ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Elisabetta Foresti, Giampaolo Martelli, Lodovico Rivadi Sanseverino

La struttura cristallina e molecolare dell'amide dell'acido 3-metilpirazol-4-bromo-5-carbossilico

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **48** (1970), n.1, p. 70–79. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1970_8_48_1_70_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Cristallografia.** — La struttura cristallina e molecolare dell'amide dell'acido 3-metilpirazol-4-bromo-5-carbossilico ^(*). Nota di Elisa-BETTA FORESTI, GIAMPAOLO MARTELLI E LODOVICO RIVA DI SANSE-VERINO, presentata ^(**) dal Socio P. GALLITELLI.

SUMMARY. — It has been reported by Garattini *et al.* (Bizzi, Codegoni and Garattini 1967) that a number of derivatives of 3-methyl-5-carboxy-pyrazole are a powerful inhibitor of lipolysis of adipose tissue.

Their action cannot be explained in terms of the chemical function of the substituents, being instead somewhat contradictory from this aspect.

It has been thought that the stereochemistry of these compounds might in some way influence the biochemical action and a systematic study has started on a number of 3,5-substituted pyrazoles.

From another point of view, there is a considerable lack of crystallographic work on pyrazoles, after the paper by Ehrlich (1960), based only on two dimensional data.

The crystal and molecular structure of 3-methyl-4-bromo-5-carboxamide-pyrazole, a = 14.149, b = 13.427, c = 7.807 Å, *Pbca*, is here described and its hydrogen bonding system discussed, in the light of a recent paper by Gaultier and Hauw (1969) on intramolecular and bifurcated hydrogen bonds.

INTRODUZIONE.

È stato recentemente trovato e confermato (Rubessa 1967, Bizzi, Codegoni e Garattini 1967 e letteratura riportata) che il 3,5-dimetilpirazolo (I) è un agente potente per l'abbassamento del livello degli acidi grassi liberi nel plasma, in varie condizioni sperimentali.

Successivamente sono stati preparati (l. c.) molti altri derivati del pirazolo, per vedere quali variazioni subisse l'effetto suddetto se si introducevano sostituenti nell'anello pirazolico, specie in posizione 5.

(*) Lavoro eseguito nell'Istituto di Mineralogia e Petrografia dell'Università di Bologna, con il contributo del Consiglio Nazionale delle Ricerche, contratto nº 6900099, 14.66.2.

(**) Nella seduta del 10 gennaio 1970.

Tali sostituzioni hanno talvolta prodotto un notevole aumento di efficacia, sopratutto nella durata dell'azione, ma ad analoghe funzioni chimiche non corrisponde abitualmente una equivalente attività (Garattini 1969).

È stato quindi iniziato uno studio sistematico ai raggi X, per chiarire gli eventuali rapporti fra attività biochimica e proprietà steriche molecolari.

D'altra parte, la struttura chimica del pirazolo è stata messa in discussione dai risultati di Ehrlich (1960), in quanto essi lasciano intravedere la possibilità di spostamenti di cariche elettroniche. Da allora, di fronte ad un intenso studio dal punto di vista biochimico e farmacologico, la struttura molecolare del pirazolo è stata descritta solo raramente in derivati più o meno sostituiti (Galigne e Falgueirettes 1969).

In questi lavori non si accenna al problema strutturistico posto da Ehrlich, le cui conclusioni non possono ritenersi definitive, in quanto basate sulle tre proiezioni bidimensionali (pirazolo, $C_3N_2H_4$, a = 8,23, b = 12,84, c = 7,05 Å, P_{21} cn, Z = 8). Sembra infatti che una rideterminazione della struttura del pirazolo sia più che opportuna per chiarire il sistema di legami ad idrogeno, che secondo Ehrlich si mantiene anche in soluzione.

In relazione a ciò, è necessario citare la recente proposta di Gaultier e Hauw (1969) su legami ad idrogeno intramolecolari in sostanze cicliche che abbiano « sostituenti amminici e carbonilici adiacenti »; essi suggeriscono che tale tipo di legame sia reso possibile dalla « diminuzione degli angoli di valenza interni allo pseudo-anello ».

Una serie di derivati dell'acido 3-metilpirazol-5-carbossilico è stata gentilmente offerta dal Prof. S. Garattini, Direttore dell'Istituto di Ricerche Farmacologiche «Mario Negri» di Milano: il presente studio riporta la determinazione strutturale dell'amide dell'acido 3-metilpirazol-4-bromo-5-carbossilico (II) e alcune considerazioni che ne seguono riguardo al sistema di legami ad idrogeno presente.

