ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Alexandru Brezuleanu

On a criterion of smoothness

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 47 (1969), n.5, p. 227–232.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1969_8_47_5_227_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1969.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 15 novembre 1969 Presiede il Presidente Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — On a criterion of smoothness. Nota di Alexandru Brezuleanu, presentata ^(*) dal Socio B. Segre.

SUNTO. — In quest'articolo si dimostra – per il caso generale – la reciproca di un importante criterio di levigatezza (smoothness) congetturato da Grothendieck in [2], 9.6. Si danno anche alcune generalizzazioni parziali del suddetto criterio (2.1, 2.4, 3.2).

o. The rings considered in this note are commutative and unitary. We use the notations and terminology from: EGA (§§ 19–20) or IL (chap. IX and XI), [2] (pp. 95–110) and [3] (2.3, 3.1, 3.2).

Let $A \xrightarrow{u} B$ be a morphism of rings and M a B-module; u gives the homological function (in M) $T_i(B|A, M)$, i = 0, 1, 2 so that $T_0(B|A, M) = \Omega_{B|A} \otimes_B M$, where $\Omega_{B|A}$ is the module of A-differentials in B. If $A \xrightarrow{u} B \xrightarrow{v} C$ are morphisms of rings, then for any C-module M there is an exact sequence, $T_2(B|A, M) \rightarrow T_2(C|A, M) \rightarrow T_2(C|B, M) \rightarrow T_1(B|A, M) \rightarrow T_1(C|A, M) \rightarrow T_1(C|B, M) \rightarrow T_0(B|A, M) \xrightarrow{v_{C/B|A} \otimes M} T_0(C|A, M) \xrightarrow{u_{C/B|A} \otimes M} T_0(C|B, M) \rightarrow 0$ (see [3] 2.3).

1.0. Let $A \xrightarrow{u} B \xrightarrow{v} C = B/c$ be morphisms of rings, where c is an ideal in B and v is the canonical surjection. We consider the following conditions:

a' $T_2(C/B, C) = o;$

c) The canonical morphism

 $N_{C/A} \xrightarrow{f} \mathfrak{c}/\mathfrak{c}^2$

is injective (see [2] 9.2);

c') $T_{1}(B|A, C) = o;$

b) $T_0(B/A, C)$ is a projective c-module.

(*) Nella seduta del 15 novembre 1969.

17. — RENDICONTI 1969, Vol. XLVII, fasc. 5.

I.I. LEMMA i). If the ring B is noetherian and c is generated by a B-regular sequence, then $T_2(C/B, C) = 0$.

ii) If the condition c') is satisfied, then also c) is satisfied.

If a') and c) are satisfied, then also c') is satisfied.

Proof. i) It results from [3] 3.2.1.

ii) It results from the exact sequence associated to $A \rightarrow B \rightarrow C$ and C ([3], 2.3):

(The equalities are given by [2], 9.2 and [3], 3.1.2).

1.2. Let $A \xrightarrow{u'} A' \xrightarrow{v'} A'/\mathfrak{b} = B$ be morphisms of rings, where $\mathfrak{b} = \ker v'$ and v' u' = u; let \mathfrak{a} be an ideal of A' so that $\mathfrak{c} \subset v'(\mathfrak{a}) = \mathfrak{m}$.

LEMMA. If the conditions b) and c') are satisfied, then the morphism

 $\delta_{B/A'/A} \otimes_B C : \mathfrak{h}/\mathfrak{h}^2 \otimes_B C \longrightarrow \Omega_{A'/A} \otimes_{A'} C$

is invertible to the left.

228

Proof. $A \rightarrow A' \rightarrow B$ and C give the exact sequence ([3], 2.3)

(the first equality is c'); the second is given by [3], 3.1.2.) Cf. b), $\Omega_{B/A} \otimes_B C$ is projective, hence the sequence splits.

1.3. LEMMA. Let $h: M \to N$ be a morphism of B-modules, let M be separated in the m-adic topology and N be a projective B-module. If

$$h_1 = h \otimes B/\mathfrak{m} : M/\mathfrak{m}M \to N/\mathfrak{m}N$$

is invertible to the left, then h is also invertible to the left.

