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Analisi matematica. — Representation and computation of the
generalized inverse of a bounded linear operator between Hilbert spaces.
Nota di Davip W. SHOWALTER e AD1 BEn-ISRAEL, presentata ©
dal Socio B. SEGRE.

R1ASSUNTO. — Si danno rappresentazioni in forma di integrale ed in forma di sviluppo
in serie dell’inversa generalizzata di un operatore lineare limitato tra spazi di Hilbert (a codo-
minio arbitrario). Si presentano inoltre dei metodi iterativi iperpotenziali di calcolo dell’inversa
generalizzata mediante i proiettori associati.

§ 1. INTRODUCTION.

Series and integral representation of g.i. (generalized inverses) of bounded
operators with closed range between Hilbert spaces were given in [8]. This
paper is a continuation, giving the extensions to bounded operators with
arbitrary ranges suggested at the end of [8], and hyperpower iterative methods
for computing g.i. and projections for the same cases, extending the results
of [3], [7] and [9].

To motivate the idea behind our development consider the problem
of minimizing @

(r.o) f@)=Ar—y, Ax—y).
Treating x as a function x (£), # > o with x (0) = o, we differentiate (1.1)
(I.Z) th<x):2Re<Ax—y:M>y //E:Dtx

=2 Re (A*(Ax — ), %)
and setting
(1.3) &= —A*(Ax —3)
it follows from (1.2) that
(1.4) D f(x) = —2||A"(Ax — )|t <o.

This version of the steepest descent method results in f(x(2)) being a
monotone decreasing function of #, asymptotically approaching its infimum
as z—>oco. We expect x(#) to approach asymptotically A*y, so by solving (1.3)

t

(1.5) x (%) :fexp [—A*A (z— )] A*y ds

0

(*¥) Nella seduta del 14 febbraio 1970.
(1) If necessary, consult the notation in § 2.
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and observing that y is arbitrary we get
) ,
(1.6) At= limJ exp [—A*A (z— 5)] A% ds
t——)ooO

which is the essence of § 3.

Here as elsewhere in this paper, the convergence is in the strong operator
topology.

A numerical integration of (1.3) with suitably chosen step size similarly
results in

(1.7) At =¥ (I-—aA*A)YaA*
A=0
where
2
(I'8> o< a < W’

which is the essence of sections 4 and 3.

§ 2. NOTATION AND PRELIMINARIES.

S1, Ss — Hilbert spaces

A — a bounded linear operator A :S; — S,
A% — the adjoint of A

I, Io — identity maps on Si, Se resp.
Si=c/(A*Ss) - the closure of A*S,

Se = ¢l (ASy) — the closure of AS;
§i ,gé — the complements of S;, S; resp.
A,Ti, A" T; - the restrictions of these operators to Sy or Sz, as appropriate

AT AM T - similarly for S Sk .

1t onall of S1 means T{—f— O, similarly I; =T, 4 0%, etc.
It is readily seen that
At =0, A* =0;
I, Is, Ti and Té are projections;
L=1+1f and I = To + 3.
Thus for every xe€Si, v =7 + % where ¥ =Tix, 7t =I{x; and similarly for
any y€Ss, y=7%+yl.

| -] - the inner product norm on Si or Sa, as appropriate, or the (conventional) associated
operator norm.
AT - the generalized inverse of A, e.g. [1], [2], [4], [5] and [6].

It is defined as the linear operator (unique on its domain of definition) satisfying:
(2.1) ATA =T,
(2.2) ATSE =0

A” will not be defined on the set {Ss — AS1}, whenever this set is nonempty. However

(2.3) I» is the unique continuous extension of AA™ to all of Ss.
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The case where Sz — AS; = @ was considered (for the formulae examined in this paper)
previously [8]. Hence, in this paper we assume Sp == ASy, i.e., A does not have closed range.
In this latter case, there are three important classes for a point, ¥,in Sa. We abbreviate these
as follows:

(ye€I) - means 7 is in AA¥* S,
(2.4) (y€ll) — means Je(AS;— AA*S,)
(yelll) - means 7e(S;—AS;)
For simplicity, we have adopted the following convention: The y—variable (¥, vy @,
Yy s €tc.) is always in Sp. The x—variable (x,z(2), Ty, etc.) is always equal A"y (if defined);
and similarly = (if it exists) is given by w = A"z,
(2.5) Thus, when defined
r=A%Y | @) =ATy(), etc

w=A"r = A¥AYY | w, = ATy, = A*TAYy , Cete.

