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Matematica.

A new approach to the é’eﬁm’z‘z'on of topological
degree for multi—valued mappings. Nota di Arrico CELLINA e
ANDRzE] Lasora presentata @ dal Socio G. SANSONE.

RIASSUNTO. — Si usa un teorema di approssimazione precedentemente dimostrato
dal primo autore per ottenere una nuova dimostrazione del teorema antipodale per appli-
cazioni multivoche e per definire il grado topologico per le stesse.

INTRODUCTION.

The approximation theorem proved in [1] permits us to obtain new simple
proofs of fixed point theorems for multi-valued mappings. In this Note
we shall show how it is possible to apply it to a larger class of problems
for multi-valued mappings. We use it to get a new proof of the theorem on
antipodes for multi-valued mappings [3], and we use it to define the topolo-
gical degree for multi-valued mappings [2], [5]. The point is that this approach
is quite elementary and does not require any knowledge of homology theory.
Moreover we can immediately get these theorems for multi-valued mapp-
ings in metric locally convex spaces starting from the known theorems for
single-valued mappings in finite dimensional spaces. An additional advan-
tage of our approach is that the proof of the Antipodal Theorem for multi-
valued mappings can be obtained independently of the definition and pro-
perties of topological degree. For this reason we present it at the beginning.

A drawback of the method is that it requires the mapping to be convex-
valued and therefore does not yield the extension of the theory of topological
degree to acyclic mappings defined on Euclidean space (as presented in [4]).

NOTATIONS AND BASIC DEFINITIONS.

If S is a metric space, x, s €S, then & (x, s) denotes the distance of x
from s. If Z is also a metric space, S X Z is a metric space with & ((s, 2), (v, ) =
=max{d(s,x),d(z,¥)}. For ACS, d(x,A) =inf{d(x,y):y€A}. The
separation of A from B, &* (A, B) is defined to be sup {d (x, B):x €A}
An open ball about x of radius € > o0 is denoted by B [x,c]. We also set
B[A,e]={y€S:d(y,A) <e}. For A contained in the metric linear
space Y, 2A denotes the boundary of A, A its closure, and oA the closed
convex hull of A.

2¥ is the set of subsets of Y, K(Y) the set of comvex subsets of Y and
CK (Y) the set of closed convex subsets of Y. A mapping I': S —2¥ can be
considered as a multi-valued mapping from S into Y. For ACS we set

(*) Nella seduta del 13 dicembre 1969.
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I'(A) = U I'(x). The set I'(S) will be called the range of I' and is denoted
x €A

by R (I). By the graph G of the mapping I' we mean the subset of SXY
defined by

G={(s,y):5€S and yel(s5}.

A mapping I':S —2Y is called wpper semi-continuous (us.c.) at s if
I'(s)==2 and if given ¢ > o there exists a § > o0 such that I' (B [s, 8])C
CB[I'(s),e]. T is called u.s.c. on S if it is u.s.c. at each point s €S.

A us.c. mapping I': S —2Y is called compact when its range is pre-
compact, and it is called finste dimensional when its range is contained in
a finite dimensional space.

The imbedding mapping from SCX into X is denoted by 7. A mapp-
ing ®:S - CK (X) of the form ® = ¢ —1I', where I is u.s.c. and compact
(finite dimensional) is called a compact (finite dimensional) vector field.

The same definitions hold for single-valued mappings. For example,
@:S5— X is a compact vector field when f = 7— @ is a continuous compact

mapping.
BASIC APPROXIMATION THEOREM.

Our results are based on the following Approximation' Theorem [1] and
a simple Lemma.

THEOREM 1. Let X be a metric space, Y a metric locally comvex space,
':X >CK(Y) a ws.c. mapping such that R () 2s totally bounded. Then
for e > o arbitrary, there exists a continuous single-valued mapping
F: X =R (") depending on e, such that

d*(F,G) <e

where ¥ and G are the graphs of f and T respectively. Moreover the range of f
is contained in a finite dimensional subspace of Y.

LEMMA 1. Let X and Y be metric spaces, I': X —2Y a wu.s.c. multi-
valued mapping and let f,: X —Y be such that d*(F,,G) o where F,
and G are the graphs of f, and U respectively. Then if (x,,y,)CF, and
s V) = (%05 o),

(%0, 70)CG.

Since the convergence introduced in the preceding Lemma will often be
used in what follows, we introduce the following definition.

