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Matematica. — Sturm Theory for Nonlinear Elliptic Equations. 
Nota di K u r t  K r e i t h , presentata0  dal Socio M. P i c o n e .

R iassunto . — Viene impiegata la cosidetta « Picone idendity » per stabilire nuovi 
teoremi d’oscillazione concernenti le soluzioni di equazioni a derivate parziali del secondo 
ordine dotate di una certa non linearità.

Sturm ’s com parison theorem  deals with functions u (x) and v (x) which 
are n o n triv ia l solutions of

( 0  u"  +  p  (x) u  =  o ,

(2) v"  +  q (x) v == o ,

respectively. G iven th a t p  (x) <^q{x),  S tu rm ’s theorem  asserts th a t “ v (x) 
oscillates faster th an  u ( x ) ” in the sense th a t if x 1 and are zeros of u(x),  
then v (x) has a zero in [xx , x 2] .

In  order to m otivate a generalization to nonlinear equations, suppose 
th a t p  (x) >  o so th a t u n has the opposite sign to u. In  this situation, the larger 
p  (x) the faster u (x) is driven back to the line u  =  o due to the effect of the 
second derivative: u n =  — p { x ) u >

This point of view suggests th a t there are ways of increasing the rate 
of oscillation of solutions of second order equations by including nonlinear
terms. For example, if q (x) >  p (x) and r (x) is positive, then it is reason­
able to expect th a t solutions of v" +  q (x) v +  r (x) v3 =  o will oscillate faster 
th an  solutions of (1). M ore generally, if f ( x , v )  is any sufficiently regular 
function satisfying f  (x , v) >  o for v >  o and f ( x , v ) <  o for ^ < 0 ,  then one 
would expect th a t solutions of v"  +  q(x) v + f ( x , v) =  o will oscillate faster 
th an  solutions of (1), while solution of v " +  p ( x ) v  —  f { x , v )  =  o will oscillate 
more slowly.

A  com parison theorem  along these lines was proven by T aam  [1] for 
certain nonlinear second order ordinary  differential equations. We shall 
prove a com parison theorem  for nonlinear elliptic equations in Rn which 
includes T aam ’s com parison theorem  as a special case when n =.  1.

O ur principal result deals w ith non-trivial solutions of sufficiently regular 
nonlinear elliptic boundary  value problems of the form

(3)

+  c (x , u) =  o in G

OU . f \-^- +  s ( x ) u  =  o (*) on dG

(*) Nella seduta del io gennaio 1970.
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and

(4)
J f i  l H a^ )  +  Y (* ,z ; ) = 0 in G

—  +  (J (x) v =  on 3G .

Here x  =  (xx , - - •, x H) and

Su __ y , du dv
~3v ~  * üij ~ d ^  ~dff »

dv _ y, dv 3v
T 7  ~  ^  ~ 3^  3 ^  ’

where -^7  denotes the cosine of the angle between the exterior norm al v and

the positive xj—axis. We follow the convention of allowing s (x) =  -f- 00 to 
denote the boundary condition u {x) =  o. It is assumed tha t 3G has a piece- 
wise smooth norm al and th a t the and a,y are of class C'  in G. The func­
tions c (x , u) and y  (x , v) are to be continuous in G X (—  00 , 00) and satisfy

c (* > o) =  y (x , o) =  o .

Furtherm ore the following four limits

lim , iim iXrXL  , iim i Tt s l  , Hm
« I 0 U «to u v » t o . 2'

are assum ed to exist for every x e G .

THEOREM i. Suppose u (x) and v (x) are solutions of (3) and  (4), respec­
tively. I f

(i) S  üij l i  l j  >  S a  ij li ly >  o for every x  e G and all real ^-tup les
& , • • • ,  Q ;
y (x ,v) . c ( x , u) r ~ i n . ■W  ---- ----->  — - --- tor every x  e G and all u  , v m - 0 0 ,0 0 );

(iii) x (4:) >  or (x) on 3G,

then v (x) has a zero in  G or else v (x) is a scalar multiple of u [pc).

