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Geometria differenziale. — On Misra’s covariant differentiation
in a Finsler Space. Nota di R. B. Misra e K. S. PANDE, presentata
dal Socio E. Bowmpiant.

RIASSUNTO. — In relazione a cambiamenti proiettivi (che involgono una funzione di
punto e direzione) in uno spazio di Sinsler il Misra aveva introdotto una connessione (indi-
cata qui col suo nome) diversa da quelle di Berwald e Cartan. In questa Nota vengono date
varie formule di commutazione fra la derivata covariante fatta con la connessione di Misra
ed altre.

A projective change preserving the invariance of Berwald’s curvature
tensor has been considered by one of the present authors [3]. It has been
proved therein the vanishing of the covariant derivative of the vector 9, P
for the special connection parameters G @ is the necessary and sufficient
condition to have the said invariance. In the present paper we define the
covariant derivative of any vector-field for these connection parameters and
study the further aspects of this differentiation. The commutatior formulae
involving this covariant differentiation with various processes of differentiation
such as (i) the partial differentiation with respect to (w.r.t.) #%s, (ii) the Cartan
covariant differentiation w.r.t. #*’s, and (iii) the Lie differentiation have
been derived. It is worth noting that these results are similar to those obtained
by associating the Berwald covariant differentiation with the said processes
of differentiation. It will be noted that this covariant differentiation does
not possess all the characteristics which the Berwald covariant differentia-
tion does.

I. — PRELIMINARIES.

Let F, be an #n—dimensional Finsler space in which the metric function
F (#*, #°) @ satisfies the requisite conditions. The entities given by

(D) g, =135 i, D, D=3, (= o),

constitute the metric tensor of the space which is symmetric and positively
homogeneous of degree zero in the #”s. Defining the functions

(1.2) G (v, ) = %é’ik {3 gm +ugii—3ugn} #7 2, (9; = 9fx?),

(*) Nella seduta del 14 febbraio 1970.

(1) Henceforth we shall call them as Misra’s connection parameters and the correspond-
ing covariant derivative as Misra’s covariant derivative.

(2) The indices 7,7, £,... run from I to n. The line—elements (27, #) will be briefly
denoted by (x, #).
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Berwald introduced the connection parameters G,':k and the covariant deri-
vative 8, X? of a vector-field X* (x, #):

(1.3) Gy (v, #) =3, G} =88, &,
(1.4) By X' =9, X' — (X Gl + X/ Gl

Clearly the functions G*, Gj- and G are positively homogeneous of degree 2,
1, o respectively in the #’s. Consequently they satisfy

(1.3) Ga#' =G;, , Gist=2G"
Introducing the tensors

.\ def : A .\ def .
(1.6) 2C(x, 2)=0g1 , Culx,2)=g¥Cy,
which are symmetric in their lower indices we have
(1.7) Cip i = 0 = C}y 4.

For these entities the covariant derivative of a vector X! (x, #) w.r.t. #* has
been defined by [[2], p. 187]

(1.8) V, X =3, X +Ci, X

— MISRA’S COVARIANT DIFFERENTIATION.

Misra [[3], eqn. (4.5)] defined the connection parameters
(2.1) ]k (x .?\f) 8(j ak)P————aﬁK 3 akP

where P (x, %) is an arbitrary scalar function being positively homogeneous
of degree one in #"’s. Thus, G]k are also positively homogeneous functions
of degree zero in #”s and possess the same transformation law as Gj. Ana-
logous to (1.3) if, however, we put

(2.2) G Zéjéi . Gi=4G,

whence the functions G (x,%) and Gi (x,%) are positively homogeneous
of degree two and one respectively, we would have

(2.3) Gj-k P =G |, GiF=26

in accordance with (1.5). Consequently the explicit expressmns for the func-
tions Gj and G' are given by

(2.4) Gi = Gi— — (#'8: P+ P8) = Gi— — 4 (P#),
and

(2.3) G=G— % 12
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Now we define the covariant derivative for these connection parameters
in the manner analogous to (1.4). Denoting by 91, X’ the corresponding
covariant derivative of the vector-field X? (x, %) we thus have

(2.6) M, X' =9, X' — (3, XHG] 4+ X/ G

The following theorem establishes the relationship of this covariant
derivative with that of Berwald:

THEOREM 2.1. — The covariant differential operators O, and B, are con-
nected by

(2.7) 2 (I — 8By) X' = (§,X") 3 (P4') — X/8:3, (P&).

Proof. Putting for Gj; and Gf from (2.1) and (2.4), and using (1.4) the
equation (2.6) immediately reduces to (2.7).

Noting the homogeneity properties of the functions P and F we may
derive, from the above theorem, the covariant derivatives of %, F (x, 4)
and the unit vector-field 7 (x, #) = #*/F. Thus we would have

COROLLARY 2.1. — Like Berwald’'s covariant devivative Misva's covariant
derivative of %' also vanishes.

COROLLARY 2.2. — Misra's covariant derivative of the metric function is
given by

(2.8) o, F =9, (PF).
COROLLARY 2.3. — Misra's covariant derivative of the unit vector I is given by
(2.9) Oy I = — I 3 (PF) .

NOTE 2.1. — In contrast with Berwald’s covariant devivative Misra's covariant
dertvative of F and I does not vanish.