DATI SPERIMENTALI.

C₅N₃H₆OBr, amide dell'acido 3-metilpirazol-4-bromo-5-carbossilico, P.M. 204,2, costanti di cella a = 14,149 (9), b = 13,426 (5), c = 7,807 Å, ricavate raffinando 65 valori di ϑ , provenienti da fotogrammi Weissenberg o kle hko tarati con polvere di Al (a = 4,0491 Å), con il metodo dei minimi quadrati, V = 1483 Å³, Z = 8 con $d_{calc.} = 1,83$ gr/cm³, *Pbca* dalle estinzioni sistematiche, radiazione CuK. Abito prismatico, con {010} molto sviluppato, sfaldatura (010) facile.

Con la geometria della equinclinazione Weissenberg sono stati raccolti da due cristalli cilindrici di sezione inferiore a 0,2 mm, e misurati con un microdensitometro Nonius (Mark 1) 1349 riflessi (livelli hko-hk5 e 1kl-3kl); 1105 intensità sono state usate come dati di entrata nel sistema « X ray 63 » (Stewart 1964).

SOLUZIONE E RAFFINAMENTO DELLA STRUTTURA.

La struttura è stata subito risolta dall'individuazione dei vettori Br—Br nella sintesi Patterson tridimensionale e dal successivo calcolo Fourier, basato sui fattori di struttura calcolati con il solo contributo del Br (R da 38 a 25,5%). Sei cicli di raffinamento con il metodo dei minimi quadrati a matrice completa, prima con fattori di temperatura isotropi e poi anisotropi, portavano il fattore di accordo a 9,7%. Non è stato usato alcun schema di pesaggio. La Fourier differenza calcolata a questo stadio non ha dato chiare indicazioni per le posizioni degli atomi di idrogeno.

I parametri atomici sono elencati in Tabelle I e II e i fattori di struttura osservati e calcolati, divisi in due parti, in Tabella III.

Атомо	x	y	Z		
Br	0,1427 (1)	0,3175 (1)	0,6025 (2)		
O ₅₁₁	0,2348 (5)	0,4331 (8)	0,2802 (4)		
$N_1 \ldots \ldots \ldots$	0,0 139 (6)	0,4459 (7)	0,2194 (15)		
$N_2 \ldots \ldots \ldots$		0,4106 (7)	0,33 3 3 (13)		
N ₅₁₂	0,1515(7)	0,4896 (9)	0,0525 (16)		
C_3 · · · · · · ·	-0,0425 (7)	0,3632 (8)	0,4718 (17)		
C ₃₁	-0,1006 (9)	0,3160 (11)	0,6114 (24)		
C4	0,0541 (8)	0,3674 (8)	0,4513 (15)		
C5	0,0708 (6)	0,4192 (8)	0,2993 (18)		
C51	0,1591 (7)	0,4446 (9)	0,2047 (17)		

TABELLA I.

Coordinate atomiche frazionarie; fra parentesi le deviazioni standard.

TABELLA II. Fattori di temperatura anisotropi.

Атомо	β11	β22	β_{33}	β_{12}	β ₁₃	β23	
Br	0.0016	0.0068	0.0204				
	0,0040	0,0008	0,0204	0,0003	-0,0020	0,0045	
O ₅₁₁	0,0012	0,0090	0,0203	0,0001	0,0011	0,0008	
N1	0,0015	0,0050	0,0150	0,0002	0,0010	0,0025	
N ₂	0,0004	0,0006	0,0024	0,0004	0,0008	-0,0009	
N ₅₁₂	0,0028	0,0087	0,0139	0,0001	0,0012	0,0043	
Сз	0,0026	0,0030	0,0115	-0,0003	0,0007	0,0005	
С31	0,0047	0,0066	0,0210	0,0008	0,0034	0,0048	
C4	0,0027	0,0041	0,0068	0,0003	.0,0010	0,0001	
C ₅	0,0009	0,0044	0,0118	0,0004	0,0014	-0,0007	
C51	0,0020	0,0061	0,0092	0,0004	0,0016	0,0035	

TABELLA III (I parte).

Elenco dei fattori di struttura osservati e calcolati (hko-hk5).

In ogni colonna seguono h, 10Fo, 10Fc. L indica «minore della intensità minima osservata».

