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Matematica. — Sturm Theory for Nonlinear Elliptic Equations.
Nota di Kurt KRrEITH, presentata ® dal Socio M. Picons.

RIASSUNTO. — Viene impiegata la cosidetta « Picone idendity » per stabilire nuovi
teoremi d’oscillazione concernenti le soluzioni di equazioni a derivate parziali del secondo
ordine dotate di una certa 7oz linearita.

Sturm’s comparison theorem deals with functions # (¥) and v (x) which
are non-trivial solutions of

(0 W' p (D u=o,
(2) v +g9xv=o0,

respectively. Given that p (¥) < ¢ (%), Sturm’s theorem asserts that ‘o (x)
oscillates faster than # (x)’’ in the sense that if »; and x, are zeros of % (x),
then » (x) has a zero in [xy, %,].

In order to motivate a generalization to nonlinear equations, suppose
that p (¥) > o so that %" has the opposite sign to z. In this situation, the larger
2 (x) the faster « (x) is driven back to the line % = o due to the effect of the
second derivative: %' = — p (x) u.

This point of view suggests that there are ways of increasing the rate
of oscillation of solutions of second order equations by including nonlinear
terms. For example, if ¢ () > p (x) and » (x) is positive, then it is reason-
able to expect that solutions of v'' 4 ¢ (x) v 47 (x) 28 =0 will oscillate faster
than solutions of (1). More generally, if /(x,v) is any sufficiently regular
function satisfying f(x,v) >0 for v >0 and f(x, v)<< 0 for << 0, then one
would expect that solutions of v 4 ¢(x) v+ f(x,v) = o will oscillate faster
than solutions of (1), while solution of v+ p(x) v — f (x, v) = o will oscillate
more slowly.

A comparison theorem along these lines was proven by Taam [1] for
certain nonlinear second order ordinary differential equations. We shall
prove a comparison theorem for nonlinear elliptic equations in R” which
includes Taam’s comparison theorem as a special case when 7 =.1.

Our principal result deals with non-trivial solutions of sufficiently regular
nonlinear elliptic boundary value problems of the form

2 ( ou ) .
— |y — c(x,n) =o0 in G
= 3;Kj Y 3 + ( ) )

(3)

ou
& Ts@u=o0 on G

(*) Nella seduta del 10 gennaio 1970.
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and
« 9
— +ylx,v)=0 in G
21%(”” ¥ (x,0)
(4)
v
- To@v= on 23G.
Here x = (x;,---, x,) and
ou 7
EN AN
iz dv  dv
= % T

o . .

where -3:“ denotes the cosine of the angle between the exterior normal v and
7

the positive x;-axis. We follow the convention of allowing s (x) = + oo to

denote the boundary condition # (x) = o. It is assumed that 3G has a piece-

wise smooth normal and that the a; and a«; are of class C’ in G. The func-

tions ¢ (¥, %) and y (x, v) are to be continuous in G X (— oo, oo) and satisfy
c(x,0)=v(x,0) =o.
Furthermore the following four limits

lim L& %y c@0)
u\ 0 u uh 0 “ 240 v 240 4

are assumed to exist for every x € G.

THEOREM 1. Suppose u (x) and v (x) are solutions of (3) and (4), respec-
tively. If

(i) 2a; 88 > 2, E:E; >0 for every x€G and all real n-tuples
(‘21 yt Tty E.:n))
o Y (x,9) c(x,u)
@ Lt 5 et

for every x €G and all # ,v in (— oo, co);
(iii) s (x) > o (x) on G,
then v (x) has a zero in G or else v (x) is a scalar multiple of u (x).

Proof. The proof will depend on the following generalized Picone identity
[2], [3]: If v (x)=Fo0 in G, then

o .| u du v : 3 7/ du
O Tl PennTa e (o)

2,7

w2 N9 v \ -y du - dv
— Dy ) D @) o
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where the last two terms in (5) are non-negative by (i). Using the differential
equations in (3) and (4) to simplify the first two terms on the right side
of (5), integrating over G, and applying Green’s theorem yields

u du 7 v Fy(x,v) c(x,u)

ad Z; A Z: i | Bl 2 Y )
f v (Z’ - @i x; “ - O ox; >} ox; doiz / " l v u
oG G

dx

with equality if and only if o (x) is a scalar multiple of # (x). Using the bound-
ary condition in (3) and (4) we get ®

©) — [[J‘(x)—c(x)] ustzzﬁ[Y(’;’”) - c(xu’”)].

oG

However by (ii) the right side of (6) is non-negative while by (iii) the left
side is non-positive. Therefore the assumption v (x)==0 in G is tenable
only if v (x) is a scalar multiple of # (x).

COROLLARY. Swuppose u (x) and v (x) are as in Theorem 1 and that condi-
tions (i) and (ii) are satisfied. If G is a nodal domain for u (x), then v (x) has
a zero in G.

Proof. This is the situation in which ““s () = + oo on 3G’ so that (iii)
is automatically satisfied. = More precisely, since = (¥) =0 on 2G, the
boundary integral in (6) vanishes and the conclusion of Theorem 1 remains
valid.

The following are examples of pairs of functions ¢ (x, %) and v (x, v)
which satisfy condition (ii) of Theorem 1.

1) ¢c(x,u) =u—ud,

y(x,v) =2v 4 o5
M
2) ¢(x,n) :/;11)'2 (x) 2241,

N
Y(x,v) = ;1 g; (%) 0241,

where ¢, (x) = 9, (%), pp (¥) < o0 for £>2 and ¢, () >0 for £> 2.

3) ¢ (x, %) =—sinhu,
y(x,v)=—v for v<o,
=73 for v>o.

Oscillation theorems for nonlinear singular elliptic equations of the form

) o
@) ZQ—;rJ-(a"fWi)—i_Y(x’y):O; x€G

(1) In case s (x) = oo on part of 3G, we are justified in omitting that portion of 3G
in the boundary integral below.
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follow readily from the Corollary by comparing (7) with the singular linear
equation

"< o 2
® Ll Bl benner ses

under the assumption that some solution of (8) has a sequence of nodal
domains accumulating at a singular surface S C3G. By assuming further
that hypotheses (i) and (ii) of Theorem 1 are satisfied near S, one can
conclude that (7) is * oscillatory at S”’. This procedure is exactly analogous
to that used by the author in [4] to derive oscillation theorems for linear
elliptic equations and will not be repeated here. Rather we shall simply state
the results (using the terminology introduced in [4]). It is assumed that
G C{x|x,>o0} and that the singular part of 3G satisfies S C {x | x, = 0}.

THEOREM 2. Swuppose u(x) and v (x) are solutions of (7) and (8), respec-
tively, and that

() Za; 88> 2a;E,E >0 for all x near S,

(ii) 1%’—2}) > ¢ (x,) for all x near S and — o0 < v < co.

If for some € > o the equation

O )+ O —w+Nw

is oscillatory at t = o, then every solution of (7) is weakly oscillatory at' S (in
the sense that if H is an open set containing S, then u (x) has a zero in
HNG).

THEOREM 3. Under the hypotheses of Theorem 2, if
d / d
E(a(z‘)—%) + () + M]w = o

is oscillatory at t = O for every real number M, then every solution of (7) is
strongly oscillatory at S (in the sense that if xo €S and H is a neighborhood
of xqy, then u(x) has a zero in HN G). ‘
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