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RENDICONTI
DELLE SEDUTE

D E L L A  ACCADEMIA NAZIONALE DEI LINCEI  

Classe di Scienze fìsiche, matematiche e naturali

Seduta del io  gennaio IÇJO 
Presiede i l  Presidente B eniamino S egre

S E Z IO N E  I

(Matematica, meccanica, astronomia, geodesia e geofìsica)

M atem atica. —  On a refinement o f Evans' law in potential theory. 
N ota di H ans L ew y, presentata (*> dal Socio B. S eg re .

R iassunto. — Si considerino una misura p. a sostegno compatto S contenuto nell’asse 

delle x, il suo potenziale logaritmico v(x) =  j"— log | —y  \ dp(j/), ed una funzione f ( x )
S

avente derivata continua e tale ehe f ( x ) = v ( x )  per x  G S è f ( x )  < v (x) per * £ S . 
Si dimostra che anche z>(x) ha derivata continua. Si indicano alcune conseguenze di questo 
teorema per le funzioni armoniche di due variabili.

Introduction.

Given a (smooth) bounded dom ain O of R n, n >  2, and a continuous 
real function f i x ) ,  x  £ O, which is negative on 30  (or negative outside a 
com pact set C O) there is a smallest continuous superharm onic u (x) with 
u[x) ">f{fi) in O, u(x)  > 0  on 30 . If  f ix ' )  is sufficiently smooth, e.g. if 
I A/ ( x ) I is bounded, then u(x)  has H older continuous derivatives [1], [2], 
[3]. Suppose next th a t f i x )  is a continuous function, defined only on an 
(P—  O dim ensional plane section R ^ n û ,  and negative on 30  n  R**-1 . 
L e ty +(;r) be the non-negative p art of f ( x )  and let (Tf ) ( x )  be a continuous 
harm onic which vanishes on 30  and equals f+ (x ) on R Ä” 1n  O. I f  u(x)  is 
the smallest continuous superharm onic, >  o on 30  and > f +(x) on R ^ n O ,  
then u(x)  2> (T /) (x) and, conversely, the existence of a continuous smallest 
superharm onic u(x)  >  (Tf)  (x) implies th a t of a smallest continuous super­
harm onic u With u(x)  > f +(x) on

(*) Nella seduta del io gennaio 1970.

1. — RENDICONTI 1970, Vol. XLVIII, fase. 1.
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But this question arises: Suppose f  {oc) , € R n  ü , is smooth, does
this im ply th a t the restriction of u(x)  to R"*“ 1 fi ß  .is smooth?

In  this paper the affirmative answer is given for n =  2: If  f i x )  e C 1, 
x  e R 1 n  £2, then u (x) E C 1, x e R 1 n  Û.

§ I . Existence of one-sided derivatives fo r  the logarithmic potential.
A  famous theorem  of Evans states th a t the potential of a positive 

distribution of mass, if continuous on the restriction to the support of the mass 
(smallest com pact set containing all the mass) then it is continuous throughout. 
The first theorem  to be proved m ay be considered a refinement of E vans’ 
law and reads as follows:

THEOREM i . i .  Let ^(T), xE  R 1, be a positive measure of compact support 
S and

u (x) — j  —  log \ x  —  y \  dpt. (jy) , j e R 1 
s

its potential. Let I =  (A  , B) be an open interval containing S. Suppose there 
exists a real function f i x )  which is C 1(I) and such that f ( x )  <  u (x), x  E I, 
and f i x )  =  u{x) on S, then u{x) is C 1(I).

The com plem ent of S in I is denoted by (?S; it consists of an  at most 
countable num ber of disjoint com ponent intervals (a{, bp.

Lemma i . i .  Under the assumptions of Theorem i . i ,  let xq e I be the right 
endpoint of a component interval of (PS. Then u (x) has a derivative from  the 
left, denoted by f g  (*0), and f p  (%) <  —  (x0) .

Remark. The following proof requires of f i x )  only th a t it be continuous 
on I and have a derivative at xo.