Also y=7y ,x=% , w=w,

x*=A*w , y =Axr = AA*w when x and w are defined;

y(@) =Ax() , y, =Ax;, etc
If zeSs, then A*z = A*Z, and since the classification (2.4) is a property of the com-
ponent in S, (z€i)&=>(Z€i) for i =1,II,III. Thus it should be noted in all succeeding

theorems in this paper: The simplifying assumption that 7' = o always, is not necessary;
and if yt == 0, the theorems are true either when we set ¥ =y, or as stated.

§ 3. INTEGRAL REPRESENTATION OF A™.

For # > 0 we define
¢
Li(x) = fexp [—A*A(Z— )] ds,
0
¢

L:(8) = jexp [—AA*(z— )] ds,

0
B (#) = Li(H)A* = A*Lo(s) .

(3.1)

The integral expressions for L; and Ls may be formally evaluated
(3.2j Lit) =11 — exp[—AXAL]) (A*A)*, Lo(®)=(Is —exp [—AA*#]) (AA®™;

for example, since A*A (A*A)*S;=S;,
¢
Ta(d) = f exp [—A*A (f—5)] A*A (A*A)* ds = (T, —exp [—A*AZ]) (A*A)*.

0
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Formally, also, we can compute
(3.3) B(®) = A*La () = ATAA* La(¢) = A La(f) AA¥
= A" (Ia—exp [~ AA*#]) = (I; —exp [~ A¥ Af]) A™.
The rest of this section deals with the strong convergence of B(f) to A* as
¢ — oo and the convergence rates.
THEOREM 1.

+ 2 *\F 2
At B(¢ 2 IA Y "I (AAT) |
@ O = a7y 2 1218

(b) AT —B@) y1? - is a decreasing function of t=>o, with limit zero
as t—oo, tf (yell).

if (yeI) and t>o.

] + 2
c AA* AB)y|f < —2IAYE €l) or (y€ll), and t>o.
© I Oyl Ay 12y 7 of (y€el) or (yell)

(d) I(AA*—AB@)y P 4s a decreasing function of t > o, with limit zero
as t—oo, if (ye€lll).

Remarks: 1f (yelll), Aty—and hence I (A+—B(t))y”——is undefined. In (c), (d),
AAT =15, eg. (2.3).

Proof: Using the conventions of §2, we define for (y€l) with
¥y =Ax = AA*w, and for £ >0

(34) w®=Li()AA*w , x()=A%w () =A*Ly(H)A(A*w).
Thus

(3.5) x@)=L1(t)A*Ax , y@)=Ax()=AL1(?) A* Ax =L (¥) AA* Ax.
From which

(3.6) y (&) =La (1) AA* y.

If (y € II) then w is undefined, and (3.5)—rather than (3.4)—is the defining
equation for x (#). Similarly, if (y € III), (3.6) is the defining equation for y ().

(3.7) From (3.1) and (2.5) it follows that the following relations hold when-
ever defined:
x(© =y =w(@O) =0 |, w@)=La(t)y,
O =Aw@®) =By , yO=AxO=AA*w({)=AB@)y.
Let

Then if (y €I):

(3.8)  Djlw—w @Jf =2 Re (w —w (¥, — D,w ()
=2 Re(w—w (¢), — D, Ls (#) AA* w)
=2 Re(w—w (), —AA* (I — Lz (¢) AA" w)
= —2 A% @ —w D)L
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The identity for D, Ls(#) is proved from
¢t oo [
D,L: () =D, ff exp [—A(t—s)]dEyds  where A¥A = f?xdEh .
00 0

By similar computations we obtain
D llx —x @IF = — 2l A (x —2 @) [P,
Dilly —y OIF = — 2l A" (y — y ®)I.

We next derive a simple inequality, used in establishing the convergence
rates given in this paper.
Let (y €I). Then

(3.10) # =2 @ =& —x@), A" (w—w (2)
=A@F—x@), w—w@O)<IAx—x®)lllw—w@].

(3.9)

From (3.8), D,|w —w (¢) || < o which implies
lw —w O <|w—w )| =, Vi=o.

