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Analisi matematica. — On a non—linear mixed problem Jor the
Navier-Stokes equations. Nota I di Grovannt Prousg ), presen-
tata @ dal Corrisp. L.. AMERTO.

RIASSUNTO. — Si considera, per le equazioni di Navier-Stokes, un problema misto
con condizioni al contorno non lineari dedotte da un problema fisico concreto e si dimostra
che, in ipotesi di regolarity di tipo classico, tale problema ammette al pitt una soluzione. Teo-
remi di esistenza ed unicitd per soluzioni generalizzate opportunamente definite vengono
dimostrati nelle successive Note II e III.

1. — The equations of Navier-Stokes have been the object of a great
deal of research work, both theoretical and experimental, and constitute
one of the most interesting examples of non-linear equations of Mathematical
Physics.

Many mixed problems (according to Hadamard) can obviously be con-
sidered for these equations, assigning initial conditions and appropriate
boundary conditions.

The formulation of these boundary conditions and their influence on
the solution of the problem are well focused by an “ energy relation ”” which
we shall now obtain in a purely formal way.

Let Q be a bounded open set in an FEuclidean s—dimensional space

x={x, -, %,} and let T" be its boundary. If p denotes the viscosity coeffi-
cient, P (x,8)={wu (x,8), -, u,(x,2)} the velocity, p (x,7) the pressure,
7(x ) ={fi(x,0, -+, fu(x,®)} the external force, the equations of

Navier-Stokes which govern the motion in Q of the fluid (which is assumed
to be incompressible and of unit density) are

Qu; i Qu; p .
Q#—HA%—I—;M ey T ag = =1, m)
(1.1) }
< au;e .
[ & o =o0.

Equations (1.1) can also be written, when 7 < 3, in the following vector
form
3; —> = ';)|2 N = - >
(1.2) S @~+(rotu)/\u+grad<7+p> wAy =f

. —
| dive =o0.

(%) Istituto Matematico del Politecnico di Milano. Lavoro eseguito nell’ambito dell’atti-
vita del Contratto di Ricerca « Equazioni Funzionali» del Comitato per la Matematica del
C.N.R.

(**) Nella seduta del 13 dicembre 1969.
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In the present note we shall systematically utilize, for the sake of simpli-
city, this vector form, although the results obtained are valid also in the case
of any .

Let us consider the scalar product of the first of (1.2) by # and integrate

. — - = .
over ); observing that (rot#) A # X = o, we obtain

(1:3) /(%-I—grad(l—zﬁ—I—p)——pAZ)_xudQ=]f><udQ
Q Q
and, as can easily be seen,
|~u>|2 - % oy,
grad X = E %; 2y .
7,A=1 axj

-
On the other hand, denoting by # the exterior normal to I', we have,
by Green’s formula,

< 3
[Euli%kdg_—[;luka (uuk)dQ-l—/Euzﬂcosnde——
; T=1

7 1
8
73 oU,
_ Euj ude~ Yy u? ’dQ—I—/I%[ZEu,cosnxde.
g i g 7= s |

—
Hence, as divx = o.

(1.4). /grad| N T /|u|2u><nd§2
g r

e du; 3
Setting [« , 7] 2/ ';1 QZ QJZ dQ (so that [u u] is a seminorm on
. JiR=

Q
HY(Q)), it results, analogously,

(1.5) [AuXudQ——[u u]—l—/uX—dl"

-
and, moreover, since div # = o,

(1.6) /gradprdngprZdP.
Q r
Introducing the wusual notations Z(z):{;: (x,2) ; xGQ},Z’(z‘) =
=1 2D Q! Au() = (A (x,H);2€Q), F() = {Fx, ) x€Q},

p(t):{p(x,t);xeg},@,?),_,zfzu 2,dQ, [ %, = (u, u),, it follows
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from (1.3), (1.4), (1.5), (1.6), that

(1) L @R A RO, EO = O A Oy + b [ a0 %
;

x 2D ar — [(L1iG 0P + 4, 0)u (e, 5 x wdD.
on P
r

Observe that (having assumed that the density is equal to 1) the quantity

%]ZIz—l—p represents the ‘“energy”, sum of the kinetic and of the pie-
zometric energies, of the fluid; it has therefore a precise physical interpre-
tation and has a fundamental role for instance in Bernoulli’s classical theo-
rem. Observe moreover that the non-linearity of the equations of Navier-
Stokes appears in the last integral on the right hand side of (1.7).

