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Teoria dei controlli. — Construction of optimal controls for a
distributed parameter control systemn®. Nota di Meumer NamIk
OGuzrdrELL 7, presentata ™ dal Socio M. Prcoxk.

RIASSUNTO. — Questo lavoro & dedicato alla dimostrazione dell’esistenza e dell’unicith
di un controllo ottimo per un sistema lineare unidimensionale ben posto con parametro di
controllo distribuito, mediante un integrale input—output in connessione con un funzionale
quadratico. Ammissibili controlli soddisfano talune condizioni al contorno e equazioni integrali
alle derivate parziali del primo ordine.

Per mezzo di un metodo di approssimazione trigonometrica si costruisce una soluzione
ottimale. Controlli ottimali soddisfano una equazione integro differenziale di tipo ellittico.
Unicita e controllo ottimale -sono discussi.

I. DESCRIPTION OF THE CONTROL SYSTEM AND THE OPTIMIZATION PROBLEM.

Consider a well-posed one-dimensional linear control system defined

on the spatial interval o < x < 7 in the processing time interval o < # < 7.
Put

(I.1) R={¢,»v)|o<et<m,0o<x <m}.

The boundary of the square will be denoted by 3R. We assume that the
control system is described by an imput-output relationship of the form

(1.2) u(t,x) = go(t,x)—l—ffK(z‘,x;'r,i)v(‘r,i)did‘r

for (¢,x) € R, where v (¢, x) is the input (control) variable at (,x), u (¢, x)
is the output variable at (z,x), ¢ (#,x) is a given function absolutely conti-
nuotis on R, and K (#,x; 7, £) is a given function on R X R which is abso-
lutely continuous in (¢, x) for almost all fixed (v, &) and square integrable
in (v, &) for fixed (7, x).

A control v = v (¢, x) is assumed to be admissible if it is square integra-
ble on R, and

du(t,0) v (2, 7)

ot ot

(I.3) v(,x)=v(r,x)=o0 for o<x<m,

=o0 for o< ¢t<m,

and

(1.4) p@-= |

R

[ (2 e
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Note that v (#, x) = 0 is not an admissible control by virtue of the condition
(I.4). We denote by V the set of all admissible controls.

The performance of the system S under an admissible control v (¢, x)
is measured by the following cost functional

) ] (o) = /J[uz (¢, %) - o2 (¢, x)] dx dr.

R

In the present paper we are concerned with the finding of an admissible
control 20 = 29 (¢, x) for which the cost functional J(z) assumes its minimum.
Such a control will be called optimal.

It is quite clear that the specific form of R is not a restriction for the
generality of the problem.

The above formulated optimization problem involves the minimization
of the functional J(z) on the space V subject to the constraint (I.4). Hence,
for any optimal control, the functional

(v

ILs)* F@)= f f Ve, Do, ) —w (P (B2 dx ar

assumes its minimum, where . is the Lagrange multiplier, on the set of square
integrable function o(¢, x) satisfying the boundary conditions (I.3), where
u=u(t,x) is given by (L.2).

The Euler-Lagrange equation associated with the functional F(v) is
the following integro-differential equation of elliptic type:

(1.6) ‘L(azya(li,x)_|_92va(;‘2,x))_y(z‘,x):cpl(z‘,x)—l- /J Ki(t,x2;6,n)v(s,n)dnds,
where _ *
1.7 it m)= [ K Eit 006 5 dids
R
and

(1.8) Kl(t,x;G,n)://'K(t,x;T,Z)K(T,E;c,v])did‘r.
R

Thus any optimal control satisfies the boundary conditions (I.3) and the
integro-differential equation (I.6) with a specified value of p.

II. CONSTRUCTION OF AN OPTIMAL CONTROL.

Consider the Hilbert space V' = L2 (R) of functions » = v (¢, x) which
are square integrable on R. Clearly VC TV and the functional J(v) is strongly
continuous on V. Obviously J(@) > o for all v €V.

The sequence {sinjz sin 4x} (j,% =1, --,7) is complete in V in the
sense that for any v €V and any e > o there exist a linear combination

(IL.1) v, =0, %)= X, o Sin 7z sin £z,
=
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such that v, —wv|[<e, where 7 depends on e, the ay’s are certain real
numbers, and |- |denotes the norm in V.

Any linear combination v, (¢, x) satisfies the boundary conditions (I.3).
Hence, v, (¢, ) is admissible, if it satisfies the condition (I.4). Thus, v, (z, x)
is admissible, if

(IL2) De)=""3 (o4 #)a, —1.
7 k=1 7
Put «=(oy), s, £=1,---,% and f,(«) = J(z,). Clearly the function

Ju () is a positive definite quadratic form in the variables oj.

In terms of a;’s the optimization problem formulated in §1 reduces
to the minimization of the function f, («) on the surface S,. of the 72-dimen-
sional ellipsoid defined by Eq. (II. 2). Since the function f, () is continuous
on S, and S,x is compact, f, («) achieves its minimum at some point o = o0
of S,.. Consider the function

n

(I1.3) (¢, x)= «f, sin j¢ sin kx,
7 k=1

and put

(I1.4) b =7, () = min £, () = ] @).

Clearly pf> o for all . It can be easily seen that the sequence {u’} is mono-
tonic decreasing. Therefore the limit
(I1.5) w0 = lim pl = lim J({@9)
n—> 00 n—>00
exists and u%> o.

