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Prestede 1] Presidente BENIAMINO SEGRE

SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — O a refinement of Evans’ law in potential theory.
Nota di Hans Lewy, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Si considerino una misura p. a sostegno compatto S contenuto nell’asse

delle #, il suo potenziale logaritmico z(x) = —log|x—y|du(y), ed una funzione f(x)

S
avente derivata continua e tale che f(x) =2 (x) per x €S & f(x) <ov(x) per x ¢S.
Si dimostra che anche »(x) ha derivata continua. Si indicano alcune conseguenze di questo
teorema per le funzioni armoniche di due variabili.

INTRODUCTION.

Given a' (smooth) bounded domain Q of R*, %> 2, and a continuous
real function f(x), x € Q, which is negative on 9Q (or negative outside a
compact set C () there is a smallest continuous superharmonic % (x) with
u(x) =f(x) in Q, u(x) >0 on Q. If f(x) is sufficiently smooth, e.g. if
| Af ()| is bounded, then # (x) has Holder continuous derivatives [1], [2],
[3]. Suppose next that f(x) is a continuous function, defined only on an
(# — 1) dimensional plane section R" !N Q, and negative on 8Q N R"'.
Let f+(x) be the non-negative part of f(x) and let (Tf) (x) be a continuous
harmonic which vanishes on 2Q and equals fHx) on R"'mQ. If u(x) is
the smallest continuous superharmonic, > o0 on 9Q and > f+ (x) on R"'NQ,
then #(x) > (Tf) (x) and, conversely, the existence of a continuous smallest
superharmonic % (x) > (Tf) (x) implies that of a smallest continuous super-
harmonic # with % (¥) > f*(x) on R" 1 Q.

(*) Nella seduta del 10 gennaio 1970.

1. — RENDICONTI 1970, Vol. XLVIII, fasc. 1.
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But this question arises: Suppose f(x), x eR"'NQ, is smooth, does
this imply that the restriction of u(x) to R" N Q is smooth?

In this paper the affirmative answer is given for » = 2: If f(x)€eCl,
x€RN Q, then = (x)€Cl, xe RN Q.

§ 1. Existence of one-sided derivatives for the logarithmic potential.

A famous theorem of Evans states that the potential of a positive
distribution of mass, if continuous on the restriction to the support of the mass
(smallest compact set containing all the mass) then it is continuous throughout.
The first theorem to be proved may be considered a refinement of Evans’
law and reads as follows:

THEOREM 1.1. Let u(x), x € RY, be a positive measure of compact support
S and

w@ = [—loglr—ylduy), xeR
S

its potential. Let 1 = (A, B) be an open interval containing S. Suppose there
exists a real function f(x) which is CY1) and such that f(x) < u(x), x €],
and f(x) = wu(x) on S, then u(x) s CYI).

The complement of S in I is denoted by €S; it consists of an at most
countable number of disjoint component intervals (a;, &,).

LEMMA 1.1. Under the assumptions of Theorem I.I, let xo €1 be the right

endpoint of a component interval of CS. Then u(x) has a derivative from the

left, denoted by dd% (%), and ;;i (%) < %(xo).

Remark. The following proof requires of f(x) only that it be continuous
on I and have a derivative at xo.

Proof of Lemma 1.I1. Put
Si={x:x<xy,x€S} , Se={x:x>2xy,x€S},

() = [ —tog |x— | dutz), j=1.2.
S.
7

Obviqusly, %(xo) exists. For x <z,

X —Xo X — X

s () — 43 (%) :f—logly~x|+log|y—xo| du (3).
S2

Put s = 20 —%

- Since #(x) is continuous on S, w(x,) = o and the last
- A0

integral need be taken only over So— {x,}. This makes s finite and >0 in
the integrand. On Sp— {x,}

(y— 1) - —logly—x|+logly—x| _ 4 log (s + 1)