							W7.745.9.77.8
	H,0,0	16	25L 65	8 535 -493 9 696 -699	15 45L -75 16 101 127	7 215 -241 8 53L 79	15 111 70
6	469 385 739 732		H,9,0	10 241 227 11 327 322	H,8,1	9 48L 23 10 43L 56	H, 5, 2
10	842 832 1417 -1429	2 4	666 617 359 -344	12 357 365 13 397 397	0 530 -408	11 97 124 12 17L -108	1 400 404 2 261 235
14	181 163 767 756	8	346 - 344 384 465	14 88 -105 15 179 -192	1 102 -99 2 51L 15	H,0,2	3 799 -831 4 315 -260
18	162 -207	12	282 296 281 -355	16 50L 52	3 53L76 4 313 295	2 83 112	5 418 -375 6 124 -48
	H , 1,0	14	42L -40	1251 1333	6 216 195 7 601 75	4 929 -920 4 58 402	7 460 383 8 184 -112
_4 _6	1199 1295 1116 1164	0	317 261	3 1464 1511 4 822 -804	8 62L 43	7 193 -173	10 223 -161
8	1094 -1086 466 -394	2	198 -144 631 -596	5 452 382 6 791 -779	10 64L 97 11 63L 67	9 1131 -1080 10 519 -480	$12 364 - 328 \\ 13 242 222$
12 14	978 1029 59L 42	6 8	60L -22 61L 96	7 1.084 -1159 8 673 634	12 60L -70 13 55L 19	11 617 496 12 460 -390	14 59L 63 15 118 119
16	320 -305	10 12	58L -97 50L -1	9 489 456 10 269 228	14 128 -140 15 40L -59	13 584 491 14 64L 5	16 97 -100
0	H,2,0	14	154 192	11 713 731 12 601 -615	H,9,1	15 518 -430 16 152 -110	H,6,2
2	146 161 1350 1427	. 2	591 -1	13 526 -312 14 61L 13 15 127 -148	1 316 -251	17 117 -91	0 1101 1163
6 8	448 -420 477 -425	4	60L -28	16 164 168	3 603 535 4 581 -98	1 849 -1061	2 40L 0 3 258 -247 155 -132
10 12	383 362 475 455	8 10	59L -92 54L -82	H,4,1	5 60L 96 6 263 -230	2 410 -421 4 196 178	5 907 962
14 16	195 - 174 49L - 2	12 14	44L −84 23L 50	1 1071 1239 2 97 -98	7 378 -395 8 316 342	5 474 386 6 394 327	7 151 -120 8 62L 25
	Н,3,0		H,12,0	3 648 595 4 832 -775	9 64L 41 10 155 181	7 1401 -1525 8 435 -340	9 828 -833 10 363 -316
2	254 230	Ø	287 235	5 1521 -1467 6 318 256	11 156 195 12 56L -39	9 57L 9 10 61L 26	11 303 259 12 198 178
4 6 8	474 -410	4	-131 323 - 302 601 - 32	8 631 608 8 810 806	13 136 -130 14 43L -46	11 677 582 12 207 132	13 ·364 376 14 162 156
10 12	237 205 214 193	8 10	56L 49	10 577 -516	H-10-1	15 550 -272 14 64L -32 15 222 -198	15 195 -214
14 16	59L -57 318 306	12	104 108	12 232 224 13 386 -397	0 336 283	16 220 -170 17 277 266	1 1094 -1145
	Н,4,0		H,13,0	14 389 426 15 317 312	1 536 461 2 128 -78	H,2,2	2 299 -248 3 923 1040
0	938 -881	2	257 -245 157 133	16 471 -48	3 188 161 4 535 -463	1 610 709	4 128 132 5 416 409
4	179 -76	8	139 155 296 -302	H;3;1	5 555 -502 6 368 345	2 118 -83 3 171 186	6 157 109 7 779 -784
8	401 324 267 206		H.14.0	2 612 -657	8 227 234 9 388 µ25	4 189 -130 5 639 -669 6 106 -50	9 262 177 10 95 -83
