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Matematica. — A Picone identity for non—self-adjoint elliptic
operators . Nota di D. R. DUNNINGER, presentata®’ dal Socio
M. PiconE.

RIASSUNTO. — In questa Nota .& ottenuta una estensione della identita di Picone da
questi data per gli operatori ellittici autoaggiunti al caso in cui gli operatori non sono tali.
Impiegando questa estensione vi si ottengono teoremi tipo Sturm per operatori ellittici non
autoaggiunti con condizioni lineari e omogenee al contorno.

1. INTRODUCTION.

Comparison theorems of Sturm’s type will be considered for linear non-
self-adjoint elliptic inequalities under linear homogeneous boundary conditions.
Results of this nature for homogeneous Dirichlet boundary conditions have
been considered by Swanson [1] who based his results on a variational-type
lemma. The results considered here will depend upon a new Picone-type
identity for non-self-adjoint elliptic operators which generalizes the Picone
identity [2] for self-adjoint elliptic operators. In particular, Swanson’s
variational lemma will be seen to be an easy consequence of the identity.

2. NOTATION.

Let R be a bounded domain in z-dimensional Euclidean space E”
with a piecewise smooth boundary 9R. Points in E” are denoted by
x=(x1,22,---, 2" and differentiation with respect to x* is denoted by D;,
G=1,2,-,n).

Consider the linear differential operators /, L defined by

(2.1) = ¥ D;(a;D;u)+23 6,D;u-+ cu,
i7=1 i=1

(2.2) Lv= Y, D;(A;D;0) +23 B, D;v -+ Co,
7,7=1 i=1

respectively, where the domains 9;, 9 of 7/, L, respectively, are defined
to be the sets of all complex-valued functions z € C’' (RU?9R), such that
all derivatives appearing in /z and Lv exist and are continuous at
every point in R. The coefficients in (2.1) and (2.2) are assumed to be

(*) This research was supported in part by National Science Foundation Grant GP-07422.
(**) Nella seduta del 15 novembre '1969.
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real and continuous in RUR. The matrices (a;) and (A;) are assumed
symmetric and positive definite (ellipticity condition) in R.

Definition 2.1. (Swanson [1]). An L-subsolution (-supersolution) is a
real valued function v € Dr, which satisfies Lv< o (Lv > 0) at every point in R.

3. THE PICONE IDENTITY FOR NON-SELF-ADJOINT ELLIPTIC OPERATORS.

Let u (x) €9, and let v(x) € Dy, be real-valued. If v(x)==o0 in RUGR,
then

(3.1) ReY, D,~[p(2/; aiijzZ———zZ;Aij-ﬂﬂ

z

= Y (a;—A;)D,uD;ii—2Re Y u;—B)D;i+ (C—c—G) | ulf?

257
+ X Ay (@D; p) @D;8) — 2 Re X uB; @D;p) + G| u |2
+ Re [p (wliz — al0)],

where a bar denotes complex conjugation, p = »/v and the continuous func-
tion G is chosen so that the hermitian form

Q [X] = E A.,‘j Xi Xj__ 2 E Bi Re (“}Zz Xn+1> + G | Xn_H lz,
Th7 -
where
XiZZJDip R X"+1:u,

is positive semidefinite. It can be shown [3], that a necessary and sufficient
condition for Q) [X] to be positive semidefinite is

(3.2) G det (A;) > ¥ BB},

where B; denotes the cofactor of — B; in the matrix Q associated with Q [X]:

=(Sor o)

The proof of the identity is indicated below, and is almost self-explanatory.
Let 72, M denote the divergence part of the operators Z, L, respectively. Then

(3.3) EDi[p (7’2 a,ijzZ—ﬂZA,ijZJ)}
z J J
== E a;D;uD; 2+ ]—Z;E E A—»‘jDz‘”Djz’—‘;‘ E AyDjoD; | w2+
! 7 ! + o (omi — M)

- E_ (a;;— A,) D; uD; 4 + 2 A,; (@D; ¢) @D, 8) + ¢ (vmiz — @Mo)
2,7 7
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= E (@;—Ay) Dy uDjst— 20 X 6, D50 + (C—0) | u|?