It is evident that, if we assign the values of % on T’ (Diri&hlet boundary
conditions) the ¢ energy relation ” (1.7) becomes particularly simple; assum-

N
ing, in particular, that « |r‘ = 0, we have

(1.8) LS u@Ol e, u® = (FO, %Oy

and it is therefore possible to obtain apriori estimates for the solutions. A
relation similar to (1.8) from which apriori estimates can be deduced holds

also if |p =0 (see Ladyzenskaja [1]).

.

In many cases of physical interest the term /% X % dI' vanishes.
on

: iy

This happens, for instance, if Q is a cylinder with axis parallel to x;, and
initial and final sections orthogonal to x;, and if we assume that on I' the

veloc}ity—; is parallel to .

Most of the mathematical research has so far been dedicated to the
study of the mixed problem with Dirichlet boundary conditions: the exist-
ence (in the large) of a solution of this problem, intended in an appropriate
sense, has been proved by Hopf [2] utilizing essentially relation (1.8). The
problem of the uniqueness of such a solution has not yet been completely
solved and it is doubtful that a uniqueness theorem holds (except for 7 = 2)
in the functional class introduced in the existence theorem; see, on this subject
a recent example given by Ladyzenskaja [3]. On the other hand, in those
classes for which the uniqueness theorem has been proved, the corresponding
existence theorem holds only for sufficiently small # (see, for example, Kie-
slev and Ladyzenskaja [4], Shinbrot and Kaniel [5], Prouse [6]). For an
extensive list of references and a detailed report of the results obtained we
refer to the book [1] by Ladyzenskaja.

A mixed problem with boundary conditions not of Dirichlet type, and
moreover non linear, has been recently suggested to me by G. Noseda of the
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Istituto di Idraulica of the Politecnico of Milan. Consider the motion of a
viscous incompressible fluid in a cylindrical tube with permeable wall and
surrounded itself by the same fluid; there is then a flow through the wall with
velocity, directed orthogonally to the wall, which can be estimated empirically
to be proportional to the square root of the jump of pressure. This problem
is actually encountered, for example, when studying the motion of the blood
in artificial arteries which, at least for a certain time, are permeable.

In order that the problem be mathematically well posed it is necessary
to complete the data by assigning appropriate conditions on the initial and
final sections of the tube. It seems to me interesting to observe that the
problem appears well posed and can be solved (at least in the case m = 2)

—
when on these sections we assign the quantity % |u 24 p already recalled

above (thus introducing a further non-linearity in the problem). After having
given in § 2 a uniqueness theorem which holds under classical smoothness
assumptions on the solution, we shall in fact prove in the two following notes,
in the case 7z = 2, a uniqueness theorem and an existence theorem, for suffi-
ciently small #, of the solution in a functional class in which both theorems
hold simultaneously.

We shall, finally, mention some results which can be obtained for problems
slightly different from the one just considered.

2. Let {Z (x,0),px,0}, {Z(x ,8),¢(x,%)} be two solutions of the
system (1.2), in the classical sense. Assume that, when # = o,

- —
(2.1) #(x,0) =uv(x,0)
and moreover that, denoting by I'|, I'y, I's réspectively the initial section,

the wall and the final section of the tube (which we shall suppose is cylindrical,
with axis parallel to x;),

(2.2) %'”12'4‘?:%“’]2‘1‘9 on ThUT,,
(2.3) Zx?:; ><?r=o on Nul,uly;=T,
(2.4) p—Buxn|u|=g—Boxn|v|=0 on Iy,

P being the normal unit vector to I' and P4 any unit vector tangent to I'.