Definition 1. Let X and Y be metric spaces, I' : X— 2¥ a multi-valued
mapping; we say that a sequence {I',} of multi-valued mappings from X
into 2¥ converges to I' (denoted by I', —I') when

4*(G,,G) > o

where G, and G are the graphs of I', and I". The same definition holds when
I, are single-valued.
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THE ANTIPODAL THEOREM.

The following is the Antipodal Theorem for compact u.s.c. mappings
in locally convex spaces. This theorem has been proved in [2] in Banach
spaces.

THEOREM 1. Let X be a metric locally comvex space, with unit ball B.
Let T': B —CK (X) be compact u.s.c. mapping. Set ® = i— T and assume
that

D) N AP (—x) =05

Jor all 0 <\ <1 and all x € 3B. Then there exists a fixed point of T' in B,
i.e. for some x € B,

rel'(x).

Progf. By the Approximation Theorem, there exists a sequence {f,}
of single-valued mappings f,: B— X, such that £, - I'. Set Q, =17—Ff,.
We claim that for all # sufficiently large, o, () ==, (— %) for all x € 9B
and o <A < 1.

Suppose not. Then there exist sequences {x,}C 2B and {},},0 <2, < 1,
such that ¢, (x,) = A, ¢, (—=,). It follows then that

(I + 7\n> Xn :fn (xn> _—7\nfn <__ xn)

Since
fn <xn> €coR <P> ’ fn <_ xn) € coR <F>

and 2R (') is compact by a theorem of Mazur, we can assume (taking
subsequences if necessary) that there exist 3, ¥, € 2oR (T') such that £, (%) =>4
and f, (—x,)—>y;. We can also assume that A, —Ag. Therefore there exists
%0 € 3B, such that (1 + M) x, = (14 ) x5. By Lemma 1 it follows that
Y0 € I'(x) and y,€ ['(— x,), so that (xg— yo) € (xg — (%)) and Ay (— xo —y,)€
€l (—a0— I'(—=x0)). On the other hand (xo— y0) = Ao (— x0 — 1),
contradicting the hypothesis.

‘ Each £, has a finite dimensional range. Consider its intersection with B.
By Borsuk’s Theorem, each f, has a fixed point, say 7, € B. Since each
fixed point belongs to the compact set zoR (I'), we can take a converging
subsequence y;, —y. Again, since (¥, ,5;) € F;, (F, stands for the graph
of f,) and (¥ ,%:) = (¥ ,%), by Lemma 1 it follows that (yo » Vo) €G,
ie. yo €T (y).

DEFINITION OF TOPOLOGICAL DEGREE.

Let X be a metric locally convex space and D an open, bounded (with
respect to the metric & of X) subset of X. Let ¢ :D — X be a finite dimen-
sional vector field. For any finite dimensional subspace YC X containing
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the range of /= 7— ¢, the topological degree of ¢|, (the restriction of ¢
to Y) at a point p € Y \¢ (?D), is meaningful. We denote this degree by

) deg (£, ¢ly, DNY).

From known properties of the topological degree in finite dimensional spaces,
it follows that (1) does not depend on the choice of Y. Therefore we can
define the topological degree of the finite dimensional vector field o : D — X
at the point p, setting

deg (p,¢,D)=deg (p,9|,,DNY).

Definition. Let ®:D — CK (X) be a compact vector field and let
2€¢ ® (3D). Let {p,} be a sequence of single-valued finite dimensional vector
fields converging to ®. We define the fopological degree of ® to be

(2) deg(p, ®,D) =limdeg (p, 9,, D).

For the preceding definition to make sense, we have to show that:
(?) given any such @, there exists a sequence of single-valued, finite
dimensional vector fields ¢, converging to ®;
(77) for #n sufficiently large, pé€q, (9D), so that deg(p, ¢,,D) is
defined;
(¢47) the limit of the right hand side of (2) exists and does not depend
on the choice of the sequence.

Proof of (/). Set ® =;—T'. By Theorem 1 there exists a sequence
of finite dimensional mappings {f,} (f,:D — R (I')) converging to I'. It
is easy to see then that ¢, = 7—f, converges to .

Proof of (¢). Suppose the claim false, then there exists a sequence of
integers {4,} such that p =, —f; (x;) for some x;,€ 3D, It is easy to
show that the compactness of R (I') yields the compactness of { Jr, (2}
Taking a subsequence if necessary, we can assume that f; (x,) converges

to a point y,. Then x, converges to x, &+ p. By Lemma 1 it follows
that

Yo=x—p €l (%), x%€S
contradicting the assumption.

Proof of (¢47). To prove the claim we are going to show that for any
given sequence {9,} converging to ® and % and = sufficiently large,

H,,m (t’ x) = rcpn(’@ + <I —l‘> Pom (x> Z!:_P

for all z€ [0, 1] and all x €9D.