Proof of Lemma 1 .1 . Put

Si =  {x  : x  <  x 0 , x  E S } , S2 =  {x  : x  >  x 0 , x  E S } ,

UJ (x) =  J — log I * I d[x(y) j  =  1 ,2

d^iObviqusly, 1 (#0) exists. For x < x 0,

u2{x) —  u2(x0) _  J  — log \y —  x  I +  log \ y — Xq\ 

S,
X--Xo X --Xo djx ( y ) .

Put s —   * . Since u{x)  is continuous on S, p (^ 0) =  o and the last
integral need be taken only over S2 — {Ao}* This makes finite and > 0  in 
the integrand. On S2 —  {*0}

( y - * „ )  - =  r - i  log (J +  0
1 + s

d t
T '

X — Xo
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For x  f  x 0 , s j, o and 1 log (i +  j) f i. By Beppo L ev i’s theorem

« 2  (x) --- « 2  ( - T o ) _____  ̂ / d(Jt (y)
*Q x fx 0 j  y  — X 0

'S*
increasingly. Thus for x f x 0,

u (x ) ---U (Xq)
-T --- X0

Ux (x) ---U1 (x0)
X --- Xq +

Uz (x) ---U2 (Xp)
X — Xq y —x o

But left hand  is 

(I.I)

by hypothesis / ( * ) — f(*o)
X ---  Xq

/ ' w  *  /  f f i f i + /

Hence

ày(y)
y  — Xq

In  particu lar J ^  ^ ^  <  oo. Lem m a i . i  is proved.

S 2

A  reversal of the positive direction of the ^ -ax is  does not affect the 
correspondence of the points P of I w ith u(P)  or / ( P ) ,  bu t changes a left 
endpoint of a com ponent interval into a right endpoint, and changes / ' ( P) 
into — / ' ( P) and thus changes the sign of the inequality ( i . i) .  Thus we have

LEMMA 1.2. Under the assumptions of Theorem i . i ,  let ;r0€ l  be the 
left endpoint of a component interval of &S. Then u(x) has a derivative 
- ^ r O o )  from  the right and ^ + { x 0) >  ~ { x Q).

L et x 0 , Xq >  Xq be two points of the same component interval (a , b) 
of eS, and put Si =  {x  : x  e S , x  < x 0}, S2 =  {x  : x  € S , x  > x 0 }. We then 
have

( y )

y ~ x  0 <

Si

(y)
y  xq

j d^ ( j)  <  f  d[i(y)  ̂
J y  — *0 y  x 'q
S2 s2

with equality excluded in at least one of these inequalities. A ddition yields

( - )  £ ( * « )  < £ ( * » •

Since du/dx  is thus continuous and monotone on the open interval (a,b)  
we have

du
dx+ (a) lim

x  [ a

d u 
dx

du
dx~ (b) =  lim

x \  b

du 
dx

By Lem m as 1.2 and i . i  and form ula (1.2), if a and b are both in S,

(1-3)

so tha t

(1-4) / '( « )  < f ( b ) .
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The to tal variation of dujdx  in (a, b) is not in excess of f r(b) — /'(# ) , which 
is certainly not greater th an  the total variation of f ( x )  in (a , b). A nother 
consequence of (1.4), incidentally, is tha t if f i x )  is concave, S consists of 
exactly one dosed interval as AS cannot possess component intervals (a, b) 
w ith both a and b in S.

L emma 1.3. Let x 0e S  be such that there exists a sequence of points X;€ S 
with Xi> Xo (resp. x £< x 0) and lim x { =  x0. Then - - ^ r ( x 0) (resp. - ^ ( % ) )  
exists and equals (x0) z 00

Proof. We only need prove the case x £> x 0 , x £ € S. Two possibilities 
occur: There is an interval [x0 , X], X >  xo, which belongs to S, and consequ­
ently u (x) =  f  (x) so th a t the assertion of Lem m a 1.3 becomes trivial. Or 
x 0 is limit of com ponent intervals (a£, bp) of <?S, with 6£> ai > x 0. I f  x  e (a£, b£), 
the m onotonicity of dujdx  in (a£, bp together with (1.3) yield

O  ~ ß'i) f  ipp CL u (op u (ap LL (pc ap f  (bp
whence

H == / ( ^ ‘) + f ' (ai) {x — aj) —f(x  0) ^  U (x) —- u (x0) <  , (x — aj) , \\
X-—- Xq x- Xq X  —  Xq \ i) J  'pi))*