Therefore, if (y€1I) and # >0

(3.11) [A @ —x @Ol = llx—x @OF ]
Similarly, if £>0 and (y €1I) or (y €II) then
(3.12) [A* (y —y =y —y @ I}/l =]l .
Now let B () =|x —=x (O, V¢=>o.
Then 8 (0) =[|#[P, D, B () = — 2| A (x —x ()I? by (3.9), so (3.11) gives
(3.13) D,p@O<—2B@PwlP

Integrating (3.13) gives for V¢>o

lwpp© _ _ lwpjxp

PO=Tarran@ — Twp+21[2F

from which theorem 1 (@) follows by using (2.5), since
BO =llx—x@F =AYy —B @yl

A. similar derivation holds, using (3.9), (3.12), for theorem 1 (¢).

Now suppose (y € II). We will establish theorem 1(4). Since Aty —
—B(#) y=x—x(2), (3.9) establishes that ||(A"— B (¢)) ¥|| is non increasing, and
we need only establish the limit. Since (¥ € II) there is an x = ATy €S, =
= ¢/(A¥Sp). Lete>o. Then there is a w, €S such that || x — A* o, || <=
Define

(3.14) e =A%w, , y.="Ax, =AA*w,.
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Then (y. €I), so there is ©>o0 such that #>t=| (A™—B®)y. | <?s ,

by theorem 1(a). Also ((y —y.) €1I), so that || (A+— B () (y — y.)|| is
nonincreasing in £

This is shown as in (3.9):
DI (A*=B @) (¥ —9o)lP = — 2| A(A*—B () (y — 502

Therefore for V¢>o

AT —B@) (¥ =2l < NAT—B©) (¥ — 5ol = |lx— 2. | < =,

by (3.14) since B (0) = o.
Consequently, > 1t =

IAT=B @)y | <IA"—B @)y |+ I(A*—B (&) (y — o<,

establishing theorem 1 ().
Theorem 1(d) is shown by a similar procedure.

Remarks: The strong convergences
Li() > (A"A)" as £>o00 and  La(2) > (AAYT as 75 oo,

with convergence rates analogous to those in theorem I, can be similarly established.
Some well known properties of g. i., follow from the above results:

AT = lim B(#) = lim Li(#)A* = (A*A)"A*
t—>00 t—=>00

and similarly:

AT =A% AANT AT AT AT = (A%A) A,

AMTAT = (AA"YT | ATART = (ATA)T
)

§ 4. SERIES REPRESENTATION OF A™,

Let ¢ be a real number, 0<c¢< 2, considered fixed throughout this
section. Let a = ¢[[|A[[?, and let the sequence { By: N=o0,1,- - -} be defined by:

N
(4.1) By = Y (I — cA*AY aA*.
k=0

Suppose (y€1):y =Ax = AA*w ,w €S;. Let the sequences {¥y}, {x\},
{wy} be defined as follows: '

(4.2) (¥ —oxp0) = e —aAAY) (¥ —9y)
(4-3) (r —xy, ) = 1 —aA*A) (r —xy)
(4-4) (w—wy,,) = (2 — 0AAY) (w —wy) N=o,1,--)

with ¥y, = x5 = wy = o.
For (y € II), (4.2) and (4.3) hold, but not (4.4) since w is then undefined.
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Similarly, for (v € III) only (4.2) holds.
The sequence {xy} is, by (4.3) and (4.1):

45) g = oy — 0A* (Arg— ) = (L — «A*A) xy + 2A% y
N v
= ;(}(h—«A*A)kocA*y=BNy N=o0,1,--).

It will now be shown that lim xy = x ie. lim By = A" and convergence

N—> oo N—>oo
rates analogous to theorem 1 will be established. For N=o0,1,---
| vy —HIP =l (Ie — «AAT) (yx — »)IP?
=lyn—y P—2a|A* (yx —D)IE + 2| AA* (yx — D)IB;

therefore

48 Iy — VPl —yr— LD Ay — ) I

and similarly

@n gy —rP<lay—zP— LR AG—DE i (yel,ID),
@8 gy —wlP <oy —wlp— LT AT @y —w)lE i (yeT),

The terms on the left of (4.6), (4.7), (4.8) clearly denote nonincreasing
sequences. Accordingly if (y €1I)

A Gy —2)P |wlP= | A (g —2) P lox —w |7, VN
> [ (A ey — ), oy — )2 = | (g — , A* (20 — ) |2 = || 7y — 2
or
(4-9) 1A Gy —DIP = |2y — 2[4 |(AA%)* y|1
Similarly, if (y €I) or (y €1II)
(4.10) IA* (g — DB = 3 — 4| A%y |E
We also need an inequality:
(4.11) If {r,: N=o,1,--:} is a sequence of nonnegative numbers,
and 42> o0 is a constant with 74 <1 and
N4l <ry— Mm%, VN>o,
then: ry < (14 Narg) ™ 7o, VN>o.