Suppose not. Then there exist two sequences of integers, {£,} and {/,},
a sequence of real numbers {£,}C[o,1] and a sequence of points {x,}C3D
such that

2, Pz, (xn> +’<I - ln) ¢y, (xn> =2.
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Therefore
l‘nfkn (xn> + (I - z;z)]ri,, <xn> =x,—7p.

In virtue of the compactness of zoR (I'), taking subsequences if necessary,
we can assume that 7,—7#,f; (x,)—y and J1, (%)= vy, for some ¢,y
and y,. It follows then that x,— x, for some x, €8D. Therefore

hyi+ (1—1t) yy=2x—p
or
o (o — 1) + (1 —4) (xg —y3) = 2
Since
o (W0 —y1) + (1 — 1) (o —p9) €24y (( —T) () + (1 —2) ¢ —T) (o)
we have
PECE—I) (%) , x€D

contradicting the hypothesis.

PROPERTIES OF TOPOLOGICAL DEGREE.

In the following X is a metric locally convex space; D, D; are open
and bounded subsets of X; ® and ®; are compact vector fields defined on D
with values in CK (X).

Proposition 1. If ®,— ®, and p € ® (D), then
deg (p,®,,D)—>deg(p,?,D).

Progf. It is easy to verity that for sufficiently large 7, p€9,(°D),
so that deg (p, ®,, D) is meaningful. For each n let {®,;} be a sequence
of single-valued, finite dimensional vector fields, such that g,,— ®, (7> o).
Choos;ng subsequences if necessary, we can assume that deg (p, ¢,;, D) =
=deg(p,®,,D) for i>n. It is easy to check that ¢,,—~® and consequently

de , O, D) = lim de y @uny D) = limdeg (P, @,, D).
g o g . g

COROLLARY.  Let ¢:D—>X be a single-valued vector Jeeld such that
9 (x) € O (x) for all x€D. Then

deg (#,¢,D)=deg(p, ®,D)
whenever the right-hand side is meaningful.

Proposition 2. Let @y, ®1 be homotopic avoiding the point p, i.e. there
is a family @, (£ € [0, 1]) of compact vector fields which depend continuously
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on ¢ (@, — @, in the sense of Definition 1, when #,—>£) such that

pe€®, (D) , tefo,1].
Then

(3) deg (p, ®o,D) =deg (p, ®1,D).

Proof. From Proposition 1 it follows that the function 3 (£) %< deg (p,9,,D)
is continuous. Since the range of § is discrete (the integers) and [o, 1] is
connected, then & (#) must be constant.

The preceding proposition can be formulated in a stronger form using
a different definition of homotopy [1], [3].

Proposition 2'.  Let H=7—T and let I':Jo, 1]XD—->CK (X) be a
u.s.c. and compact mapping. Assume thatH (o, -) = ®;(-),H [1,-] = ®2(-)
and p€H (¢, D) for € [0, 1]. Then (3) holds.

Progf. By Theorem 1, there exists a sequence {f,} of finite dimensional
mappings converging to I'. By the usual argument we can show that for
sufficiently large, p ==x —/#, (¢, x) for all z€[o, 1] and all x €3D. Set ¢l =
=7—f,(0,-) and ¢?=7i—f,(1,-). Thendeg (p, ¢l, D) = deg (p, cpz , D).

Moreover @l— @1 and goi——> ®y and by Proposition 1 the assertion follows.
Proposition 3. 1If D = C)D,-,D,- are disjoint, and 9D,;C 2D, then for
i=1
every p € ® (D),

deg (p,®,D)= Y deg(p,®,D,).
i=1

Proof. Since the result is true for single-valued compact vector fields,
the proof follows from the usual convergence argument.
The same argument applies to the proof of the following

Proposition 4. If p and ¢ belong to the same component of R"\ ¢ (2D),
then

deg (p, ®,D) =deg (g, ,D).

Proposition 5. If deg (p,¢,D)==0, there exists x, € D such that
peD(xy).

Proof. By definition of topological degree there exists a sequence of
¢, (single-valued) such that ¢,—~ ® and deg (p,¢,,D)—>deg(p, ®,D).
Therefore for each sufficiently large 7, there exists x, such that p = ¢, (%,).
Since the range of 7— @ is precompact we can assume, passing to subsequ-
ences if necessary, that the sequence x, — ¢ (x,) is convergent. Therefore x,
is convergent too. Set %y = limx,. By Lemma 1 it follows that p €® (%)
which completes the proof.
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