X —X0
1+s
— 1 |
¢

1
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For x4 xy, s o and sllog (14 s)4 1. By Beppo Levi’s theorem

s (%) — 43 (o) L e
X — X x4 xy / Y — %o
.SZ

increasingly. Thus for x4 x,,

% (x) — u (xo) _ m1(x) — w1 (o) + g (x) — w2 (x0) dul( >+f

X — Xo X — X0 X —Xp —Xo

But left hand is by hypothesis << @ =/@) - pence

X — Xo
/ dp () de(y
(1) fla = [ 22y _[y_%
Sy

In particular f ;u(y) < oco. Lemma 1.1 is proved.
xo
s2
A reversal of the positive direction of the x—axis does not affect the
correspondence of the points P of I with #(P) or f£(P), but changes a left
endpoint of a component interval into a right endpoint, and changes f'(P)

into —f'(P) and thus changes the sign of the inequality (1.1). Thus we have

LEMMA 1.2. Under the assumptions of Theorem 1.1, let x,€1 be the
Zefl‘ endpoint of a component mterval of CS. Then u(x) has a derivative

dx + (x0) from the right and s +( xg) = d;r (xo)

Let x,, 25> x, be two points of the same component interval (@, &)
of €S, and put S; = {x:x€S,x<x,}, Se={xr:x€S,x>x,}. We then

have
f du (1) gf du(p) ( dy () gf dwu(y)
|REED ¥ —x, 1 == ¥ —

5 5 5, §,

with equality excluded in at least one of these inequalities. Addition yields

(1.2) S < G ().

Since du/dx is thus continuous and monotone on the open interval (a,0)

we have

du . du du . du
ar @=lmg o=@ =lim o

By Lemmas 1.2 and 1.1 and formula (1.2), if @ and & are both in S,
(1.3) f'@ < dx+ (@ < d — (&) < 1)
so that

(1.4) J'@ <[ .
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The total variation of du/dx in (a, &) is not in excess of f'(6) — f'(a), which
is certainly not greater than the total variation of f/(x) in (2, 4). Another
consequence of (I.4), incidentally, is that if f#(x) is concave, S consists of

exactly one closed interval as @S cannot possess component intervals (@, &)
with both @ and 4 in S.

LEMMA 1.3. Let 2y€S be such that there exists a sequence of points x;€ S
with x;> xy (resp. x%;<x,) and lim x; = x,. Then HCIfT(xO) (resp. (%‘_(x@)
exists and equals 7 (o) e
Proof. We only need prove the case x;>x,, #;€S. Two possibilities
occur: There is an interval [x,, X], X > x¢, which belongs to S, and consequ-
ently % (x) = f (x) so that the assertion of Lemma 1.3 becomes trivial. Or
xo is limit of component intervals (a;, ;) of @S, with 4,> a,> xg. If x € (a;,8),
the monotonicity of dw/dx in (a;, §;) together with (1.3) yield
& —a) fla) <u@)—u@) < (x—a)f' &)
whence

H = [@)+f(@)@—a) —f@) _ u@—u@) g 4+ ¥ @““t) (f'(6:)—f'(as)).

X — X9 xX—2x,

Since f'(x) is continuous we have, as x, «,, é; tend to Xp,

fa) + 1 @) (v —a) +o(lx—al) =7 (x) , f(6)—f(a) =0 (b;— a)
so that

X — X9

RIOF

Accordingly if x tends to x9 from the right, but x € @S, we have
u (x) — 2 (%o) i

p— = f'(%,), while the same relation is obvious if x €S.
40

lim .
x —>xo

Lemma 1.3 follows.
§ 2. Continuity of dx .

The results of § 1 guarantee the existence of 9% (x) if x is restricted to

the interval I minus the countable set of endpomts of component intervals
of @S; at such points x, only du/dx™ and du/dx— have been shown to exist,

with one of these values equalling %(xo) and the other being increasing
(resp. decreasing) limit of %(x) as xtx; (resp. x| x;), x€CS. It remains
to show that for such x, we have T;i-f:(xo) = a%%(xo) = :;i% (x9).  Suppose

that this has been done; the continuity of iiﬁ(x) then follows for every x€1.

du

For if x€S and x;—>x, x,€S, then ar &) = f'(x;) > f'(x), while if x;€ @S,
x> %, a; <x <6,, with (a;, ;) a component of €S, then a;—x, 4; — x,
and f’(a)< 7 (%) <f’(b) and f'(a;)) —>f'(x) and f'(6;) —f'(x); on the other
hand the continuity of & (x} for x in the open set @S is trivial. With the
proof of the following Lemma we therefore shall have proved Theorem 1.1.



