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Matematica. — A  Picone identity fo r  non—self—adjoint elliptic 
operators n . Nota di D. R. D u n n in g er , presentata0  dal Socio 
M. P ico n e .

R iassunto. — In questa Nota .è ottenuta una estensione della identità di Picone da 
questi data per gli operatori ellittici autoaggiunti al caso in cui gli operatori non sono tali. 
Impiegando questa estensione vi si ottengono teoremi tipo Sturm per operatori ellittici non 
autoaggiunti con condizioni lineari e omogenee al contorno.

i. Introduction.

Com parison theorem s of S tu rm ’s type will be considered for linear non- 
self-adjoint elliptic inequalities under linear homogeneous boundary conditions. 
Results of this nature for hom ogeneous Dirichlet boundary conditions have 
been considered by Swanson [1] who based his results on a variational-type 
lemma. The results considered here will depend upon a new Picone-type 
identity for non-self-adjoint elliptic operators which generalizes the Picone 
identity [2] for self-adjoint elliptic operators. In  particular, Sw anson’s 
variational lem m a will be seen to be an easy consequence of the identity.

2. Notation.

L et R be a bounded dom ain in ^-dim ensional Euclidean space Kn 
with a piecewise sm ooth boundary  3R. Points in Kn are denoted by 
x  =  (x1 , X2 , • • •, x n) and differentiation with respect to 0? is denoted by D* (**), 
0  =  I , 2 , • • - , n ).

Consider the linear differential operators I , L  defined by

n n

(2.1) lu ~  2 )  (a{j Dj u) +  2 ^  bi D* u  +  cu ,
i,f= 1 i — 1

n n
(2.2) Lv — ^  D,- (Ay- Dy v) +  2 2 } B,- D,- v +  Cv ,

i,j = 1 i — 1

respectively, where the dom ains 3) / ,  of / ,  L, respectively, are defined
to be the sets of all com plex-valued functions u  c C ' (R U ^R), such th a t 
all derivatives appearing in lu  and L v exist and are continuous at 
every point in R. T he coefficients in (2.1) and (2.2) are assum ed to be

(*) This research was supported in part by National Science Foundation Grant GP-07422.
(**) Nella seduta del 15 novembre 1969.
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real and continuous in R ( j 9R. The m atrices (afi and (Aÿ) are assumed 
sym m etric and positive definite (ellipticity condition) in R.

Definition 2.1. (Swanson [1]). A n L-subsolution (-supersolution) is a 
real valued function v e ®L which satisfies Lz>< o (Lv>  o) at every point in R.

3. The Picone id e n t i ty  fo r  n o n -se lf-ad jo in t e l l ip t ic  o p era to rs. 

L et u (x) e and let v(x) e S)L be real-valued. If  v (x) =)=. o in R U 9R,
then

=  ^  (%  —  A,y) D, uDj ü — 2 Rg u (fii —  B,-) T>;U +  (C — c — G) I u I2
i>j i

+  Vy (»£>,- p) (vDj-f) — 2 R<? ^  uBi (z'D.-'p) +  G I u I2
*>j i

+  Re [p (via —  üL v)J ,

where a bar denotes complex conjugation, p =  u/v and the continuous func­
tion G is chosen so th a t the herm itian form

is positive semidefinite. It can be shown [3], th a t a necessary and sufficient 
condition for Q [X] to be positive semidefinite is

T he proof of the identity  is indicated below, and is almost self-explanatory. 
L et m, M denote the divergence part of the operators / ,  L, respectively. Then

Q [X] =  X  A*. X f‘ x y —  2 ^  B,- Re (X*' X"+1) +  G | X"+1 \*
i,j i

where

X ' =  v D i  P , X ”+1 =  U

(3-2) G det (A,y) >  £  B.-B? ,

where B* denotes the cofactor of —  B,- in the m atrix  Q associated w ith Q [X]:

Q =

+  p (vmü —  üisliv)

—  J C  (,av A ÿ )  D* uDj ü  -f- Ajj ( * D , p) (vT)j p ) -f" p (vmü  —  uM.v)
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(pij A îj) D* u£)j ü  2 u b} Dz ü -]- (C — c) I u  |2
* d i

+  i  Aj,y (vDi p) (vDj p) +  2 —J  2  B, Dz- +  P (vlü —  ^Lz/)
ii J i

(%  ~ A,y) D/ ^Dy 77 2 ^  (bt B,-) D, ü  -{- (C — c —  G) I u  I2
i d i

+  X  A ÿ (T^i p) (vDj p ) ---2 M ^ B ;  (z/D; p") +  G ! U  I2
id  i

+  p (vlü —  üLv) .