Proof. The proof will depend on the following generalized Pieone identity 
[2], [3]: If  v ( x ) d ^ o  in G, then

(S)

V X 3xj
dv

+  X  (aijid
■ v du dv
^  Xc- !)Xy

(du U dv \  /  du
t j  V dXi V dzi / I dxj

U dv \
V dxj / ’
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where the last two term s in (5) are non-negative by (i). Using the differential 
equations in (3) and (4) to simplify the first two term s on the right side 
of (g), integrating over G, and applying G reen’s theorem  yields

with equality  if and only if v (x) is a scalar multiple of u (x). Using the bound­
ary  condition in (3) and (4) we get fh

(6) — / Is (x ) —  G (x )] u 2 d^ >  u2

3G

y {pc , v) c (x , u)  
V u

However by (ii) the right side of (6) is non-negative while by (iii) the left 
side is non-positive. Therefore the assum ption v(x)=j=o in G is tenable 
only if v (x) is a scalar m ultiple of u (x).

COROLLARY. Suppose u (x) and v (x) are as in Theorem 1 and that condi­
tions (i) and  (ii) are satisfied. I f  G is a nodal domain fo r  u ( A  then v [x) has 
a zero in  G.

Proof. This is the situation in which “ (x) =  +  00 on 3G ” so th a t (iii) 
is autom atically satisfied. M ore precisely, since u (x) — o on 3>G, the 
boundary integral in (6) vanishes and the conclusion of Theorem  1 remains 
valid.

The following are examples of pairs of functions c (x , u) and y (x , v) 
which satisfy condition (ii) of Theorem  1.

I ) c (x , u) — u  —  u5, 

y (x , v) =  2 v +  vz.
M

2) C ( x , u )  =  ^ p k (x) ipb -1,
k=l
N

Y (x  , v) =  y%i qk (x) v 2k~ 1)
k=i

whefe qx (x) >  p 1 (x) , p k (x) < 0  for k ~ > 2  and qk (x) >  o for k > 2 . 

3) c (x , u) =  —  sinh u ,

y (x , v) =  —  v for v <  o ,

=  for v >  o .

Oscillation theorem s for nonlinear singular elliptic equations of the form 

(7) Z ^ f a £ - )  +  y ( x , v )  =  o;  x e G

(1) In case s (x) =  00 on part of 3G, we are justified in omitting that portion of 3G 
in the boundary integral below.
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follow readily from the Corollary by com paring (7) with the singular linear 
equation

(8)
du
dx1

f \
-  +  C (x„) u =
I >

X  6 G

under the assum ption th a t some solution of (8) has a sequence of nodal 
domains accum ulating at a singular surface S C 2G. By assuming further 
th a t hypotheses (i) and (ii) of Theorem  1 are satisfied near S, one can 
conclude th a t (7) is “ oscillatory at S ” . This procedure is exactly analogous 
to th a t used by the author in [4] to derive oscillation theorem s for linear 
elliptic equations and will not be repeated here. R ather we shall sim ply state 
the results (using the term inology introduced in [4]). I t is assumed tha t 
G C { x  I x n >  0} and th a t the singular p a rt of 3G satisfies S C { x  | x M — o} .

THEOREM 2. Suppose u (x) and v (x) are solutions of (7) and (8), respec­
tively, and that

(i) >  Sa,y >  o for all x  near S,
f  \ X V)(ii) >  c (xn) for all x  near S and —■ 00  <  v <  00.

I f  fo r  some s >  o the equation

~dt G ^  “Hr) ^  ^  (^0 W

is oscillatory at t  =  O, then every solution of (7) is weakly oscillatory at S (in 
the sense that i f  H is an open set containing S, then u (x) has a zero in 
H O G ) .

T heorem  3. Under the hypotheses of Theorem 2, i f

"V (a w  “S ')  +  ^  (0  +  M] w  =  o

is oscillatory at t  — o fo r  every real number M, then every solution of \ff) is 
strongly oscillatory at S (in the sense that i f  x 0 E S and H is a neighborhood 
of x 0, then u(x)  has a zero in  H O G).
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