Proof. Let $g': N/\mathfrak{m}N \to M/\mathfrak{m}M$ be such that $g'h_1 = \mathfrak{l}$. N being projective, there is $g: N \to M$ so that $N \xrightarrow{g} M \to M/\mathfrak{m}M = N \to N/\mathfrak{m}N \to M/\mathfrak{m}M$. Obviously $g_1 = g \otimes_B B/\mathfrak{m}$ is equal to g': it follows that $(gh)_1 = \mathfrak{l}$, hence $(gh)_n = (gh) \otimes_B B/\mathfrak{m}^n$ is equal to \mathfrak{l} (see the proof of EGA, 19.1.10, i), or IL, XI, 2.2.1). Let $x \in M$; it results that $x - (gh)(x) \in \mathfrak{m}^n M$ for any $n \ge \mathfrak{l}$, hence $gh = \mathfrak{l}$.

2.1. THEOREM. Let A, A', B, C be as in 1.0, 1.2 and suppose that:

- A' is a formally smooth A-algebra (for the discrete topologies)

- or $\mathfrak{b}/\mathfrak{b}^2$ is m-separated or B is a local ring and $\mathfrak{b}/\mathfrak{b}^2$ is a B-module of finite type.

Then B is a formally smooth A-algebra (for the discrete topologies) if and only if the conditions b) and c') are satisfied.

Proof. "If part". Without any hypothesis about A' and b/b^2 , from [3] 3.1.3 (or [2], 9.5.7) it results that $T_1(B/A, C) = o$ and that $\Omega_{B/A}$ is a projective B-module.

"Only if part". Since A' is a formally smooth A–algebra, $\Omega_{A'/A}$ is a projective A'–module (EGA, 20.4.9); hence $\Omega_{A'/A}\otimes_{A'}B$ is a projective B–module. From 1.2, it follows that $\delta_{B/A'/A}\otimes_B C$ is invertible to the left; then $\delta_{B/A'/A}$ is also invertible to the left (if $\mathfrak{b}/\mathfrak{b}^2$ is m–separated by 1.3; else $\delta_{B/A'/A}\otimes_B K$ is invertible to the left, where K is the residue field of B, and apply EGA, 19.1.12, b) \Rightarrow a), or IL, XI, 3.1). Then B is a formally smooth A–algebra (EGA, 20.5.12, or IL, XI, 2.13). Q.E.D. Consequently $\Omega_{B/A}$ is a projective B–module.

2.2. COROLLARY. In the hypotheses of 2.1, let the condition a') be satisfied. Then B is a formally smooth A-algebra (for the discrete topologies) if and only if the condition b) and c) are satisfied. (Since a') and c) imply c') and c') implies c), by 1.1).

2.3. "Theorem ([2] 9.6). Let $A \to B \to C$ be local homomorphisms of local noetherian rings, with A and C regular, $B \to C$ surjective thus $C \simeq B/c$, c an ideal of B, and B a localisation of an A-algebra of finite type. Then B is a formally smooth A-algebra if and only if the following conditions are satisfied:

a) B is regular, i.e. the ideal c is a regular ideal

b) $\Omega_{B/A} \otimes_B C$ is a projective C-module

c) The characteristic homomorphism

 $N_{C/A} \longrightarrow c/c^2$

is injective ".

Proof. "Only if part". From a) follows a'), by 1.1 i). Let \mathfrak{p} be a prime ideal in A $[X_1, \dots, X_n]$, $A' = A [X_1, \dots, X_n]_{\mathfrak{p}}$ and \mathfrak{b} an ideal in A' so that $B = A'/\mathfrak{b}$. A' is a formally smooth A-algebra (EGA, 19.3). Now apply 2.2.

Here A can be arbitrary, but B must be noetherian and essentially of finite presentation over A (i.e. there is A' as above with b an ideal of finite type and B = A'/b).