The identity  (3.1) is realized by taking the real p art of (3.3).
Note th a t in the self-adjoint case b{ — B,- =  o (i =  1 , 2 , • • •, n) and 

G =  °, (3-0  generalizes the Picone identity  slightly in tha t we have allowed u 
to be complex-valued.

In  w hat follows we shall need (3*1) in the following integral form obtain­
ed by integrating (3.1) over R and applying G reen’s theorem:

(3.4) R e j p { v ^ — u ^ j d s
SR

where

X  (aif —  A,y) D, uDj ü  — 2 R *?lu 2  (bi — B,-) D,- ü) +
* d  \ i )

+  (C — c —  G)

+  j  X  A,y (vD,- p) (vDyp) —  2 Ré lu  2  B,- vD; p'\ +  G | u  j2

dx

J L î ,J R
d r̂

+  R  e j  p (vlü —  itLv) d x ,
R

l £  =  E nj a>yD'-u  > ~  =  X  f tyAyDfV,

are the conormal derivatives associated w ith the operators / ,  L, respectively, 
(n/) being the un it exterior norm al vector to the boundary 3R.

For later reference, we note th a t the condition (3.2) implies th a t the second 
integral on the  right side of (3.4) is nonnegative.

4. Comparison theorems.

THEOREM 4.1. Given a (x) and  A  (x) are real-valued functions which are 
continuous on 3R. Suppose G satisfies (3*2) in  R. I f  there exists a nontrivial 
u  6 %i which satisfies

(i) R^ (u lü )>  0 in R  ,
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(ii) u  =  o on Ti , +  a (x) u  =  o on ^  , SR =  I h u I ^ ,

(4 -i) V [ « } =  [ 2  (aij —  A,y) D; uDj Ü ■ .R e 'S u {pi —  B2) D, ü -J-

+  (C —  c — G) I u  |2| dx

+  J (a —  A) j u  j2 d f >  o , 

r»

then every R—subsolution fisupersolution) v which is positive (negative) at some 
point in  R  and satisfies

(iii) | -  +  A ( ^  =  o .  on r 2,

must vanish at some point ^  R u ^ R .
In  particular, every real solution of Rv =  o which statisfies (iii) must vanish 

at some point in  R u  3R. In  the self-adjoint case b; =  B* =  o (i — 1 ,2  , • • •, n) 
and  G =  o, the same conclusions are valid when the hypothesis V \u\ >  o 
is relaxed to V  [u] >  o, provided IT is not empty.

Proof. Assume on the contrary tha t there exists an L -subsolution 
(-supersolution) z/=j=o in R u ^ R .  Consequently, v >  o (y <  o) in R u ^ R  
and the integral identity  (3.4) therefore holds and becomes in view of the 
above hypotheses

(4.2) O =  Re J  p jz/ —----- z*-— -) ds~> V [u] +  Re j  (ulü-----— ■-Lz/j dx~> V[u] ,
r1 r

which contradicts (4.1).
To prove the second statem ent we note tha t a solution of Rv =  o which 

satisfies (iii) and never vanishes in R u ^ R  will be either an L —subsolution 
or an L-supersolution w hich is positive or negative, respectively, a t some 
point in R.

To prove the th ird  statem ent it suffices to show th a t the second integral 
on the right hand  side of (3.4) is positive, since the conclusions then follow 
from  the obvious m odification of the inequalities in (4.2). In  view of the 
positive definiteness of (A*y) it follows that

(4 -3) f  I X  (yDi p) (yDj p) d x > o  ,
J i ’jR

with equality holding if and only if D,- p =  o for each i =  1 , 2 , • • •, n. 
This implies th a t u  and v  are linearly dependent, a condition which cannot 
hold since u =  o on IT , whereas v =f= o on IT . Therefore, the integral in
(4.3) is positive.
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Remarks.
1. If  Tx is em pty, then the conclusions with respect to the self-adjoint 

case have to be modified and one can only conclude th a t either v vanishes 
at a point in R U SR or u and v are linearly dependent.

2. If  either of the inequalities (i), (3.2) is replaced by a strict inequality 
then the conclusions hold when the hypothesis V [u\ >  o is weakened to 
V [u] >  o. In  particular, in the self-adjoint case Tx is allowed to be em pty 
provided a strict inequality  holds in (i).

W e note th a t strict inequality in (3.2) implies th a t Q [X] is positive 
definite and is equal to zero if and only if u  — o in R u ^ R .