Since f ( x )  is continuous we have, as .x  , % , b{ tend to x 0,

f  (ai) + f ( ai) (x  —  ai) +  o ( \ x  —  a£ I) =  / ( x )  , f ( b £) — f ( a t) =  o (b£ —  a£) 
so th a t

H =  / W —/(*") +  0(1) .
X ---X0 K J

Accordingly if x  tends to xo from the right, but x  6 AS, we have 
l i m- — — o), while the same relation is obvious if x e S .

x ->x0 x  x o
Lem m a 1.3 follows.

§ 2. Continuity of •
T he results of § I guarantee the existence of —  (x) if .r is restricted to 

the interval I m inus the countable set of endpoints of com ponent intervals 
of ©S; at such points x 0 only dujdx+ and dujdx: have been shown to exist, 
w ith «one of these values equalling —  (x0) and the other being increasing

(resp. decreasing) limit of —  (x) as x  f  x £ (resp. * \  X{), x  e ©S. It remains

to show th a t for such *0 we have ~  (x0) =  —  (x0) =  (*0). Suppose

th a t this has been done; the continuity of ~ - ( ;r )  then follows for every x e l .

For if x e  S and x £^ x ,  x £eS ,  then (x£) = f ( x t)  - * / '  (x), while if x £e<SS, 
x £~±x, a£< x £< b £, w ith (a£, b£) a component of ©S, then a£^ x ,  b£ -> x, 
and /'(«,•) <  ■—  (xt) < f (b i )  and /'(a-) -+ f(x )  and f ' (b£) -* / '(* ); on the other

hand  the continuity  of —  (x) for x  in the open set ©S is trivial. W ith the 
proof of the following Lem m a we therefore shall have proved Theorem  i . i .
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Lemma 2.1. Let a 0 e S be right [resfi. left) end point of a component of (?S. 

Then ^ f i xo) =  f i X 0) (resP- ~^+ (*o) =  f i x 0)) ■

Proof. I t suffices to prove Lem m a 2.1 for xq being a right endpoint, 
and to assume for sim plicity of notation th a t xo =  o. I f  p >  o is small enough 
the interval (— p, o) C<3S. W e extend u fie) into a complex 2 — x  +  ix* 
plane by setting

u (fi) =  —  log [* — y  I d[i (y)

so th a t u fi)  is harm onic outside the set S of the real axis. We m ap | z  | <  p, 
* * > o  conform ally onto the first quadran t of a Ç iiy-plane in such a w ay
th a t o -> o , p—> I , — p ioo. A reflection in the interval (— p , o) corre­
sponds to a reflection of the conformal m ap in the im aginary or 7)-axis of the 
Ç -f- 27]-plane, yielding the conform al m ap of the circle | z \ <  p slitted along 
the positive real axis into the upper half £, -f- z’73-plane. Put

u f i )  =  U (fi +  ifi) .

U is harm onic in £ and 73 for 73 >  o and assumes continuous (and bounded) 
boundary values; m oreover the relation u fi)  =  u fi)  implies tha t U(Ç) — U (— Ç) 
holds on 7] =  o.

For the inverse m ap M we have with a constant k >  o

(2.1) z  =  X +  ix * =  (fi fi- if if  (k +  o (1)) - as £ +  ztj -> o

because another reflection in the positive ;r-axis (resp. the interval — 1 <  £ <  1 
of Y] =  o) shows M to be a conformal m ap of the Ç +  zvj-plane, slitted along 
the real axis from —  00 to —  1 and from 1 to 00, onto the doubly covered 
circle I z  I <  p w ith the origins corresponding.

Put 0 (fi +  z'73 ; t) =  angle from the negative 73-axis to the vector 
t — (fi +  273), where t  is real, 73 >  o. Then Poisson’s form ula gives

00

U(Ç +  /Yj) =  ^ J u ( / ) d <0(Ç +  ,Vi;O.
— OO

The proven existence of ^ p ( o )  — c — f ( o )  implies u (x) —  u (o) =  
— cx +  o f i)  as x \  o which is translated  by (2.1) into

(2.2) U (fi)—  U(o) =  ?  (ck +  o (I)) as ^  o .