[5] HANS LEWY, On a refinement of Evans’ law in potential theory 5

LEMMA 2.1. Let x%y€S be right (resp. left) end point of a component of es.
d ’ d /
Then g5 (x0) = /(&) (resp. oz (o) = f ()

Proof. It suffices to prove Lemma 2.1 for xp being a right endpoint,
and to assume for simplicity of notation that xo = 0. If p> o is small enough
the interval (—p,0)CES. We extend #(x) into a complex £ = x 4 sz*
plane by setting '

u(z)———f——log 2 — ] du(y)

so that #(z) is harmonic outside the set S of the real axis. We map |z |<p,
%> o conformally onto the first quadrant of a & + #n—plane in such a way
that 0 >0, p—1, — o —>7co. A reflection in the interval (— p, 0) corre-
sponds to a reflection of the conformal map in the imaginary or n-axis of the
€ + #n-plane, yielding the conformal map of the circle | 2| < p slitted along
the positive real axis into the upper half & + sy-plane. Put

w(z) =UE+ ).
U is harmonic in € and % for >0 and assumes continuous (and bounded)
boundary values; moreover the relation #(z) = % (%) implies that U(£) = U(—&)

holds on n = o.
For the inverse map M we have with a constant 2 > o

(2.1) g=x+ix"=CE+mE(k+o(1) - as E+4 iy —>o0

because another reflection in the positive x—axis (resp. the interval —1 <£ <1
of n = 0) shows M to be a conformal map of the £ + sy—plane, slitted along
the real axis from — oo to —1 and from 1 to oo, onto the doubly covered
circle | 2| < p with the origins corresponding.

Put © (£ 4 4n;¢) = angle from the negative 7-axis to the vector
t— (& + 77m), where 7 is real, n>o0. Then Poisson’s formula gives

UG+in =% [U0LOE+min.

The proven existence of ?dd)%(o) = ¢ = f'(0) implies = (¥) — u (0) =
= cx + o(x) as x | 0 which is translated by (2.1) into

(2.2) UE) —U(o) = €2 (¢ + o (1)) as £ —o.
We claim that lim E@O)—;—[@ = 0. Indeed this is equivalent
nyo
. u(—n2k)-—u(0) _ .. . u(—m2h)—u(o)
i S =ty 2
— lim 7 lim “#.—=*© _
4o wt0 T F

du

since we know
dr—

(o) to exist.
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Lincei ~
This relation (o) = o is expressed, with U() = U(#) — U(o)
. oU . 2 __
0 = lim — = lim — 22—
1]1?’(1) o (ZVD nyo T / <l> (12_|_ 2)2

I 2 dz
_ ?fU(t)z—z,

account being taken of (2.2)

Now form
1 /U ,, U 1= 2 (2 — 1) — (2 + 7P)2
a0 — 57 @) =1 | 00 Mt o
380+ g

I
== / <t> 12 + )2 22

Note that the limit of this integral as 7 | o depends only on the values of
U(t) in an arbitrarily small neighborhood N of # = o which we choose so

that in N
| O@) — ck? | < 2
An easy evaluation yields

where € >0 is given in advance
1 [ —ckRGEne) ok 31241 N
Hﬁ?/ Erwpa Y=o g T2k
while
=1 (3221 + %)
li — jOO)ﬁW dzlgza.
N
lim L( () — oo ©) =lim~ S0 (i) = — 20k = —24f/0)

Hence
nyo

Uw=%%@—%@.

But lim
n40 —2/m o
Lemma 2.1 is proved and Theorem 1.1 is established
§ 3. The proof of Lemma 2.1 given in § 2 necessitated the excursion
into R%. The following proof permits us to remain in the R! containing the

mass of the potential.
For this purpose we utilize the function

- log|z‘—x|
Mo = f Vx(I—x) dx
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which is continuous for — co < #<C oo, and has the property A (¢ +1) <X ()
if £>0, and A(¢) = A (1 —¢) for all real #
Let now p be a non-negative mass restricted to a bounded portion of

the positive x—axis and such that its potential #(x) = f —log| y—x|du(y)

has the property of possessing the two one-sided derivatives %(0) = ¢y
[o9)

and if_ (o) = f ﬁ"%l: ¢c—. We need prove c,=c¢_. Evidently
0
(3.1) ngm . fo(f 5 f du(y) (log y —log | ¥ —x|)
ot >*
G2 —Fe=lm [t [du(y) (ogy—log |y —=])
0 0
¢ 00
= ,ig;fi—of”—(ff_—;!du(w (log y — log | ¥ + )

the factor ©/2 being the value of VT—MT Subtracting (3.2) from (3.1)
X(1—x
we obtain 0
et o) —hm~j T f(——log|y—x|+logly+x|>du<y>

t

= lim — f——g—:j(—logIy—*fil+10gly+f€l)du(y>
e

=tim - [ (%) =2 (52)) du0)