12 14	115 109 58L -19	2	145 138	4 491 436 5 304 -223	10 204 -201 11 152 -137	7 49L -26 8 284 -201	11 458 425 12 64L 75
16	97 -74	4 6	359 349 213 -207	6 412 370 7 933 925	12 153 -179 13 140 -156	9 791 736 10 264 180	13 298 -312 14 53L -57
•	H,5,0		Н,15,0	8 457 -408 9 139 89	14 36L 66	11 146 -109 12 228 -164	15 168 -200 16 105 -120
2 4	462 506 40L -74 500 -510	2	245 267	10 326 -276 11 366 -339	H,11,1	13 409 -368 14 T50 -120	H, 8, 2
8	541 520 227 191	4 6 8	162 - 188 123 - 161	12 434 446 13 126 136 14 581 74	2 504 -420 3 59h -559	15 131 147 16 50L 26 17 165 185	0 533 403
12 14	106 -96 56L -85		H, 16, 0	15 106 120	4 272 208 5 232 -189	H•3•2	2 331 243
16	289 341	c	263 288	H,6,1	6 339 307 7 425 407	1 757 794	4 491 433 5 730 -878
	H,6,0	2	41L -20 101 -132	0 114 -99 1 509 -468	8 217 -190 9 60L 47	2 371 366 3 379 -320	6 177 -184 7 64L 54
2	376 -316	6	101 135	2 42L -31 3 208 -193	10 56L -48 11 52L -70	4 406 -369 5 588 -508	8 141 -117 9 507 556
4 6 8	1003 1027	,	872 1013	4 649 637 5 482 457 6 116 59	12 198 222 13 177 212 14 201 9	6 47L -29 7 270 -182	10 66L -33 11 221 -218
10 12	610 -644 349 -370	2	61 -40 59 -14	7 55L -28 8 58L 3	H.12.1	9 103 -69 10 631 31	12 01L 57 13 281 -327 14 481 -52
14 16	197 210 140 -145	4	295 -284 413 -410	9 495 -469 10 170 162	0 556 -500	11 284 -234 12 414 -362	15 139 140
	H,7,0	6	363 344 159 -138	11 64L 46 12 226 216	1 321 -289 2 64L 43	13 220 171 14 63L 70	H,9,2
2	1467 -1414	8 9	362 -338 190 -121	13 130 168 15 86 -128	3 158 -136 4 213 184	15 162 132 16 143 -104	1 499 424 2 221 193
4 6 8	886 901 769 -761	10	200 -185 338 -321 230 -215	16 40L -38	5 360 356 6 223 -169	H,4,2	3 539 -524 4 159 -117
10	220 -217	13	64L 42	1 161 -17	8 213 -203 9 259 -296	0 111 -21	5 157 -104 6 191 -167 7 109 560
14 16	51L -55 216 -242	15	58L 100 284 -302	2 47L 7 3 535 526	10 166 152 11 451 68	2 444 -394 3 148 86	8 207 224
	H,8,0		H,2,1	4 139 131 5 234 201	12 37L 3 13 22L 127	4 450 -388 5 45L -67	10 65L 74 11 301 -356
0	1671 -1533	0	553 517	6 171 -122 7 244 -218	H,13,1	6 49L -18 7 53L -58	12 57L -13 13 51L -14
2	470 382 841 870	1	883 -941 539 493	8 136 123 9 133 -108	1 196 -175	8 203 140 9 61L 29	14 42L 14 15 62 62
8 10	+50 -401 633 -718 357 -718	ა 4 ნ	250 -247 1150 1239 885 942	10 04L 64 11 64L -10 12 163 179	2 179 159 3 281 276 4 611	10 64L 53 11 66L 7 12 190 150	H,10,2
12 14	142 -157 309 -381	67	744 -740 103 -56	13 172 -207 14 53L -53	5 60L 68 6 58L -65	13 65L 8 14 145 139	0 369 313