We claim th a t lim — — o.
TJ t 0 ^

Indeed this is equivalent

^(—732 k) — u( 6 ) 
nto ^

since we know du
dx~ (O) to exist.

lim 73
TJ | 0

lim
n to

u (— yf k ) —  u (o )

i fk

lim 73 
irto

lim u(x) — u{o)
— X =  o
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This relation du
= 0  is expressed, with Ü(V) =  XJ(t) —  U(o), as

o =  lim (tri) =  lim — / Ü (t)
■n̂ O ^  r ito  77 / ( t2 r\2)2

t'2 — 7)2
d t

i
TU U(*j d t

l 2

account being taken  of (2.2).
Now form

i ( l r « - | F < 0) ) = - î r / ü »
t2 (t2  ---Y]2) —- (/2 +  7)2)2

7) (t2 -f- 7)2)2 t2 dt

I

TU
. \ j( t)  -j ^ 7] +  7]3 djf u  W (,2 _|_ 2̂)2 /2 ■

Note th a t the limit of this integral as y)  ̂o depends only on the values of 
U (0 in an arb itrarily  small neighborhood N of t — o which we choose so 
th a t in N

I Ü 0 ) —  ckt2 I <  zt2 

where s >  o is given in advance. A n easy evaluation yields

lim — / ~ d ^ (3Va+ f )
r) 4̂0 (t2 +  7)2)2 fì dt

- 4 /
3 T +  1

( t 2 +  i ) 2
d^ =  —  2 ck,

while

lim / N,2 (3^  +  ï]3) ,
W  (t* + r?y.p at <  2 S .

Hen“  1,7 » i  K r  (Ä]) -■  (0>) =  U”  i  ^  ^ 2 ^  - 2 « » )  •

But lim —]-y- — - O'tq) =  lim —  (V)
t] |0  -2 ^ 1  ^  "  *f0 ^  V '

dz/
cbr~ (o).

Lem m a 2.1 is proved and Theorem  1.1 is established.

§ 3. The proof of Lem m a 2.1 given in § 2 necessitated the excursion 
into R 2. The following proof perm its us to rem ain in the R 1 containing the 
mass of the potential.

For this purpose we utilize the function
1

x)
dx
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which is continuous for —  o o <  t<  oo, and has the property X ( t +  i) <  X (t) 
if t >  o, and X (/) =  X (i — t) for all real t.

Let now fi, be a non-negati ve m ass restricted to a bounded portion of
oo

the positive ;r-axis and such th a t its potential u(x)  =  j  — log | y — x  \ d y*(y)
o

has the property of possessing the two one-sided derivatives (°) — H

c_. We need prove c+ =  c Evidently

t oo

r  / d^ )  ( l o g y - l o g  \ y - x \ )
0

ooJ d[xO) (logy —  log I y  —  * | )
0

oo

j  dn-(y) (logy  —  l o g \ y  +  x \ )

and
OO

^ ( o ) = / d; W  =
0

(3-i)
TU 1. I— c+ =  lim —— 
2 HO /

(3-2) ---- — c_ =  lim —
2 h °  t

=  lim - j -
Ho •t

I dx
J Ÿ x( t  —■x)
0

—t
j dx

J i/ x  ( ■ t —-x)0

t
f  dx

J ]/x{t — x)

the factor it/2 being the value of 

we obtain

x dx
Kr (i — x)

Subtracting (3.2) from (3.1)

~ ( c + +  c_) =  lim Y  J  yx ^ _  j ( . — loS \y — x \ -+ l o g . \ y  +  x \ ) d lL(y)
.0 0

t  00

■ j  log \y — 1\ I +  lo g \y  +  A I) d(i(y)lim — _______
h o  f J 5)0 0

—J=  J K f ) - s  /
0

dfA(y)