We also give an alternative proof of the "if part.". The conditions b) and c) result as in the "if part" of 2.1. Let K be the residue field of B. Let $B' = A [X_1, \dots, X_m]_q$ where q is a prime ideal, and u and ideal of B' such that K = B'/u. B' is a regular ring (since A is regular), hence u is generated by a B-regular sequence (since K is regular); from [3], 3.2.2. it follows that $T_2(K/A, K) = o$. $A \to B \to K$ and K give the exact sequence ([3], 2.3)

$$T_2(K/A, K) \rightarrow T_2(K/B, K) \rightarrow T_1(B/A, K).$$

But $T_1(B|A, K) = o$ ([3], 3.1.3. or [2], 9.5.7), i.e. $T_2(K|B, K) = o$; hence B is a regular ring ([3], 3.2.1). Q.E.D.

[95]

For the \mathfrak{m} -adic topology, the theorem 2.1 has the following analogous form.

2.4. PROPOSITION. Let $A, A', \mathfrak{a}, B, \mathfrak{m}$ and C be as in 1.2, and suppose that:

- A' (with the a-adic topology) is a formally smooth A-algebra;

- the topology of $\mathfrak{b}/\mathfrak{d}^2$ induced by \mathfrak{b} is equal to the m-adic topology.

If conditions b) and c') are satisfied, then B (with the m-adic topology) is a formally smooth A-algebra. Consequently $\Omega_{B|A}$ is a formally projective B-module.

Proof. By EGA, 20.4.9, $\Omega_{A'/A}$ is a formally projective A-module and its topology is a-adic (EGA, 20.4.5), hence $\Omega_{A'/A} \otimes_{A'} B$ is a formally projective B-module (IL, IX, 1.19) and its topology is m-adic. By 1.2, $\delta_{B/A'/A} \otimes_B C$, hence also $\delta_{B/A'/A} \otimes_B K$ (where $K = B/\mathfrak{m}$), is invertible to the left; then $\delta_{B/A'/A}$ is formally invertible to the left (EGA, 19.1.9). From EGA 22.6.1 it follows that B (with the m-adic topology) is a formally smooth A-algebra. The last statement follows from EGA 20.4.9. Q.E.D.

REMARK. Let B (with the m-adic topology) be a formally smooth A-algebra. Then $\Omega_{B/A}$ is a formally projective B-module.

If the m/c-adic topology of C is discrete, or if C is noetherian and $\Omega_{B/A} \otimes_B C$ is a C-module of finite type, then $\Omega_{B/A} \otimes_B C$ is a projective C-module (by IL, XI, 2.5.1).

Hence, under the hypotheses of the proposition, less b) and under the above hypothes, the condition b) is satisfied if and only if B is a formally smooth A-algebra.

From now on all the topologies are discrete.

2.5. Let $Z \xrightarrow{i} Y \xrightarrow{h} X$ be morphisms of schemes, where *i* is a closed immersion of Ideal 3. Let *k* be decomposed in $Y \xrightarrow{i'} X' \xrightarrow{h'} X$ with *i'* a closed immersion of Ideal 3*f*. Let *z* be a point of *Z*, y = i(z), x' = i'(y) and x = h(y).

By [3], 2.2.4, the T_i commute with localisation, hence 2.1 and 2.2 can be written in terms of $\mathcal{O}_{X,x} \to \mathcal{O}_{X',x'} \to \mathcal{O}_{Y,y} \to \mathcal{O}_{Z,z}$, $T_2(Y/X, \mathcal{O}_Z)_z$, i = 0, 1, $T_2(Z/Y, \mathcal{O}_Z)_z$, $T_1(Z/X, \mathcal{O}_Z)_z \to (\bar{\mathfrak{I}}/\mathfrak{I}^2)_z$ and give the criteria for h to be locally formally smooth in y (see [2], 9.5.8).

COROLLARY. Let *i* and h = h'i' be as above and suppose that *h'* is locally formally smooth, that $\mathfrak{N}/\mathfrak{V}^2$ is locally of finite type (or that $(\mathfrak{N}/\mathfrak{V}^2)_y$ is $\mathfrak{M}_{Y,y}$ -separate for any $y \in Y$) and that the topological spaces of Z and Y are the same. Then:

i) h is locally formally smooth if and only if $T_0(Y|X, \mathcal{O}_Z)$ is locally projective and $T_1(Y|X, \mathcal{O}_Z) = 0$.

ii) If moreover $T_2(Z|Y, \mathcal{O}_Z) = 0$, h is locally formally smooth if and only if $T_0(Y|X, \mathcal{O}_Z)$ is locally projective and the canonical morphism $T_1(Z|X, \mathcal{O}_Z) \rightarrow \Im/\Im^2$ is injective.

