Data la complessità dello ione e del cristallo qui considerati è stato necessario usare un metodo di calcolo estremamente semplificato. Si è quindi introdotta l'approssimazione $\sigma - \pi$ che riduce il numero degli elettroni in gioco a 18 per ciascun ione, e si è usato il metodo di Hückel, con opportune modi-

- (*) Istituto di Chimica Fisica dell'Università di Milano.
- (**) Nella seduta del 14 febbraio 1970.

27. - RENDICONTI 1970, Vol. XLVIII, fasc. 3.

ficazioni. Infatti il calcolo è stato condotto secondo un particolare iterativo in cui le densità di carica π ottenute in un ciclo venivano usate per la valutazione dei parametri coulombiani da usarsi nel ciclo successivo, secondo la formula [7]

$$\alpha_{\rm R} = \alpha_{\rm R}^0 + \omega \frac{q_{\rm R}' - \lambda q_{\rm R}}{1 + \lambda}$$

 $q'_{\rm R} \in q_{\rm R}$ rappresentano le cariche π nette sull'atomo R ottenute nell'ultimo ciclo e nel precedente. Per le costanti $\omega \in \lambda$ sono stati assunti i valori $\omega = 0.625$ e $\lambda = I$. I parametri $\alpha_{\rm R}^0$ sono dati da

$$\alpha_{\rm R}^0 = \alpha_{\rm C} + h\beta$$

dove h = 0 per R = C, h = 1 per $R = 0^{\circ}$, h = 2 per $R = N^{+}$ oppure O° . L'integrale coulombiano per l'atomo di carbonio neutro α_{C} è preso come zero d'energia.

Il potenziale coulombiano creato dalle cariche degli ioni vicini sull'atomo R modifica però il valore dell'integrale coulombiano sull'atomo stesso; di ciò si è tenuto conto usando la seguente espressione:

$$\alpha_{\rm R}' = \alpha_{\rm R} + \mathrm{K} \sum_{i} \frac{q_{i}'}{r_{i}}$$

dove K è una costante empirica che tiene conto oltre che delle unità di misura della costante dielettrica efficace, e alla quale è stato assegnato in base a criteri di convergenza il valore K = 0.5.

La sommatoria è stata eseguita sugli atomi di ioni sufficientemente vicini ed r_i è la distanza tra atomo R e atomo *i*. Occorre naturalmente fissare un limite superiore alle distanze r_i e dopo alcuni tentativi si è visto che è sufficiente, per ottenere risultati indipendenti da tale limite, soddisfare la condizione $r_i \leq 20$ Å.

Come geometria del cristallo abbiamo usato quella determinata sperimentalmente. Poiché nella unità asimmetrica sono contenute due molecole $C_{10}H_{12}O_8N_3K$ abbiamo tenuto conto della diversità di geometria dei due ioni corrispondenti. La geometria di tali ioni per la parte che ci interessa e la disposizione degli ioni nella cella elementare sono riportate in figg. 1 e 2. Poiché le deviazioni dalla polarità per gli anelli di atomi di carbonio e i gruppi NO_2 sono estremamente piccole, dell'ordine degli errori sperimentali, abbiamo assunto gli ioni polari.

Fig. 2. - Impaccamento nel cristallo visto lungo l'asse b.

Gli integrali di scambio sono stati valutati con le seguenti prescrizioni

$$\beta_{\rm C-C} = \beta_{\rm C-C}^0 e^{2.683 \, (1.397 - r_{\rm C-C})}$$

$$\beta_{\rm C-N} = 2.666 - 1.415 \, r_{\rm C-N}$$

$$\beta_{\rm N-O} = 0.7 \, \beta_{\rm C-C}^0$$
[8]

dove β^0_{C-C} ha il valore standard di 20 kcal/mole.

La formula per β_{C-N} deriva dall'aver assunto tale integrale proporzionale all'integrale di sovrapposizione tra gli orbitali $2 \not p$ di Slater centrati sugli atomi C e N legati ed è una approssimazione valida solo nell'intervallo di distanza qui considerato. Il calcolo dell'energia π e delle cariche q_R è stato ripetuto iteratamente sino a consistenza, cioè sino a quando $q_R^{n+1} - q_R^n \le 0.05$ per tutti gli atomi. Sono stati necessari circa dieci cicli.

