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Analisi m atem atica.—- On Fichera s transformation in the method 
of intermediate problems. N ota di W illiam  S tenger  (#), presentata 
dal Socio Straniero A. W e in s t e in .

R iassunto. — Si stabilisce una relazione fra il determinante di Fichera e il determi­
nante di Weinstein nella teoria dei problemi intermedi.

1. INTRODUCTION. -  Am ong the m any theoretical ramifications of the 
m ethod of interm ediate problem s [1, 2, 3] appears the question of reducing 
a given problem  of one type of interm ediate problems to one of another type. 
K uroda [4] and Fichera [2] have each given a transform ation of the first 
to the second type for certain subclasses of problems. For more general 
problems, however, such reductions have not been achieved.

T he purpose of the present note is to discuss F ichera’s transform ation 
and to derive a relationship between the corresponding pair of W einstein 
determ inants.

2. In te rm ed ia te  problems in th e  g e n e ra l case.-—Let A  be a self- 
adjoint operator defined on a dense subspace of a H ilbert space H having 
inner product (u , v). We denote by the resolvent of A, =  (A —  XI)“ 1. 
W e assume th a t A  is bounded below (or above) and tha t the lower (or upper) 
part of its spectrum  consists of isolated eigenvalues each having finite m ul­
tiplicity.

A n intermediate problem of the first type is an eigenvalue problem  having 
the form

(1) A u  —  Vn A u  =  \u  ,

(2) Vn u =  o ,

where Fn is an orthogonal projection operator onto an ^-dim ensional sub­
space Pn of H. T he determ ination of the eigenvalues of (1 , 2) is achieved 
via the Weinstein determinant

(3) W „ (X) =  det { (Rx p i , pi) } (i , k =  1 , 2 , • • •, n)

where {p i  , p% , • • •, p f)  is a basis for P „ .
A n intermediate problem of the second type is a problem  of having the 

form

(4) A u  +  Br u =  \u  (*) (**)

(*) Department of Mathematics, Ambassador College, Pasadena, California 91105, 
U.S.A.

(**) Nella seduta del 14 marzo 1970.
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where Br is a sym m etric operator of rank  r  <  00. Equation (4) can be 
w ritten as

r

(5) A u +  ^  a ■ (u , q/) qj. =  \ u ,
j = 1

for a suitable choice of a / s  and q f s, see [5, p. 161 ]. The spectrum  of (5) 
is determ ined by the modified Weinstein determinant or Weinstein-Aronszajn 
determinant

(6) V r (X) — det { 8ik +  a,- (R* q{, qk)} (i , k  =  1, 2 , • • •, r) .

W hile the m atrix  in (6) is non-sym m etric, we can symmetrize it in an elemen­
ta ry  way by m ultiplying the kth column by (k =  1 , 2 , • • •, r), see [6].

3. F ichera’s transformation.— Following Fichera we now assume 
tha t A  is a positive compact operator. We denote by Xi >  X2 > •  • • >  o 
and Ui , u% , • • • the eigenvalues and corresponding eigenvectors of A. Using 
the square root, A 1/2, of A  Fichera introduced a new problem

(7) A^ —  A 1/2 Pn A 1/2v -  \lv

and established the following connection between problems ( 1 , 2 )  and (7), 
[2, p. 131].

THEOREM i . Every eigenvalue fo r  problem (1 ,2) is an eigenvalue fo r  
problem (7). Conversely, every non-zero eigenvalue fo r  (7) is an eigenvalue fo r  
C1 > 2).

In  view of the fact th a t — A 1/2 P,2 A 1/2 is a symmetric operator of finite 
rank, Theorem  1 provides a reduction of the first type of interm ediate problems 
to the second in this case.

4: Functional Equation for determinants.—The following relation­
ship between two kinds of W einstein determ inants seems to be new.