6. — RENDICONTI 1970, Vol. XLVIII, fasc. 1.

Tabella III (I parte) continuazione.

1 2 3 4 5 6 7 8 9 10	H,10,2 313 -272 203 -160 215 -166 197 -164 220 207 31 307 67L 43 275 265 184 -192 62L -79	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 256 -264 7 65L 108 8 270 279 9 64L 40 10 61L -3 11 193 -210 12 297 -345 H,10,3 0 826 865 1 251 -186	5 212. 210 6 184 193 7 606 606 8 70L 52 9 139 -128 10 76L 11 11 164 -151 12 298 294 13 71L -87 14 64L -27 15 54L -20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 90L 37 7 646 633 8 100L 86 9 103L -46 10 104L -139 11 355 -390 12 96L -300 13 208 216 H,4,5 0 172 -39
11 12 13 14	57L 47 52L 87 114 105 78 93	16 314 365 H,4,3	2 63L -69 3 64L -70 4 410 -431 5 179 149	H ,4,4 0 234 204 1 209 -206	13 122 153 H, 10, 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1234567	H,11,2 66L -1 284 -21 66L 5 67L 81 67L 69 66L 62 65L 72	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 218 201 7 65L 52 8 163 168 9 174 -188 10 343 -373 H,11,3 8 271 -289	2 181 -128 3 236 -186 4 353 -295 5 134 123 6 218 188 7 68L -1 8 177 163 9 75L -60 10 76L -33 11 761 77	0 358 - 358 1 287 - 263 2 76L -90 3 76L -93 4 76L 75 5 374 399 6 76L -37 7 74L -78 8 71L -94 9 191 - 915	5 491 483 6 199 209 7 98L -16 8 102L 54 9 575 -633 10 103L -75 11 214 175 12 94L 136 13 250 308
8 9 10 11	64L -61 61L -43 57L 4 52L 16 175 181	12 244 -223 13 216 174 14 311 327 15 50L -42	H,12,3 0 350 -417 H,11,3	12 74L 84 13 69L 62 14 116 127 15 51L -50	10 62L 62 11 125 174 H,11,4	H,5,5
	L 12 2	H, 5, 3		H,5,4	1 154 -142	2 81L -61
		1 216 -184	0 145 175	1 113 -71	3 203 181 4 75L 52	3 668 630 4 89L -127
- 1	213 -175	2 667 -775 3 315 314	H,16,3	2 634 -672 3 281 -244	5 74L -0 6 72L 39	5 338 329 6 971 -130
3	142 -96	4 434 415 5 50L -23	0 38 133	4 321 300 5 169 173	7 244 -266 8 125 -122	7 366 -361 8 103L 99
4	66L 38 181 182	6 619 617 7 508 -512	H,0,4	6 350 334 7 473 476	9 61L 8	9 104L 72 10 102L 161
6	189 186 62L24	8 627 -628 9 63L -21	2 259 251 3 38L -3	8 322 -318 9 76L 1	H,12,4	11 312 324 12 91L 43
8	104 107 125 -112	10 280 -255 11 278 262	4 1318 1410 5 543 537	10 164 -124 11 75L 124	1 74L -19 2 73L -32	13 181 -224
10	50L 72	12 352 358 13 143 122	6 413 -361 7 217 -148	12 349 393	3 73L 2	H,6,5
	H,13,2	14 55L 91 15 47L -25	8 502 -451 9 711 -646	H,6,4	5 69L -37	0 86L -131
1 2	227 -192 130 -89	16 173 -222	10 334 270 11 267 241	0 913 -896	7 63L -66	2 89L -59
3 4	333 272 63L 65	H,6,3	12 210 174 13 187 150	2 268 253	9 52L 33	4 94L 76
5	61L 56 59L 15	1 159 117 2 101 -63	14 344 -332 15 256 -270	4 541 599	11 65 98	6 100L -37
7 8	225 -227 53L -41	3 49L 54 4 395 418	16 46L 7	6 339 -310 7 173 -149	H, 13,4	8 104L 132
9 10	48L 54 41L 31	5 54L 38 6 306 -316	Н,1,4	8 473 -466 9 181 -179	4 179 -182 5 621 -24	10 100L 179
11	177 209	7 153 -140 8 338 -322	1 390 -356 2 760 829	10 344 325 11 190 215	6 172 -199 7 541 -21	12 86L 92
	H,1,3	9 64L 56 10 393 406	3 822 789 4 433 -424	12 70L 49 13 63L 3	8 48L 122 9 91 154	H.7.5
1 2	292 -279 474 -542	11 64L 22 12 62L 50	5 290 234 6 657 -621	14 155 -214 15 143 -181	Н.1.5	1 222 169
3	547 524 372 372	13 58L -79 14 161 -189	7 452 -379 8 683 693	H,7,4	1 224 -245	2 225 213
5	510 495 272 269	H,7,3	9 72L 63 10 423 402	1 243 -175	2 381 387 3 428 422	4 212 -160 5 101L 55
8	219 154 109 -93	1 207 165	11 189 154 12 362 -337	2 688 670 3 434 446	4 69L -13 5 77L -75	6 103L -138 7 296 318
11	107 -72	2 453 450 3 295 295	13 331 -329 14 116 -122	4 197 -197 5 71L 1	6 171 -140 7 672 -702	8 265 271
13	479 431 262 -237	4 131 -169 5 148 -161	15 58L -73 16 212 225	6 400 -425 7 318 -353	12 223 -236	H,8,5
14	160L -53 145 -125	7 419 -492 8 64L 97	H,2,4	8 355 378 9 154 138	H,2,5	0 572 510 1 256 169
	H,2,3	9 65L -38 10 65L 6	1 245 231	10 192 222 11 204 268	0 405 423 1 480 568	3 101L 62 4 179 -245
1	317 348	11 63L -44 12 289 -332	2 211 -166 3 240 202	12 226 -289	2 141 113 3 400 369	5 103L -111 6 104L 82
2	536 518 33L -24	H,8,3	4 548 -556 5 562 -527	H,8,4	4 145 50 5 826 -825	7 103L 100 8 101L 52
5	836 895 221 -201	0 55L -63	6 381 342 7 144 97	0 619 642 1 373 321	6 87L 6 7 188 168	9 97L 103
6	543 -522 50L 12	1 305 255 2 56L 66	8 530 510 9 179 164	2 70L -4 3 153 126	8 211 143 9 529 490	11 83L -141
8	131 -696 551 540	3 257 201 4 140 105	10 356 -327 11 197 -163	4 632 -658 5 74L -113	10 209 -182 11 206 -200	H,9,5
11	480 425 64L 72	5 189 -208 6 209 -228	12 75L -34 13 135 -92	6 206 198 7 76L 37	12 185 -208 13 232 -213	1 454 346 2 195 -93
13	160 -155	7 64L 10 8 146 -120	14 220 229 15 56L 95	8 196 214 9 193 233	14 79L -32 15 153 156	3 391 -320 4 104L 108
14	53L 11	H, 9, 3	16 43L -22	10 200 -279 11 118 -136	H,3,5	5 103L 0 6 231 164
10	119 97	1 181 129	H,3,4	12 158 -202 13 113 -136	1 473 517	7 378 378 8 97∟ -36
	H1313	2 533 518 3 273 -251	1 246 222 2 495 -424	14 105 147	2 65L 19 3 930 -929	9 91L -126
3	242 253 516 -516	4 318 -308 5 157 -155	3 204 -189 4 147 112	H,9,4	4 182 -172 5 331 -290	H,10,5