<t oty —ole 2ancn
Now for ea¢ch y >o, k(%)—)x(l—l—%)zo and

lim (7\(%)—7\(1 +2) = lim (1 () =2 (1+5)).

t40 z
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For s > o, the expression s (\(s) —A(1+ ) is bounded since A(s) is conti-
nuous and the limit as s— co exists:

1
lim s (A (s) —A (14 ) = lim | slog LTs=% __dz

s —>00 S—x  Yx(1—2%)
0

1
¢ Vx(1—x)

The dominated convergence theorem now yields
g(@—f'f—):ﬂij f—l“y—(y)‘ = TC_
b
and thus

L= c_.

§ 4. We return to the problem mentioned in the introduction. With Q
a bounded smooth domain of R?, let ¢(x) be a C! function defined on a line
R'NQ and negative on R'N3Q. Let v(x) be the smallest superharmonic,
continuous on QUIQ, >0 on 3Q and >{(x) on R!MQ. With the aid
of Green’s function of Q we can represent v(x) as

v<x>=fG<x,y> du (%)

R!NQ

where p is a non-negative mass whose support S is a compact part of R' N Q.
Now G (x,y) = —log |x—y |+ %4 (x,5) where %4 (x ,¥) is continuous in x
and y and harmonic in each variable ranging over Q. If x and ¥ are restricted
to compact portions of (, the derivatives of all orders of % are bounded.

Therefore f h(x,y)du(y) is certainly a C? function in a neighborhood of S.

§
The relation v(x) > ¢ (x) thus becomes

%<x>Ev(x)—fﬁ(x,y)dv-(y)Zngoglxwyl du(y) =

S
zup(x)——fux,y) du () = £ ()
S

and we know that the mass is carried by a point set for which v (x) = ¢ (=)
or u(x) =f(x). Since y €CH(R'NQ), it follows that f(+)€C! in a (one-
dimensional) interval neighborhood I of S. From Theorem 1.1 we infer that
#(x), and hence (), are in C! RN Q).

Suppose %(x} is of bounded ‘variation on RN Q. It then becomes

possible to bound the total variation of %(x) on I. In fact we know that
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dtgj(:f) in S. Thus the total
variation of 5 between the extremes of S is <C that of - f ~- < that of % +

o4
that of /‘E_f—(x,y) du(9).
S
Since S lies on {x : ¢ (x) >0} and . (S) can be estimated in terms of S, max ¢

and Q and RN Q, we see that the total variation of % between the extremes

of S is bounded, and hence easily also on I, if the closure of I is contained
in Q. The bond depends only on Q, the sets {x:{(x) >0} and I, the

maximum of ¢, and the total variation of %x— on {x:¢(x) >0}

THEOREM 4.1. Let Q be a bounded (smooth) domain of R?, and §(x) a C1
Junction of compact support defined on the intersection of a line (x—axis) with Q.
The smallest continuous super-harmonic v () which = (x) on the x—axis and
>0 on 3Q, has a C restriction to the x-axis. Moreover the total variation

[ l is bounded if f (‘b is bounded.

If we apply to a circle of R2 a conformal transformation onto the plane
slitted along the real axis from — oo to 1 and from 1 to oo, Theorem 4.1
yields by an easy argument:

THEOREM 4.2. Consider the class U of bounded harmonics h in the wpper
half plane Q whick are continuous on QO Q and vanish on the segments
(—oo,—1] and [1,00) and are ><L(x) on (—1,1) where Y(x) is a given
Cl(—1, 1) function of compact support, and such that the conjugate harmonic
of % increases monotonely on (—1,1). There exzstx a smallest v(z) of I', and

v(x) s Cl(—1,1). ]ff‘d ¢‘<oo then [’d—— is bounded in terms

~1 1

of the maximum of {, the support of b, and [‘d%g:—‘
. |

In Theorem 4.1 the line carrying the mass m_ay be replaced by any Jor-
dan arc of bounded curvature. The proof will appear elsewhere.
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