3.1. Let $A \rightarrow B \rightarrow C = B/c$ be as in 1.0 and suppose that:

d) B is a laskerian ⁽¹⁾ local ring, \mathfrak{c} is an ideal of finite type and $\Omega_{B/A}$ is a B-module of finite presentation for any ideal \mathfrak{d} in B, $\mathfrak{d}\otimes_B\Omega_{B/A}$ is \mathfrak{c} -separated.

LEMMA. If the condition c') (or a')), b) and d) are satisfied, then $\Omega_{B/A}$ is a projective B-module.

Proof. $A \to B$ and $o \to c \to B \to C \to o$ give the exact sequences ([3], 2.3).

$$\begin{array}{ccc} (\mathfrak{l}) & T_1(B/A,\mathfrak{c}) \to T_1(B/A,B) \to T_1(B/A,C) \to \Omega_{B/A} \otimes_B \mathfrak{c} \to \Omega_{B/A} \to \Omega_{B/A} \otimes_B C \to o \\ & & & & & \\ & & & & \\ & & & \\ & & & & & \\ &$$

But $\operatorname{Tor}_{1}^{B}(\Omega_{B/A}, C) = 0$, since $T_{1}(B/A, C) = 0$; from this and form b) and d) it results that $\Omega_{B/A}$ is a flat B-module (IL, IV, 6.12 ii) hence it is a projective B-module (IL, IV, 6).

3.2. PROPOSITION. Let the condition d) (resp. and a')) be satisfied. B is a formally smooth A-algebra if and only if $T_1(B|A, c) = 0$ and the conditions c') (resp. c)) and b) are satisfied.

Proof. The "if part" is true without d) and a') (see [3], 3.1.3).

"Only if part". By sequence (1), c') and $T_1(B|A, c) = o$ it results that $T_1(B|A, B) = o$. $\Omega_{B|A}$ is a projective B-module (by 3.1); hence B is a formally smooth A-algebra ([2] 9.5.7).

3.3. Let $Z \xrightarrow{i} Y \xrightarrow{h} X$ be morphisms of schemes, where *i* is a closed immersion of Ideal \Im , X is a noetherian scheme and *k* is locally of finite type; let $z \in Z$ and y = i(z), x = h(g).

The proposition gives a criterion of smoothness in y in terms of the stalks of T_i , hence:

COROLLARY. Let i and h be as above and suppose that the topological spaces of Z and Y are the same (resp. and $T_2(Z|Y, \mathcal{O}_Z) = 0$). Then h is smooth if and only if the following conditions are satisfied

– $T_1\left(Y/X\;,\,\mathfrak{O}_Z\right)=o$ (resp. the canonical morphism $T_1(Z/X\;,\mathfrak{O}_Z)\to \mathfrak{I}/\mathfrak{I}^2$ is injective).

 $-T_1(Y|X, \mathfrak{I}) = 0.$

- $T_0(Y|X, \mathcal{O}_Z)$ is locally projective.

(1) A ring B is called laskerian if every ideal in B is a finite intersection of primary ideals (IL, III, 2.1).

BIBLIOGRAPHY.

- [EGA] A. GROTHENDIECK, *Eléments de Géométrie Algébrique* Orv, Publications mathématiques, N° 20.
- [2] A. GROTHENDIECK, Catégories cofibrées additives et complexes cotangent relatif. « Lecture note in Mathematics », no. 79 (1968).
- [3] S. LICHTENBAUM, M. SCHLESSINGER, The cotangent complex of a morphism, «Trans. Amer. Math. Soc. », 128, 41-70 (1967).
- [IL] N. RADU, Inele locale, Editura Academiei R. S. Romania, Bucarest 1968.