TABELLA III (II parte).

Elenco dei fattori di struttura osservati e calcolati (Ikl-3kl, non compresi n2lla I parte).

In ogni colonna seguono k, 10Fo, 10Fc.

	1.K.	1	8	316	-231		2, K, 1			2 . K,	6	5	201	157	2	182	-160
11.	171	117		117	-00	· • •		_				- 5	36L	30	3	168	124
14	131	115	10	401	-8	14	4 OL	7	0	314	287	7	123	-107	4	181	-141
15	80	85	11	107	-65	15	102	90	1	678	574				5	307	241
10	68	63	12	196	154				2	89	-60		3 . K	, 1	6	162	109
			13	158	98		-2,K	2	3	117	-117				7	376	-327
	1,К,	3							4	86	-84	14	39L	75	8	152	-107
				1.K.	,7	11	297	-221	5	204	-174	15	82	70	9	205	209
12	43L	69				12	136	-96	6	44 L	30				.10	38	32
13	41L	-52	1	122	119	13	96	-89	7	328	282		3.K.	.2	11	163	147
14	37L	61	2	175	132	14	93	97	8	115	-84			-	12	64	71
15	161	175	3	172	121	15	73	62	9	336	-317	14	128	115	13	167	- 101
			4	44L	-61				10	101	101	15	208	-207		101	174
	1,K,	4	- 5	4 3 L	-58		2.K.	.3	11	120	123			20.		2.8	7
			6	130	102				12	67	68		3.6	3		7914	
12	42L	-19	7	139	81	11	514	-457	13	73	75		3111	15		0.0	101
13	256	-227	8	181	-156	12	431	30			15	11	11:0	07	2	141	-125
			9	131	-116	13	236	21.3		2.8.	7		147	71		1.71	-134
	1.6.	5	•			.5	200	245		211.1			2 V		4	45	10
		-		1.6	8		2.8	di .	. 1	3110	244		2101	,4	5	152	109
12	269	241					2101		2	340	107	12	1.01		2	42L	-23
13	262	220	2	202	- 225	11	42	-74	2	94	707	12	401	2		217	-212
14	82	-77	2	1.11	- 225	12	1.11	-70	5	440	-350	15	571	2	8	112	-103
	02			410	00	12	350	- 32	4		12	14	31L		9	35L	35
	1 1	6	4	107	22	15	250	142	5	467	393	15	90	-107		-	
	110.1	0		103	- 92	14	100L		0	201	-164			_		3.K.	8
0	1.74	710	0	229	201	12	162	-173	(411	0		3•K	5			
	410	560	(187	135			-	8	92	-75				5	136	84
2	051	491	8	152	- 169		2,K,	,5	9	239	-216	12	111	105	6.	107	115
4	343	-258	9	28	-87				10	73	74	13	174	-186	. 7	213	-232
3	42L	-4				12	93	- 54	11	187	191				8	66	-68
4	344	-252		2.K.	ο O	13	78	102					3,K,	6	9	195	234
5	625	-499				14	112	-117		2,K,	8						
6	307	188	17	19L	-113							0	241	216			
7	154	124							4	122	113	1	378	-300			