3. Suppose Tx is em pty, C >  o and SR has the property th a t at each 
boundary point x, there is a hypersphere lying entirely in R ( jS R  which 
has x  as a boundary  point. I t  can then be concluded tha t v m ust vanish 
in R. Indeed, assume v vanishes at a point x  € SR, but tha t v does not vanish 
in R. The result of H opf [4] implies Sz//Sv =j= o at x  contradicting the 
boundary condition (iii).

4. O ur results can also be form ulated in terms of the nonlinear equations

(4.4) lu  — /  (pc , u) u ,

(4.5) L v = F ( x , v ) v ,

where f  and F are given continuous functions (F being re a l valued) in R ijS R . 
The hypothesis th a t Re ( f ( x  , uj) >  F  (x , v) assures that Theorem  4.1 applies.

As an application of Theorem  4.1 (in particular R em ark 4) we obtain a 
m onotonicity principle for the smallest eigenvalues of the eigenvalue problem s

(4.6)

(4 -7)

lu +  \ u  =  0 in R ',

u — 0 on 3R '

L v -j- y*v =  0 in R,

B (v) — 0 on 3R

Here, it is assum ed th a t R ' is a dom ain in En such th a t R ' U SR' C R, the 
operators I , L  are self-adjoint, and B (v) is any linear boundary condition 
which insures tha t the eigenfunction corresponding to the smallest eigenvalue 
of (4.7) does not vanish in R  (see [5], p. 452).

Theorem 4.2. Let X and  [x be the smallest eigenvalues of (4.6) and (4.7), 
respectively, with corresponding eigenfunctions u and v. I f  u satisfies V  [u] >  o, 
then X > 4. (Here, the integral in  V [^] is over R'),

Proof. Since v does not vanish in R, the integral identity (3.4) is valid 
for the dom ain R '. If  we assume on the contrary tha t X < fx, then R em ark 4 
w ith f = — X , F  =  —  fjt, implies th a t v m ust vanish in R '( jS R ' which is 
a contradiction, hence X > \i.
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5. A  VARIATIONAL-TYPE THEOREM.

Theorem 5 •1 • Given A  (x) is a real-valued function which is continuous 
on 2>R. Suppose G satisfies (3.2) in  R. I f  there exists a nontrivial complex­
valued function u e C '  ( R u ^ R )  , u  =  o  on I \  such that

M |fi] =  J  ^  K ^ u D j ü — 2 Re ^  u B j D j ü T  (G— C ) |^ |2 d x j A \ u \ 2d s <o,

where 9R =  I \ u r 2 ,  then every "L—subsolution fisupersolution) v which is positive 
(negative) at some point in  R  and satisfies

(iii) +  A  (x ) v =  0 on r 2,

must vanish at some point in  R  U SR.
In  particular, every real solution of Lv == o which statisfies (iii) must vanish 

at some point in  R  U 3R. In  the self-adjoint case bi =  B?- — 0 (i =  1, 2 , • • •, n) 
and  G — 0, the same conclusions are valid when the hypothesis M \u] <  0 is 
relaxed to M [u] <  o, provided I \  is not empty.

Proof. Setting =  b{ =  c =  o (i , j ~  1 , 2 , • • -, n), in (3.4) we obtain 
the integral identity

\ u \ \ ^ ds
< v 3 v

9R
— j  ^  A*y D* uDj ü  —  2 Ré? [u 2  B,- D ,• z/j +  (G —  C) | u |2

R

j  2  (VD* p) (vBj p) — 2 R e ^  B,- z/D,-"pj + G
R.

d;r

Lz/ d # ,

from  which the conclusions follow as before. The details will be omitted.

Remarks.s
5. Note that in the self-adjoint case bi — Bz- — o (1 =  1 , 2 , • • •, n) 

and G =  o, with T2 em pty and u real-valued, the operator L  is the Euler— 
Jacobi operator associated w ith the quadratic functional M  [u\. In  this form 
Theorem  S-1 *s an ^-dim ensional version of a similar result in the calculus 
of variations [6].

6. T he rem arks following Theorem  4.1 also have their counterparts 
w ith respect to Theorem  5.1, but these m atters will not be pursued any further.

7. Swanson [1] proved the above theorem  for non-self-adjoint elliptic 
operators in an unbounded dom ain for the special case in which T2 is em pty. 
T he present techniques are readily generalized to include unbounded domains 
provided additional boundary conditions are m et at 00, (see [1]).
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8. A n application of G reen’s theorem  readily verifies th a t Theorem  4.1 
actually follows from  Theorem  5.1. T he details for the case when T2 is em pty 
are worked out in [1].
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