I risultati per due ioni presenti nell'unità asimmetrica nonché per uno ione isolato con geometria calcolata sono riportati in fig. 3.

Il calcolo per lo ione isolato è stato fatto usando i parametri α_R anziché α'_R e valutando ad ogni ciclo oltre alle cariche q_R anche gli ordini di legame. Dagli ordini di legame si ottenevano le distanze secondo formule note dovute a Coulson e Golebiewski [8] per i legami C—C, a Bayer e Haefelinger per i legami C—N [9], a Linnett e Rosenberg per i legami N—O [10]. Con le nuove

b) e c) ioni presenti nell'unità asimmetrica.

distanze di legame si rielaborarono gli integrali β usando le formule precedentemente riportate e si ripeteva il conto con i nuovi α e i nuovi β . Anche questo calcolo è stato condotto sino ad autoconsistenza sia per le cariche che per gli ordini di legame (con 5 cicli). La geometria finale è pure riportata in fig. 1.

I risultati mostrano con evidenza significative differenze tra le distribuzioni di carica nello ione isolato e nel cristallo ed anche tra i due diversi ioni presenti nell'unità asimmetrica. Tali diversità sono da attribuirsi ai campi creati dagli ioni circostanti ed anche alla diversa geometria dei due ioni. La diversità di geometria è a sua volta causata sia dalla diversità di campi che dalla interazione di non legame per cui una determinazione teorica della geometria degli ioni nel cristallo analogamente a quanto si è fatto per lo ione isolato presenterebbe notevoli difficoltà ed incertezze. È interessante notare che questi calcoli confermano per il cristallo quanto trovato in precedenza per lo ione isolato [4 a e b], e cioè che la catena di atomi di carbonio porta una carica π positiva.

I tre gruppi NO₂ succhiano una carica elettronica complessivamente superiore alla carica dello ione. Le differenze tra ione isolato e ioni nel cristallo confermano l'interesse di calcoli di questo tipo e suggeriscono un approfondimento nel senso di considerare un buon numero di cristalli contenenti ioni organici e l'elaborazione di metodi di calcolo più sofisticati, ad esempio di tipo CNDO, in cui si tien conto di tutti gli elettroni presenti.

Il presente lavoro è stato reso possibile da un contributo finanziario del C.N.R. che qui si ringrazia.

BIBLIOGRAFIA.

[1] MEISENHEIMER J., «Liebigs Ann.», 323, 205 (1902).

- [2] FENDLER J. H., « J. Am. Chem. Soc. », 88, 1237 (1966).
- [3] a) SERVIS K. L., « J. Am. Chem. Soc. », 89, 1508 (1967); b) BYRNE W. E., FENDLER
 E. J., FENDLER J. H. e GRIFFIN G. E., « J. Org. Chem. », 32, 2506 (1967).
- [4] a) CAVENG P., FISHER P. B., HEILBRONNER E., MILLER A. L. e ZOLLINGER H., «Helv. Chim. Acta », 50, 848 (1967); b) DESTRO R., «Rend. Ist. Lomb. Sci. Lett. », A 101, 725 (1967).
- [5] a) DESTRO R., GRAMACCIOLI C. M., MUGNOLI A. e SIMONETTA M., « Tetrahedron Letters », 30, 2611 (1965); b) DESTRO R., GRAMACCIOLI C. M. e SIMONETTA M., « Nature Lond. », 215, 389 (1967); c) UEDA H., SAKABE N., TANAKA J. e FURUSARI A., « Nature Lond. », 215, 956 (1967); d) DESTRO R., GRAMACCIOLI C. M. e SIMONETTA M., « Acta Cryst. », B 24, 1369 (1968).
- [6] a) BROWN R. D. e NUNN E. K., «Austr. J. Chem. », 19, 1567 (1966); b) BROWN R. D.,
 O' DWYER M. F. e ROBY K. R., «Theor. Chim. Acta », 11, 1 (1968).
- [7] POLEZZO S., CREMASCHI P. e SIMONETTA M., «Chem. Phys. Letters», I, 357 (1967).
- [8] COULSON C. A. e GOLEBIEWSKI A., « Proc. Phys. Soc. », 78, 1310 (1961).
- [9] BAYER E. e HAEFELINGER G., «Chem. Ber.», 99, 1689 (1966).
- [10] LINNETT J. W. e ROSENBERG R. M., «Tetrahedron», 20, 53 (1964).