2,7

—l-\ , Ay (WD; o) (WD, p)—|—2 ZBD'Z/+ p (vliz — ilv)

=Z(aij—A,-j)DiuDsz—zuz(b,——Bi) D;#+ (C—c—G)|ul

+ 2 Ay (@D; ) (@D, 5) — 2 X B; @D; 6) + G| ul?
2,7 z
+ o (vl —lw) .

The identity (3.1) is realized by taking the real part of (3.3).
Note that in the self-adjoint case 4;=B; =0 (G =1,2,-- -, 7) and

G = o, (3.1) generalizes the Picone identity slightly in that we have allowed #
to be complex-valued.

In what follows we shall need (3.1) in the following integral form obtain-
ed by integrating (3.1) over R and applying Green’s theorem:

:f[g (a;—A,)D; uDjﬂ—the<u ; (6; — B,) D; Zz) 4
: +(C—€—G)\u|2]dx

+ f[E A; (D; ) @D, p) — 2 Re (u Y B: oD, 3) +G|u ﬂ dx
}i/ 257 Z

+ Refp (vliz —lw) dx,
R

where
v
:.E.”JdiiDi“ ) W:Z”J'AUDi”’
1,7 2,7

are the conormal derivatives associated with the operators 7, L, respectively,
() being the unit exterior normal vector to the boundary 9R.

For later reference, we note that the condition (3.2) implies that the second
integral on the right side of (3.4) is nonnegative.

4. COMPARISON THEOREMS.

THEOREM 4.1. Given a(x) and A (x) are real-valued functions which are
continuous on IR. Suppose G satisfies (3.2) in R. If there exists a nontrivial
u €D, which satisfies

(i) Re(wlig)>o0 in R,
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(i) u=o0on It , %—I—a(x)u:oonf‘z , R =T1uly,

257 z

(4.1)  VI«] 2“2 (@;—A;) D; uD;i— 2Re 3, u (b; — B,) D, +
R —'I—(C—c'——G)ju}z}dx

+f(a—A)|u|2ds>o,
.

then every L—subsolution (—supersolution) v whick is positive (negative) at some
point in R and satisfies

(i) 2 4+A@v=0 on Iy,

must vanish at some point in RUIR.

In particular, every real solution of Lv = o whick statisfies (iii) must vanish
at some point in RRUR. In the self-adjoint case b; = B; =0 (i =1,2, -+, 7)
and G = o, the same conclusions are valid when the hypothesis V [u]> o
is relaxed to V [u] = o0, provided T is not empty.

Proof. Assume on the contrary that there exists an L-subsolution
(—supersolution) v==o0 in RUJR. Consequently, v >0 (v <0) in RUR
and the integral identity (3.4) therefore holds and becomes in view of the
above hypotheses

(4.2) O = Refp <zz%——zi%)d52V[u] + Rej(uzzz—ii;ﬁu) dr> V],

I, R

which contradicts (4.1).

To prove the second statement we note that a solution of Lv = o which
satisfies (iii) ‘and never vanishes in RU®R will be either an L-subsolution
or an L—supersolution which is positive or negative, respectively, at some
point in R.

To prove the third statement it suffices to show that the second integral
on the right hand side of (3.4) is positive, since the conclusions then follow
from the obvious modification of the inequalities in (4.2). In view of the
positive definiteness of (A,;) it follows that

(4.3) g Ay (@D; ) @D,p) dx>o0,

R

with equality holding if and only if D;p=o0 for each ¢=1,2,--, 7.
This implies that # and v are linearly dependent, a condition which cannot
hold since # = o0 on I't, whereas v==0 on I't. Therefore, the integral in
(4.3) is positive.
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Remarks.

1. If I'i is empty, then the conclusions with respect to the self-adjoint
case have to be modified and one can only conclude that either v vanishes
at a point in R U R or # and v are linearly dependent.

2. If either of the inequalities (i), (3.2) is replaced by a strict inequality
then the conclusions hold when the hypothesis V [#]> 0 is weakened to
V [#]>o0. In particular, in the self-adjoint case I'1 is allowed to be empty
provided a strict inequality holds in (i).

We note that strict inequality in (3.2) implies that Q [X] is positive
definite and is equal to zero if and only if # = o in RU?R.