DISCUSSIONE.

Le distanze ed angoli di legame sono mostrate in fig. I e il sistema di legami ad idrogeno in fig. 2. I valori in fig. I risultano più omogenei di quelli pubblicati da Ehrlich sul pirazolo, mettendo in evidenza un carattere aromatico, confermato dalle distanze C₃—C₃₁ e C₄—Br (Sutton 1965); C₅—C₅₁ è leggermente più grande del valore suggerito per un legame singolo C (sp^2) —C (sp^2) da Dewar e Schmeising (1959) e Cruickshank (1962).

Nel gruppo ammidico il doppio legame è ben localizzato. Nella tabella degli angoli, oltre ad una certa regolarità nell'anello pentatomico, si può notare la notevole influenza sterica del Br sugli angoli g ed l (distanze Br—C₃₁ = 3,44 Å, Br—O₅₁₁ = 3,23 Å) in contrasto con la regolarità degli angoli h ed i.

Si rileva inoltre una convergenza del legame C_{51} — N_{512} verso l'anello pentatomico: rimanendo infatti intatta la planarità del gruppo ammidico si nota un aumento di p ed una diminuzione di n dai valori teorici. Ciò è da mettere in relazione con un legame ad idrogeno intramolecolare.

In tal maniera un idrogeno legato a N_{512} sarebbe coinvolto in un legame di tipo « bifido ». Tale interazione, sottolineata da Marsh (1958) e poi da Craven e Takei (1964), è stata recentemente discussa in termini energetici

[12]

e spettroscopici da Gaultier e Hauw (1969). Per questi ultimi, in particolare, la somma degli angoli interni allo pseudoanello formato assumendo un legame ad idrogeno intramolecolare fra due sostituenti adiacenti è fissato in 243°.

Fig. 1. – Distanze (in Å) ed angoli di legame nell'amide dell'acido 3-metilpirazol--4-bromo-5-carbossilico. Le deviazioni standard sono appena inferiori a 0,01 Å e 0,8°. La numerazione fuori dall'anello è arbitraria (si legga C_{51} come C, cinque, uno).

Fig. 2. – I legami ad idrogeno nella struttura cristallina e molecolare dell'amide dell'acido 3-metilpirazol-4-bromo-5-carbossilico.

Nel nostro caso $m + n = 234,6^{\circ}$ e questo valore, ancora minore di quello teorico, sarebbe una conferma di legame ad idrogeno intramolecolare.

Ciò potrebbe influenzare l'attività della molecola in soluzione; il legame ad idrogeno è evidentemente legato alla struttura planare e l'angolo fra l'anello

Fig. 3. - Proiezione dell'impacchettamento molecolare lungo [010].

Fig. 4. – Proiezione dell'impacchettamento molecolare lungo [100].

Fig. 4. – Protezione del impacchetamento indecolate lungo [100]. Il piano medio della molecola, normale al piano del disegno, è rappresentato da rette continue (per $x \simeq 1/4$) e tratteggiate (per $x \simeq 3/4$).

pirazolico e il piano formato da C₅ e gruppo ammidico è di 6° . Tale rotazione non impedisce la delocalizzazione e la coniugazione elettronica (Derry e Hamor 1969).