0 T  /  (>•(/) "  M 1 f ) à \ i i . y } .=  lim 4- I (X
H

Now for ea£h y >  o , X (--j — X ( i + —J > o  and

^  f  M f  ) -  X V +  t ) )  =  J  ( M s ) - K i  +  s)).
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F or r  > 0 ,  the expression . j  (X<7 ) —  X ( i + s)) is bounded since À (Y) is conti- 
nuous and the limit as s —> oo exists:

lim r (X (r) —  X (1 +  s)) =  lim f  s log -  +  5 x
s-r*00 j-^oo J s —'

dx
X ïx  ( I — x)

dx
fir (i —x)

The dom inated convergence theorem  now yields
00

and thus

§ 4. We re tu rn  to the problem  mentioned in the introduction. W ith £2 
a bounded sm ooth dom ain of R 2, let [x) be a C 1 function defined on a line
R O £2 and negative on R 1 f i 3£2. Let v(x)  be the smallest superharm onic, 
continuous on £2 u ^ £ 2, C> o on 2>£2 and ^(x') on R * n  £2. W ith the aid 
of G reen’s function of £2 we can represent v(x)  as

» W  =  j  G( x , y )  dfx (y)

where p is a non-negative mass whose support S is a com pact p a rt of R 1 n  £2. 
Now G (x ì y)  =  log I x  y  | -j- h ( x , y)  where h (x , y)  is continuous in # 
and y  and harm onic in each variable ranging over £2. If  x  and y  are restricted 
to com pact portions of £2, the derivatives of all orders of h are bounded.

Therefore ^ h ( x , y) d \ i (y)  is certainly a C2 function in a neighborhood of S. 
s

The relation v(x)  >  (V) thus becomes

u { x ) = v  (x) —  J h ( x ,  ÿ)  dp O ) =  J — log I * — y  I dp (jy) >  
s s

>  (x) — j  h (x , y)  dp (y) = f { x )
s

and we know th a t the mass is carried by a point set for which v (x) =  (x)
or u ( x ) = f { x ) .  Since + € C 1(R 1n ü ) ,  it follows th a t / ( ^  e C 1 in a (one­
dimensional) interval neighborhood I of S. From  Theorem  i . i  we infer that 
u ( x and hence v (x), are in C 1 (R1n  Q).

Suppose — -(*) is of bounded variation on R1n  Ü. I t  then becomes 

possible to bound the total variation of on I. In fact we know that
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du (x) 
dx

variation of

th a t of

is m onotone in CS while coinciding with 
du 
dx

dh

d f
dx (fi) in S. Thus the total

between the extrem es of S is <  that of -dx <  th a t of —  -f-

dx ( x , y )  d(i.(y).

Since S lies on {x  : ^ (V) > 0}  and \i (S) can be estim ated in term s of S, m ax
and O and R xn  O, we see th a t the total variation of 4̂ - between the extremesdx
of S is bounded, and hence easily also on I, if the closure of I is contained 
in Q. The bond depends only on Q, the sets {x : <\> (x) >  o}  and I, the 
m axim um  of and the to tal variation of ~  on {x: ty (x )  > o } .

THEOREM 4.1. Let Q, be a bounded (smooth) domain of 'R2, and a C1 

function of compact support defined on the intersection of a line (x—axis) with O. 
The smallest continuous sup er-harmonic v (z) which 3> ^ (x) on the x—axis and 
> 0  on 30 , has a C 1 restriction to the x—axis. Moreover the total variation

( 4 « is bounded i f dx is bounded.

If  we apply to a circle of R 2 a conformal transform ation onto the plane 
slitted along the real axis from —  00 to 1 and from 1 to 00, Theorem  4.1 
yields by an easy argum ent:

THEOREM 4.2. Consider the class T of bounded harmonics h in the upper 
half plane O which are continuous on O (J 30 and vanish on the segments 
(—• 00 , —  1] and  [1 ,0 0 ) and are >  ty(x) on (— 1 , 1) where ^(V) is a given 
C 1 (— 1 ,1 )  function of compact support; and such that the conjugate harmonic 
of h increases monotonely on (— 1 , 1). There exists a smallest v(z) of  T, and

d f - <  0 0 , then J d ^dx dx
v(x) is C 1(— 1,1). I f

of the maximum of fi, the support of and

is bounded in terms

d4
dx

In Theorem  4.1 the line carry ing  the mass m ay be replaced by any Jo r­
dan arc of bounded curvature. The proof will appear elsewhere.
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