ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Antonio Machì

On a class of finite groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 48 (1970), n.2, p. 147–151.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1970_8_48_2_147_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1970.

Algebra. — On a class of finite groups. Nota di Antonio Machí, presentata (*) dal Socio B. SEGRE.

RIASSUNTO. — Si studiano i gruppi finiti tali che due loro sottogruppi qualsiansi dello stesso ordine risultano coniugati. Si dimostra che: nel caso nilpotente, tali gruppi sono ciclici; nel caso risolubile, sotto opportune condizioni per un 2-sottogruppo di Sylow, detti gruppi ammettono un quoziente isomorfo al gruppo alterno A_4 su quattro lettere; nel caso generale, sotto le stesse condizioni per un 2-sottogruppo di Sylow, tali gruppi hanno un subquoziente isomorfo ad A_4 .

INTRODUCTION.

In this paper we study the structure of finite groups G with the following property:

If H and K are two subgroups of G and |H| = |K|, then $H \sim K$. i.e., any two subgroups of the same order are conjugate. We will write $G \in (C)$ if G is a finite group with the above property. Under the stronger condition that two subgroups of the same order be conjugate in their union, these groups have been classified by G. Pazderski [I]. In that paper, the author proves that G'—the derived group of G—is cyclic, that the quotient G/G' is also cyclic, and that the orders of G' and G/G' are relatively prime.

It is clear that A_4 —the alternating group on four letters—belongs to (C). Our main result will be that, under suitable conditions on the 2–Sylow subgroups of G, the group A_4 is involved in G. This will be proved by an application of Lemma 1.2.3. of the Hall-Higman paper.

In section 1, we show that nilpotent groups belonging to (C) are cyclic. In section 2, Sylow subgroups of groups $G \in (C)$ are studied. In section 3, we consider solvable groups $G \in (C)$ and show that if a 2-Sylow subgroup of G is quaternion (of order 8) or elementary abelian of order 4 (Klein group), then G contains a normal subgroup H such that $G/H \cong A_4$. In section 4, dropping the hypothesis of solvability, we show that A_4 is involved in G.

We observe that, if $G \in (C)$ and $N \leq G$, then $G/N \in (C)$. In fact, if $|K_1/N| = |K_2/N|$, then $|K_1| = |K_2|$ and therefore $K_1 \sim K_2$. Let $K_1^x = K_2$ for some $x \in G$. Then $(K_1/N)^{xN} = K_2/N$.

I.—THE NILPOTENT CASE.

PROPOSITION 1. If $G \in (C)$ and G is nilpotent, then G is cyclic.

Proof. As we observed at the end of the Introduction, if $G \in (C)$ every quotient of G belongs to (C). Let G' be the derived group of G. Then $G/G' \in (C)$ and is abelian. Since then every subgroup of G/G' is normal,

(*) Nella seduta del 14 febbraio 1970.

G/G', belonging to (C), has at most one subgroup of order *n* for every positive integer *n*. It is well known that such groups are cyclic. Since G is nilpotent, $\Phi(G) \ge G'$ —where $\Phi(G)$ is the Frattini subgroup of G. Thus $G/\Phi(G)$ is cyclic, and this implies G cyclic, q.e.d.

2.—THE SYLOW SUBGROUPS.

If $G \in (C)$ and $P \in Syl_{p}(G)$, P is a p-group in which any two subgroups of the same order are isomorphic (being conjugate in G). Such p-groups have been determined by R. Armstrong [2], and are of the following types:

- i) cyclic;
- ii) elementary abelian;
- iii) non abelian of order p^3 , with exponent p if p is odd and quaternion if p = 2.

The following Proposition shows that if G is solvable the non abelian case for p odd cannot happen.

PROPOSITION 2. Let $G \in (C)$ and G solvable. If p is an odd prime, then a p-Sylow subgroup of G is abelian.

Proof. Let $P \in Syl_{p}(G)$, $H \triangleleft G$, $P \leq H$. Let $|P \cap H| = p^{a}$. The subgroup $P \cap H$ is unique of its order in P, since if $|K| = |P \cap H|$ and $K \leq P$, then

$$\mathbf{K} = (\mathbf{P} \cap \mathbf{H})^{\mathbf{x}} < \mathbf{H}^{\mathbf{x}} = \mathbf{H} , \quad \text{for some} \quad \mathbf{x} \in \mathbf{G} ,$$