Come conseguenza del sistema di legami ad idrogeno proposto (fig. 2), l'idrogeno sarebbe legato a N_2 e non a N_1 ; in questo modo si spiegherebbe la

corta distanza intermolecolare N $_2$ ···O $_{511}$. Il procedimento di sintesi dell'amide dell'acido 3-metilpirazol-4-bromo-5-carbossilico non esclude tale possibilità (Rubessa 1967).

In relazione a questa posizione dell'idrogeno, seguendo le convenzioni sulla nomenclatura, il composto qui descritto dovrebbe essere l'amide dell'acido 4-bromo-5-metilpirazol-3-carbossilico. È opportuno notare a questo proposito che altri Autori, indipendentemente da Garattini e coll., abbiano verificato notevoli proprietà farmacologiche nell'acido 5-metilpirazol-3-carbossilico (Gerritsen e Dulin, 1967).

Ehrlich aveva già sostenuto che l'idrogeno potesse essere legato a N_1 o N_2 , in base a considerazioni termodinamiche ⁽¹⁾; in questa situazione, le posizioni 3 e 5 del pirazolo sono perfettamente equivalenti.

Si ritiene d'altra parte opportuno di mantenere, almeno temporaneamente, la nomenclatura di Garattini e coll., dato che le determinazioni strutturali sono condotte in stretta collaborazione con le ricerche farmacologiche da essi effettuate.

L'impacchettamento nella struttura cristallina, visibile nelle figg. 3 e 4, spiega, con l'alternanza di strati A caratterizzati dal sistema di legami ad idrogeno illustrato dalla fig. 2, e di strati B, la facile sfaldatura (010) descritta nella parte sperimentale.

BIBLIOGRAFIA.

BIZZI A., CODEGONI A. M. e GARATTINI S., 3-methyl-5-carboxamide-pyrazole. A long lasting inhibitor of lipolysis, «Il Farmaco» Ed. Sci., 22, 709-716 (1967).

CRAVEN B. M. e TAKEI W. J., The crystal structure of perdeuterated violuric acid monohydrate: the neutron diffraction analysis. «Acta Cryst.», 17, 415–420 (1964).

CRUICKSHANK D. W. J., X ray results on aromatic hydrocarbons. « Tetrahedron », 17, 155–161 (1962).

DERRY J. E. e HAMOR T. A., Stereochemistry of the diquat ion in the crystalline dibromide salt. « Nature », 221, 464–466 (1969).

DEWAR M. J. S. e SCHMEISING H. N., A re-evaluation of conjugation and hyperconjugation: the effects of changes in hybridization on carbon bonds. « Tetrahedron », 5, 166–178 (1959).

EHRLICH H. W. W., The crystal and molecular structure of pyrazole. « Acta Cryst. », 13, 946-952 (1960).

GALIGNE J. L. e FALGUEIRETTES J., Structure du (dinitro-2' 4'-phenyl)-I-bromo-4-pyrazole. «Acta Cryst.», B25, 1637-1643 (1969).

GARATTINI S., Comunicazione privata.

GAULTIER J. e HAUW C., La liaison hydrogène bifide. «Acta Cryst. », B25, 546-548 (1969).

GERRITSEN G. C. e DULIN W. E., Development of tachyphylaxis to the antilipolytic, hypoglycemic agent, 5-methyl-pyrazole-3-carboxylic acid, U 19425. « Proc. Soc. Exp. Biol. Med. », 126, (2), 524-527 (1967).

(1) Un interessante meccanismo di modificazioni molecolari nel pirazolo e negli N-alchilderivati, con passaggi attraverso anelli eterociclici diversi, è stato anche proposto da ricercatori russi (Khmel'nitskii e coll. 1967) sulla base di dati di spettrografia di massa.

- KHMEL'NITSKII R. A., KRASNOSHCHEK A. P., POLYAKOVA A. A. e GRANDBERG I. I., Mass spectra and structure of organic compounds. XX. Mass spectra of pyrazole and methyl-pyrazoles. «Zh. Org. Khom. », 3 (9), 1540–1546 (1967).
- MARSH R. E., A refinement of the crystal structure of glycine. «Acta Cryst. », 11, 654–663 (1958). RUBESSA F., Sintesi di derivati pirazolici. «Il Farmaco», Ed. Sci., 22, 692–697 (1967).
- STEWART J. M., Program system for X ray crystallography X ray 63, TR-64-4, University of Maryland, USA 1964.
- SUTTON L. E., Tables of interatomic distances and configuration in molecules and ions. The Chemical Society of London, Special Publ. nº 18, S 14s (1965).