This 'is proved by induction:
ro <7ry. If ry< (14 Narg)™try= 0yt + Ni?
then 1> (1 —hry) (14 Ary) = (1 — hry) (gt + N& vy + diry)
= (ry _/”12\1> (7'0—1 + N4+1)%) > "1 rofl + N+1)4),
: (proving 4.11).

We have now the machinery to prove the following discrete analog of
theorem 1.
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THEOREM 2.

|A+ 2 I AA* + 2 .
(@) [(AT—ByslP< " 1A T I @ __)_5/[” if (y€l) and N=1,2,. - -,
IAAYTY P+ NEs ATy

®) [[AT—BY ¥ =[x — xy|? converges monotonically to zero if (y € I1).

AAY—AB 2 - ”J’”Z ”A+.y ”2 : I
© ¢ WP < - T, Z—9r o if (yel) or (yell) and
A"y +N"—A”2—|.J’f| N=1,2,....

(d)  [(AA*—ABYyIE =y — »yll? converges monotonically to zero if ( y €II).
Proof: From (4.7) and (4.9) we have

| (2_“5)6 ”xN_x”‘l’
2P < Jlay —2x|? — , VN >o.
I AR [AAR Ty

¥ —
Now let
ro=llxP=|ATy|? , ry= 2y — |7 = ||(By — AN y|?,
and %= (2 —¢)c/||AIP|(AA*)* ¥ |2  Then 7,4 <1 since |1 — x| >o,

and the inequality (4.11) is applicable to prove theorem 2(a). The proof
of theorem 2(c) is similar with

no=lrIP =AM, v =llyx—yIP = [(ABy —AAH)|2,

and %4 = (2 —¢) ¢/|A|F ||A*+¥|? and by using (4.6), (4.10) and the inequality
(4.11). The proofs of theorem 2(b) and (d) are analogous to the proofs of
theorem 1(b) and (d) respectively.

Remartk: These results, on the strong convergence By — A+, are different than the results

in [7] where the convergence By — AT is in the uniform operator topology, restricting A
to have closed range, e.g. [7] theorem 3.

§ 5. - HYPERPOWER ITERATIVE METHODS AND PROJECTION MAPPINGS.

The notation of § 4 is adhered to in this section. The sequence (4.1)
is first shown to satisfy

N
(5.1) Ib—ABy = I —aAA* Y (I, — aAA*)
k=0

= Ip — [I2 — (Is — 2AA®)] ;} (I — aAA*)

=L —[la—Ia—oAA ) = (I, — e AAYN ! N=o,1,--.

If p >2 is an integer, we define the sequence {Cx,: N=o0,1,---} by
recursion

-1
(5.2) Cop=aA* , Cyi1,=Cx, ;Oaz —ACx, ).
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We also define
2 Y A—1
(5.3) Dus=aA" , Dyii,=Dy, X (é) (—ADy "

The sequence (5.2) has been studied in [7] where its uniform convergence
to A*™ was established for bounded A with closed range, and for matrices in
[3], [0]. The sequence (5.3) is shown in (5.7) below to be identical with (5.2),
both sequences converging strongly to A™. The series (5.2) is somewhat
simpler to use if the term (I — ACy,4)* can be evaluated by only #— 1 operator
multiplications, e.g. for matrices. The form (5.3) is preferable otherwise,

e.g. for integral transforms. The sequence (5.2) satisfies for N=o0,1,---

p—1
(5.4) Io—ACN41,p = Is—ACx,, Y, (I— ACx )

k=0
-1
= Ip— [lo— (Is — ACx,,)] ; (I — ACx ,)f = (I — ACn,»)?, as in (5.1)
=0

= (I —AC )" = (I — aAA) T = 1, — AB xt1_y,, by induction.

Similarly for the sequence (5.3):

?
(5.5) Io— ADx1,, = 3 (4 ) (—ADy,f = (I — ADy,)?