3. Suppose I't is empty, C> o and 2R has the property that at each
boundary point %, there is a hypersphere lying entirely in RUPR which
has ¥ as a boundary point. It can then be concluded that v must vanish
in R. Indeed, assume v vanishes at a point € 9R, but that v does not vanish
in R. The result of Hopf [4] implies dv/ov==0 at % contradicting the
boundary condition (iii).

4. Our results can also be formulated in terms of the nonlinear equations
(4-4) n=fx,n)u,
(4.5) Lv=F(x,v)v,

where f and ‘F are given continuous functions (F being real valued) in R U9R.
The hypothesis that Re (f(x, %)) = F(x, v) assures that Theorem 4.1 applies.

As an application of Theorem 4.1 (in particular Remark 4) we obtain a
monotonicity principle for the smallest eigenvalues of the eigenvalue problems

(4.6) w4+ e=o0 in R/,
% =0 on 23R/,

4.7) Lv +uv=o0 in R,
Bl =o0 on ?<R.

Here, it is assumed that R’ is a domain in E” such that R"U9R’'CR, the
operators /, L. are self-adjoint, and B (v) is any linear boundary condition
which insures that the eigenfunction corresponding to the smallest eigenvalue
of (4.7) does not vanish in R (see [5], p. 452).

THEOREM 4.2. Let ) and p. be the smallest eigenvalues of (4.6) and (4.7),
respectively, with corresponding eigenfunctions u and v. If w satisfies V[u]= o,
then N> w. (Here, the integral in V([u] is over R)).

Proof. Since v does not vanish in R, the integral identity (3.4) is valid
for the domain R’. If we assume on the contrary that A<C p, then Remark 4
with f=—A,F = —pu implies that v must vanish in R’'U2R’ which is
a contradiction, hence A> .
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5. A VARIATIONAL-TYPE THEOREM.

THEOREM 5.1. Given A (x) is a real-valued function which is continuous
on IR. Suppose G satisfies (3.2) in R. If there exists a nontrivial complex-
valued function uw€C' (RUIR),u =0 on I'y suck that

M [2] =ﬂ2} A,,-D,.uD,zz—zRe}_‘,uB,-D,.ﬁJr(G—C)qu] dx—l—fA|u]2ds<o,
- ’ I

where IR =11UTs, then every L—subsolution (—supersolution) v whick is positive
(negative) at some point in R and satisfies

(i) 24+ A@ov=0 on Iy,

must vanisk at some point in R IR.

In particular, every real solution of Lv = o which statisfies (iil) must vanish
at some point in RUIR. In the self-adjoint case b;=B;=o0 (1 =1,2,---,%)
and G = 0, the same conclusions are valid when the hypothesis M[u]<<o s
relaxed to M[u]l< o, provided Ty is not empty.

Proof.  Setting a;; =b; =c=o0 ({,j=1,2,---,7%), in (3.4) we obtain
the integral identity

. st:I[EA,yDiuDsz——zRe(uzB,- D,.ﬁ)—l— (G——C){u|2]dx
257

z

_ f [E, A; (&D; ¢) (0D, ) — 2 Re(u 35 B;oD; ?) 1Glu [z] dx

4

R
+f|%|2 Lo dx,
K

from which the conclusions follow as before. The details will be omitted.

Remm}oés.

5, Note that in the self-adjoint case 6, =B, =0 (1=1,2,---,%)
and G = o, with I'z empty and # real-valued, the operator L is the Euler—
Jacobi operator associated with the quadratic functional M [#]. In this form
Théorem 5.1 is an #—dimensional version of a similar result in the calculus
of variations [6].

6. The remarks following Theorem 4.1 also have their counterparts
with respect to Theorem 5.1, but these matters will not be pursued any further.

7, Swanson [1] proved the above theorem for non-self-adjoint elliptic
operators in an unbounded domain for the special case in which I'z is empty.
The present techniques are readily generalized to include unbounded domains
provided additional boundary conditions are met at oo, (see [1]).
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8. An application of Green’s theorem readily verifies that Theorem 4.1
actually follows from Theorem 5.1. The details for the case when I's is empty
are worked out in [1].
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