Relation (2.2) expresses the condition that the two flows have, on the
initial and final sections, the same energy; (2.4) interprets (according to what
has been r@entioned in § 1) the relation between the pressure jump and the
velocity of the fluid flowing through I's, assuming that the external pressure
is zero and denoting by B > o the permeability coefficient. Finally (2.3)
imposes (according to the well-known theory of the limit layer) that the
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components of the velocity parallel to 7 vanish along I'y and, moreover, that
on the initial and final sections (which, as we have assumed, are orthogonal
to x;) the velocity is parallel to the axis of the tube.

-
Let us now prove that, under the assumptions made above, % (x,#) =

- .
=v(x,?), ie. that the flow is uniquely determined if we assign the initial
velocity and the boundary conditions indicated in § 1.

Setting w = u — v, the vector w obviously satisfies the system

g ) ot N o) 7+ grad [ LI 4y )y s
dives = o

)

— — —
and, # and v being “regular” solutions, we may assume that w (x, #) has
continuous first derivatives with respect to all variables.

From (2.5) we obtain analogously to (1.7), by scalar multiplication by w
and integration over Q, bearing in mind (2.3),

(2.6) 2w @R +ulw @, @]+

I
2

—]—f[(rotZ(x,t)) N, 8)— (roto (x, 0) Ao (x, 8] Xw (x, ) dQ +
Q

— —
w(x,)Xndl=o.

+F/|} (%@ D+ 5, ) — L 0@, O —g @,

By (2.2), (2.3), (2.4) it follows from (2.6) that

e gl Oh @ w0+ [ (o, 0) AwE, X
Q
X 1w (%,2) + (rotw (x, ) Ao (x, ) Xw (x, )] dQ +
+]

— LY@, DB, B, 8 IZ(x,t)X;]ZZ(x,t)X;dPg.

L u@ DR +BE, O, b ule, ) xn—

- — —
Since (rot #) Aw Xw = o and moreover (as || is increasing and
- > B i S S SR e T =S S
B2o)[(3(|u[uXﬂ-—}ﬂ]vXn)anszsz(]uXn|u><n—-—|v><%['

r r,
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— - = — A
o X n)w X ndl'y >0, we also obtain

@8 L L@l tule®,w@]< ! /krotz?u)(x Ao (x, D)xw (x, z‘)dQl +
Q@

rr

J' []Z(x,t)[z—];(x,t)lz] zZ(x,z‘)XZszgclf[rotz_zj(x,z‘)l-
T, Q

e, 8)] 40+ L [ ([, +[9 )

[, 01— [, |G )] T,

Bearing in mind the relation |ab|<e|a|®+ £ |4|? there exists, on
the other hand, a constant 4, such that

— - ‘ w m awj(_xyt) 9
(2.9) flrotw(x,t)j]w(x,t)]dﬂ g/?7j§1(T) +
Q Q

4 S W 0(d0 = £ @ 0,5 0]+ 4w O,

Moreover,

|;(x,z‘)|—I_Z(x,t)]‘]z—;(x,l)|d1’2£

@10 [0+ 06,0

Sjklz?@c,m + 0@, D)) @, ]2 dT, < eafiz??oc,z) 2 dr, .

T,

Introducing (2.9), (2.10) into (2.8) we obtain
d = . — — — ) —
i) L2 lw@R L), w O] < alw @) iliz+f4flw<x,l‘) 2dr, .
T,
As _;(x,z‘) ,—; (x,%) are two fixed vectors which, as mentioned above,

—
have continuous first derivatives, there exists a constant ¢;, depending on

and _1/) but not on # such that
f|2(x,t)|2dl"2 §c5f[z_z)/(x,t) 2dQ = c;lw L.
T, Q
Hence
d .~ , —> — > .
<2'12> ar ”‘ZU (Z> [riﬂ + ”g_ [w O‘) y W (t)] < ¢ h'w (O ijis .

Since, by (2.1), |w (0) |, =0, it follows that z_z:(z‘):o. The uniqueness
theorem is therefore proved.
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