and therefore $K \leq H$, so that $K = P \cap H$. Thus if $a \geq I$, P is cyclic [3], unless $P \leq H$. If P = H, $P \triangleleft G$. Suppose, in this case, P not abelian. Then I < Z(P) < P, so that Z(P) is unique of its order in P: if not, let K < P with |K| = |Z(P)|, $K \neq Z(P)$. Then $Z(P)^{*} = K$, for some $x \in G$, and since $P \triangleleft G$, conjugation by x induces an automorphism of P moving Z(P), which is impossible. Thus P is cyclic, a contradiction. Therefore P is abelian. Suppose now H = G', so that G/H is abelian. By above, if P is not cyclic, $P \leq G'$. Let

$$G > G' > G'' > \cdots > G^{(n)} = 1$$

be the derived series of G. Since $P \neq I$, there exists an $i \geq I$ such that $P \leq G^{(i)}$. Consider $P \cap G^{(i)}$. We have the following possibilities:

a) $|P \cap G^{(i)}| = I$. If $P < G^{(i-1)}$, P is abelian, since $G^{(i-1)}/G^{(i)}$ is abelian. If $P \cap G^{(j)} = I$, with $2 \le j \le i - I$, G is abelian since G'/G'' is abelian: if $P \cap G^{(j)} \neq I$, P is cyclic if $P \le G^{(i-1)}$, and abelian in the other case.

b) $|P \cap G^{(i)}| = p^a$, $a \ge I$. In this case P is cyclic. q.e.d.

Thus, in case G solvable, we have the following possibilities for a p-Sylow subgroup of $G \in (C)$:

- i) cyclic;
- ii) elementary abelian;
- iii) quaternion of order 8.

Let now P be any p-Sylow subgroup of a solvable group $G \in (C)$, and consider $P \cap G'$ with $P \leq G'$. Let $|P \cap G'| = p^a$. If a = 0, P is cyclic, being isomorphic to a subgroup of G/G'. If a = 1, since $P \cap G'$ is unique of order p in P, we have $P \cap G' \leq Z(P)$, and since $PG'/G' \cong P/P \cap G'$ is cyclic, we have P abelian. Thus P cannot be quaternion, and so is cyclic. If a > 1, P is cyclic. We have proved:

If G is a solvable group belonging to (C) and $P \in Syl_p(G)$ is not cyclic, then $P \leq G'$.

3.—THE SOLVABLE CASE.

Theorem 1 below is a straightforward application of the following result of Zassenhaus:

LEMMA (Zassenhaus [4]). Let G be a solvable finite group. Suppose that for some integer s > 1, $2^{s+1} \dagger G$ and that G has an element of order 2^{s-1} . Then G has a normal subgroup H such that a 2-Sylow subgroup of H is cyclic and either $G/H \simeq Z_2$, or $G/H \simeq A_4$ or $G/H \simeq S_4$.

THEOREM 1. Let $G \in (C)$ and solvable. Let a 2-Sylow subgroup of G be quaternion of order 8 or elementary abelian of order 4. Then G contains a normal subgroup H such that $G/H \cong A_4$.

Proof. Clearly, G satisfies the hypothesis of the Lemma. Suppose $G/H \cong Z_2$; it follows:

- i) if a 2-Sylow subgroup is quaternion, Q, then $Q/Q \cap H \cong QH/H \cong Z_2$, which implies $|Q \cap H| = 4$. Since $H \triangleleft G$, the subgroup $Q \cap H$ of Q cannot be conjugate to another subgroup of order 4 of Q;
- ii) if a 2-Sylow subgroup is elementary abelian of order 4, V, then $V/V \cap H \cong VH/H \cong Z_2$, which implies $|V \cap H| = 2$; the subgroup $V \cap H$ of V cannot be conjugate to another subgroup of order 2 of V.

Thus, $G/H \cong Z_2$. Observe that $S_4 \notin (C)$, since a 2-Sylow subgroup of S_4 is dihedral of order 8. But if $G \in (C)$, every quotient does. It follows that G has a normal subgroup H such that $G/H \cong A_4$. q.e.d.

Remark. Under the weaker hypothesis that two subgroups of the same order are isomorphic, we can conclude that G has a normal subgroup H such that either $G/H \cong Z_2$ or $G/H \cong A_4$. The case $G/H \cong S_4$ is excluded because QH/H and VH/H cannot be dihedral of order 8.

4.—THE GENERAL CASE.

Notation. If G is a finite group and p is a prime, by $O_p(G)$ we mean the maximal normal p-subgroup of G, and by $O_{p'}(G)$ the maximal normal subgroup of G whose order is not divisible by p.

Definition. A group G is said to be p-solvable if it has a normal series in which every quotient is either a p-group or a p'-group.