Theorem 2. The determinants (3) and (6) corresponding to problems (1,2) 
and  (7) satisfy

(8) V,(X) =  ( - X / W / X )

fo r  all X*

Proof. T aking an orthonorm al basis {p i  , p% , • • •, p n} for P w we write
(7) as

A v  —  (A ll2p j , v) A ll2p j =  \lv  . 
1

Now determ inant (6) is given by

V« (X) =  det -  (R , A 1/2A  , A 1/2M (f , k 1,2  , • • •, n y .
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Note that here the m atrix  is sym m etric since a* = . —  1 (i =  1, 2 , • • •, n). 
Since A  is a positive compact operator, for any real X, X =4= Xy ( j  =  1, 2 , • • • ) 
and for any u e H  we have

00
Rj. A 1/2t/ =  Rx X  (v > u j ) %

y = i
00

=  2  x} /2 t v  > u i )  R x  u j
J = 1
00

=  2  ^ 2 ( v  - « y ) ( xy —  ^ r 1 «yy = i
CO

=  2  Xy/2 (z/ , [X y—  X ]“ 1 Uj) U j
J =  1

OO

=  2  > R i  « y ) U j
y = 1

OO

=  2  ^ / 2 ( R x w  » U j) U j 
J =  1

=  A 1/2R i»  ■

Therefore we can write

-  (Ri A 1/2/ ;. , A v% ) =  (A-, A ) -  (R, K pi, pk)

=  (Ri \A — XI] Pi > Pi) — (Ri A pi, Pò
=  — X( R xpi ,pk)  (i , k  =  1,2 ,-■-,%)

so th a t we obtain

(9) VW(X) =  (— X)» W„(X)

for all X not in the spectrum  of A. However, since V* (X) and W* (X) are 
both m erom orphic functions of X, our equation (9) holds for all X.

5. Comparison w ith  K uroda’s tra n s fo rm a tio n .— A t first glance 
equation (8) looks strikingly similar to a result of K uroda [4, p. 11]. 
How*ever, these are two fundam entally  different results as can be seen in the 
following.

H ere it is no longer essential to take A to be a positive compact operator. 
Instead it is sufficient for A  to be bounded. K uroda considers the problem

(10) (I — P«) A (I — Pw) u ^  \u

which is equivalent to (1, 2) on the subspace orthogonal to P„, see [2, p. 131]. 
K uroda decomposes (10) into

(11) A u  —  [(I — P„) A P W +  P„ A] u =  \ u  .

W e see th a t boundedness is necessary in (11). Otherwise would not be 
defined for an arb itra ry  choice of P„ and (11) would be meaningless. Let
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us also note that essentially the same decomposition of (10) was independently 
discovered by Fichera [2, p. 126]. Since the operator

( I2) ( I — P„)AP„ +  P ,A

is of finite rank, equation (11) is of the form (4). Surprisingly, however, the 
rank  r  of (12) is not in general n. Instead we have n <  r  <  2 n. Therefore, 
the m atrix  leading to determ inant (6) for (11) is r / . r  and not necessarily 
nY,n, see [7], while the m atrices in (3) for (1 , 2) and in (6) for (7) are always 
n Xn .  In  fact, putting  n =  1 we have (3) given by a single element, nam ely

W  (X) =  (R i.p , p)

while (6) for (11) is given by the determ inant of a 2X 2 nonsym m etric 
m atrix. In  this case K uroda’s result [4, p. 11] has the form

I —  (R , A p , p) 4- (Ap , p) W(X) : —  W(X) j

( R iA p ,A p ) - ( A p ,p ) ( R l p ,A p)  i — i +  (R t p , A p )  j

Note th a t W  (X), which already provides all the inform ation about the 
eigenvalues, suprisingly reappears in two elements of the non-sym m etric 
m atrix  defining the determ inant in the right-hand side of (13).

Sum m arizing, one could say th a t this attem pt to get rid of W(X) by 
reducing (10) to (11) only results in the reappearance of two W (X)’s accom­
panied by several other terms.

(13) W(X) =  (— X)-1 det !
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