= (Ia—ADg """ = I — AB,v41_,, by induction

From (5.4) and (5.5) it follows that

(56) AB - A.CN+1);> - ADN+1,p.

("t 1-1

Since for all integers p , ¢> o0, A*AB, = B, ; A*AC,,, = C,,,; and ATAD, , =
= D, ,, we multiply each term in (5.6) by A" to obtain:

(5.7) Bip+1y=Cxi1p = Drirge

Consequently {Cx,,} and {Dx,}(N =o0,1,---) are hypergeometric series
for p= 2, with the convergence rates established in theorem 2, e.g.

(58 A Crg e IATIEIAAN
[AAS 4 (=0 G2 ATy

if (yel) and N=1,2,---

We return now to consider the operator Is— ABy, (5.1). For any
Y €Ss,y =7+ FL, it was established in §4 that

(5.9) lim (I —ABy 7 =o,

N—>oo

with the rate of convergence Varying according as (y € I), (¥ € II) or (y € III).
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It is clear that Byj' =o0,VN, since A*jl =o0. (Thus for arbitrary
¥ €Se, lim (AA™— ABy) y = o, which was established in § 4). Consequently,
N—>o0 ’

lim (I — ABy) y = 74 or by (5.1) lim (Is— «AA*Ny = 7L, and so,
N—o0 N—o0

lim (I — «AA®N is the projection onto the null space, Sj, of A* with
N—oo

previously established convergence rates. Clearly then

(5.10) Jim [Ty — (I — 2AAW] = P
where Pg is the projection mapping onto Ss.
The following analog of (5.1)

(3.11) I; — By A = (I — cA* AN

similarly gives for any x €S;,x = x + %!
(3.12) (It —aA* Ay — % 4 (A*—B)y, VN

where y = AX, so that (y€I) or (y €II). By theorem 2, (5.12) converges
to ¥L. Thus

(5.13) 1\lrim [I1 — ({1 —«A* AN = P .

These results suggest hyperpower iterative methods for computing the
projection mappings Pg, Pyt , P5 , Pgl based on (5.2) or (5.3), with
convergence rates given from (5.7) and theorem 2. These methods were stud-
ied in [3], [7] and [9]. It should however be noted that the uniform conver-
gence (Ii— aA*A)N— Pgl is equivalent to the range of A being closed, see [7]

corollary 3, which emphasizes the wider applicability of our results involving
strong operator convergence.

Acknowledgment: Research supported by the National Science Foundation, Project
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REFERENCES.

[1] E. ARGHIRIADE, Suy l’inverse généralisée d’un opérateur linéaire, dans les espaces de Hil-
bert, « Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. », ser. VIII, Vol. XLVI
(1969).

[2] A. BEN-ISRAEL and A. CHARNES, Contributions to the theory of gencralized inverses, « SIAM
J.» 11, 667-699 (1963).

[3] A. BEN-ISRAEL and D. COHEN, On iterative computation of generalized inverses and asso-
ciated pro}'ectz'ons, «J. SIAM Numer. Anal. », 3, 410419 (1966).

[4] ¥. J. BEUTLER, The operator theory of the pseudo—inverse, 1. Bounded operators, 11. Un-
bounded operators with arbitrary range, « J. Math. Anal. Appl.» 10, 451-470, 471-493
(1965).

15. — RENDICONTI 1970, Vol. XLVIII, fasc. 2.



104 Lincei — Rend. Sc. fis. mat. e nat. — Vol. XLVIII — febbraio 1970 [130]

[s] C. A. DESOER and B. H. WHALEN, 4 nofe on pseudoinverses, « SIAM J.», IT, 442—447
(1963).

[6] M. R. HESTENES, Relative self-adjoint operators in Hilbert space, « Pacific J. Math. », 11,
1315-1357 (1961).

[7]1 W. V. PETRYSHYN, On generalized inverses and on the uniform convergence of (1 — PK)~
with application to iterative methods, « J. Math. Anal. Appl.», 18, 417-439 (1967).

[8] D. SHOWALTER, Representation and computation of the pseudoinverse, « Proc. Amer. Math.
Soc.», 18, 584-586 (1967).

[9] S. ZLOBEC, On computing the generalized inverse of a linear operator, « Glasnik Mat. »,
2, (22), 265-271 (1967).