If G is p-solvable and $O_{p'}(G) = I$, it is a consequence of Lemma 1.2.3. of the Hall-Higman paper [5] that $G/O_p(G)$ is isomorphic to a subgroup of Aut $(O_p(G)/\Phi(O_p(G)))$ [6].

Definition. A group H is said to be *involved* in a group G if G contains two subgroups K_1 and K_2 with $K_1 \triangleleft K_2$ such that $K_2/K_1 \cong H$. We can now prove:

THEOREM 2. Let $G \in (C)$. If a 2-Sylow subgroup P of G is either quaternion or elementary abelian of order 4, then A₄ is involved in G.

Proof.

i) P = Q, quaternion. Let $N = N_G(Q)$. Observe that N > Q: if N = Q, two subgroups of order 4 in Q, being conjugate in G and normal in Q are conjugate in N = Q [7], a contradiction. Thus N > Q. Consider $C = C_G(Q)$. It is well known that Aut $(Q) \cong S_4$; thus $N/C \gtrsim S_4$. Since $|Q \cap C| = 2$, and a 2-Sylow subgroup of N/C is $QC/C \cong Q/Q \cap C \cong V$, Klein group, we have $N/C < S_4$ and |N/C| = 4 or 12. Suppose |N/C| = 4. Then, if i, j are two elements of order 4 in Q—not belonging to the same subgroup of order 4—such that $i^* = j, x \in N$, we have

$$(iC)^{xC} = jC = iC$$

a contradiction. Thus |N/C| = 12, and since $N/C \approx S_4$, we have $N/C \approx A_4$.

ii) P=V, elementary abelian of order 4. As above, we have $N=N_G(V)\!>\!V,$ since the subgroups of order 2 must be conjugate in N. In N we have the normal series

$N \triangleright V \triangleright I$

with N/V odd and V a 2-group. Thus N is 2-solvable. Suppose $O_{2'}(N) = I$. Then since $O_2(N) = V$, we have $\Phi(O_2(N)) = I$, and, by [6], N/V isomorphic to a subgroup of Aut $(V) \cong S_3$. Since N/V is odd, we have |N/V| = I or 3. In the first case, N = V, excluded. Thus, V splits N by a subgroup of order 3. Since the elements of order 3 must induce a non trivial conjugation, the splitting is a semidirect product, i.e. $N \cong A_4$.

Suppose now $O_{2'}(N) > I$. Then $\overline{N} = N/O_{2'}(N)$ is such that $O_{2'}(\overline{N}) = I$ and $O_2(\overline{N}) \cong V$. Thus $|\overline{N}/O_2(\overline{N})| = I$ or 3. In the first case, $\overline{N} = O_2(\overline{N})$, i.e. $N/O_{2'}(N) \cong V$. But then N is the direct product of V and $O_{2'}(N)$, so that V is centralized by every element of N. Thus $|\overline{N}/O_2(\overline{N})| = 3$, so that $\overline{N} = N/O_{2'}(N) \cong A_4$. q.e.d. *Remark.* The above method could also be used to prove Theorem I of section 3. In fact, G being solvable, a minimal normal subgroup of G is an elementary abelian p-group. Thus, for some p, $O_p(G) > I$. If $O_{2'}(G) = I$, then $O_2(G) > I$, and in case a 2-Sylow subgroup of G be quaternion or elementary abelian of order 4 it is easily seen that $O_2(G)$ is the full Sylow subgroup of G. Thus, Aut $(O_2(G)/\Phi(O_2(G))) \cong S_3$. By arguments similar to those of Theorem 2 the proof can be completed.

References.

- G. PAZDERSKI, Zur Charakterisierung zs-metazyklischer Gruppen, «Annales Univers. Scient. Budapestinensis Sect. Math. », 9, 19-21 (1966).
- [2] R. ARMSTRONG, Finite groups in which any two subgroups of the same order are isomorphic, « Proceed. Cambr. Phil. Soc. », 54, 18–27 (1958).
- [3] W. R. SCOTT, Group Theory, Prentice-Hall, Inc., 1964, Theorem 9.7.3.
- [4] H. ZASSENHAUS, Über endlicher Fastkorper, «Abhandl. Math. Sem. Univ. Hamburg», 11, 187–220 (1935).
- [5] D. GORENSTEIN, Finite Groups, Harper & Row, 1968, Theorem 6.3.2.
- [6] Ibid., Theorem 6.3.4.
- [7] W. R. SCOTT cit., Theorem 6.2.5.