The derivation of (2.7) may be generalised to any arbitrary tensor.
Let T... (x, %) be a tensor of rank (p , ¢). Its covariant derivative is given by

(2.10) 2 (9, — &) T = (3, TN3, (Pa) —

Also, for the metric tensor gz we have, in view of (1.7), that
(2.11) M, g4 = By gin + PCos + g1 ;9 % (PA).

Thus, it follows from (2.11) that 9R;g; does not, in general, vanish.
Therefore we have

THEOREM 2.2. — Like Berwald’'s commection Misra's conmection is also
not metric.
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3. — THE COMMUTATION FORMULAE.

It is well known that the Berwald’s operator $#; commutes with the par-
tial differential operator 9, according to [[1], eqn. (4.6.11a)].

(3.1) (B39, —3, By) X' = — Gy, X',

where GZ;, (%, %) def éGih is a tensor-field symmetric in all the lower indices.
Also it may be seen by the ways analogous to those leading to the equations
(2.1 a) of [4] and (4.7) of [5] that the Berwald operator &, commutes with
V, and the Lie operator £ according to

(3-2) (2 V), — V, ) X' = C 8, X' + (8,C}, — Gla) X,
and
(3:3) (08B, — B, 2) X' = X/ €Gjy — (3, X')$G.

In the same way it may be desirable to have the corresponding commu-
tation formulae when the operator &, is replaced by 9%,. Therefore, in the
following theorems we derive the commutation rules of the operator 917, with
the operators 3,,V, and 2.

"THEOREM 3.1. — For a vector-field X* (x , %) the operators O, and 3, com-
mute according to

(3-4) (9 é}z —_‘;‘)/L M) X' = Gzhr X7,
where
(35) ) G;e}n*(x ) x) ie:f érézh .

Proof. — Applying (2.10) for the tensor 9, X we may obtain
(3.6) 2 (O 3,— B3) X' = (5,3, X3, (P#) —
— (3 X)3,8 (P#) 4 (3, X)3,3, (P2") .
Also, differentiating (2.7) w.r.t. & we get
(7)) 2 (3 M—3,B) X' = (3,3, X3 (P#) + (3, X3, 3 (Pa) —
— (3 X)3,8, (P#) — X" 3, 3,3, (P#) .
Subtracting (3.7) from (3.6), and using (3.1) it follows that

(@Rkéll —é/z gnk> )(z _ 3 G/’UW~ _;‘ éké}; ér (Px’> X,‘

For (2.2), (2.4) and (3.5) this formula simplifies to (3.4).
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The derivation of (3.4) may be generalised for any arbitrary tensor
T (x,%) in the form: '

(3.8) (M8, — MY T =— X Gt T 4 X Gy T
a B !
Further, as a particular case, we may have the following deduction of the

above theorem.

COROLLARY 3.1. — For the vector-fields #* and I the operators OV, and
9, are commutative.

Proof. — Since the functions Gj, are homogeneous of degree zero in #"s
we have from (3.5)

(3.9) G 2" = 0 = Gy 0"
Hence the corollary follows immediately from (3.4).
THEOREM 3.2. — For a wvector-field X' (x, %) the operators O, and v,
commute according to
(3.10) (M, V), — V, 9 X = Cp O, X' + (9, Cj, — Gi) X
Proof. — Operating (1.8) by 9, we get
(3.11) M, V, X' = 91,3, X' + (9, Cj,) X7+ Cj, O, X
Also, an application of the formula (1.8) for the tensor-field 9, X? yields
(3.2) V, O, X =3, o, XF — (91, XY Chy + Ch 9, X7

Thus; the formula (3.10) follows from (3.11) and (3.12) when we use (3.4).
In view of the Corollary 2.1 and the equations (1.7) and (3.9) it follows
from the above theorem that

(M, V, —V, M # =o0.
Thus, we have the

COROLLARY 3.2. — For the vector i the operators My and N, are also
commutative.

The commutation formula for the unit vector /# may be also derived
from the above theorem. Using (2.9) and the relations Cj, /" = 0 = Gjs I
we would havc the

COROLLARY 3.3. — For the unit vector I the operators O, and V, commaute
according to '

(3.12) (9, ¥y — ¥, O ) & = (—1/F)Z Ciud, (PF) |

THEOREM 3.3. — For a vector-field X' (x , %) the operators Oy and L com-
mute according to

(3.14) (LM, — 9L, ©) X' = X7 9Gl — (3;X") 2Gj.
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Proof. — Since Lie differentiation satisfies the Leibnitz rule for the
differentiation of a product we get from (2.7) that

(3.13) 2 ([00, — 08, X = (28, X)) 8, (P#’) + (3, X°) 93, (P#7) —
— (©X)3,3, (P#')— X7 93,5, (P#') .

Next, applying the formula (2.7) for the vector X’ we have

(3.16) 2 (9, € — B, Q) X' = &, 0XH3, (P27 — (2X%)3;3, (P27 .

As the Lie operator is commutative over the partial differential operator

2) [[5], eqn. (2.11)] we get, by subtracting (3.16) from (3.15) and using (3.3),
that

(29, — O, ) X = X2 Gl L 8,3, (P | — (3, X7) L; i— L5,

Finally, using (2.1) and (2.4) this identity reduces to (3.14).
Noting €4 = o and (2.3) an important deduction of the above theorem
may be had in the following form

COROLLARY 3.4. — For the vector-field i the operators O, and £ are also
commutative.
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