Consider the sequence {2 (¢, x)}. Since the sequence {u} is convergent,
there exists a constant M; such that o< wd <M, for all . Thus

(1L6) 1) = ([ (s, 0P+ ph, 2 drar< vy,
R
where 20 (¢, x) is defined by (I.2) with » =20 (¢#,x). Hence
(IL.7) ﬂ [0 (¢, D dx de< M,
Ii/

for all 7, which shows that the sequence {¢? (#, )} is bounded in the Hilbert
space V=12(R). Thus the sequence {20 (¢, x)} is weakly compact in V.
Accordingly, we can choose a subsequence from the sequence {20 (¢, x)} which
converges weakly to a o0 (z,x)€lV. We change the indices so that
{29 (¢, x)} will denote the weakly convergent subsequence:

(11.8) (@, x) L =00 (2, x).
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We can easily show that the sequence

(ILo) {u2<z,x>=qo<z,x>+/[K<f,x;T,a>v2<v,&>dadr}

is uniformly bounded and equicontinuous on R, and therefore, by Ascoli-
Arzela’s theorem, is compact. Thus we can select a uniformly convergent
subsequence from {z9 (#,x)} converging to a continuous function 0 (z,x)
on R. Changing the indices once more, so that %z =1,2,3,.-- refers to
this uniformly convergent subsequence, we can write

(IL10) Wt %) > (2, %) = o (2, %)+ f/mK<z,x;T,z)00<¢,z> dE d=

uniformly on R. By the help of the dominated convergence theorem, we
obtain

(IL.11) J(@) = lim J(@" = lim po = uo,

which shows that the functional J () achieves its minimum for v = 20 (¢, x),
and p? is the minimal value of J (o).

We now show that 20 (#, x) is the required optimal control. To do so
we have to prove that ¢9 (¢, x) is admissible.

First of all, 20 (¢, x) clearly satisfies the boundary conditions 20 (0, x) =
=20 (n,x) =0 for 0o <x <m Further, let us note that, since D (29) = 1,

we have
%) (2, x)} ff
dede<1

o 0 A O 0 N ) /
t/) ( /’K) % g v (Z X

so that the sequences % ~ o g are bounded in V=12 (R),

dxdz‘<1

and therefore they are weakly compact. Hence we can extract a weakly con-
vergent subsequence, which we shall write by the same indices, from the above
sequences approaching to certain functions ¢ (¢#,x) and %4 (¢, x) of V:

30 (¢, x) 30 (¢,x)

w

(III3) —T—*ag<tyx> ’ l—)ﬁO‘:x)'

ox
Obviously g (¢,0) =g (¢, ™) = o since 29 (¢, x)’s are admissible. We now
show that
00 (2, 300 (¢

(IL.14) g, 5 =22 4, =200,
To do so we proceed as follows:

As it is shown above the positive definite quadratic form £, («) achieves
its minimum p;} subject to the constraint (I.4) at the point «® €S,.. By the
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method of Lagrange multipliers, we have

ol n 2
(IL15) Wajk gf (0)— / / 1( _Eljaﬂ cos j sin f%x)
;/R \J k=

n 2
-+ ( E ko sin jit cos éx) ?
et A

/\\dxdz‘:O

for « = &% which yields to the following 7?-equations:

(11.16) Ug w0 (¢, P

—|— 00 (¢, x) sin ji sin kx

30 (¢, Z,
—y,g[y( Jvz)jcos]z‘sm/éx—l— ( >,ésin]'z‘coséx dxdt=o0
forj,é:1,~~-,n, where
20 (¢ [
(11.17) % //rK (#,x; 7, ) sin st sin ££ dE dr.

"’

Multiplying each of the equations (II.16) by an arbitrary constant Y% and
summing over 7 and £ from I to 7, and manipulating on the first term, we
obtain

- .
(IT.18) Jf;[cpl(t,x) —l—//Kl (#, x50, (c,m) dnde + 20 (¢, )| Q, (#, %)
K B
Y (¢, 7y 3Q, (¢,x) dup(t,x) 3Q, (2, x)

o ”’2 [ ot ot + ox ox } % dx dz = o,
where
(I1.19) Q,(t,x)= Y () sin j sin fx.

JE=1

Integrating by parts, we find
(11.20) // %[cpl (t,x) +JJ Ki¢t,x;06,m)d(c,n)dy dc—l—vgy(z‘,x)] Q, @, x)
R R

22 s 32 , X
ot ax? | \

——p,gvg(z‘,x){

Now, let Q (#,x) be an arbitrary function, twice continuously differentiable
in R satisfying the boundary condition

(I1.21) QE,x)|g=0
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Clearly, we can choose the coefficients Y{p in such a way that
(I1.22) hm ff | QD (2, 2) — QO (¢, x)Pdxdt =0 (f=o0,1,2),

where QO (¢, x) and Q® (#,x) denote the partial derivatives of Q, (¢, x)
and Q (¢, x) with respect to # and x of order 7, respectively. Since pd —uo,
vy (¢,x) >0 (¢,x) weakly and 0 (#,x) >0 (¢, x) uniformly on R, we
have

(I1.23) U w(t, %) Qt, x)— w020 (¢, x)l ¢, ")+9Qf ">J§dxdz:o

where

(I1.24) w(z‘,x)z<pl(z‘,x)—|—ffK1(t,x;c,v])vo(c,v;)d"qdc—l—vo(t,x}.
i

Clearly, the function w (¢, x) is square integrable on R. Put
(I1.23) W(l‘,x)———%ff(}(z‘,x;*r,i)w(r,&)dﬁdr,
K

where G (#,x;7,£) is the Green’s funct1on for the domain R. Hence we
have

(I1.26) - W@, n)| =0 and V2W (¢,2) = w (¢, %),

where V2 is the Laplace operator in (¢, x) : V2 = —a;z~+ ;}:—2 Applying Green’s

formula to the first term of (IL. 23) and making use of the Eqs. (Il.21),
(IL.25) and (II1.26), we obtain

(IL.27) H{W@,x)—pﬁvo #,2)}V2Q (¢, x) dx dt = o.
R
Clearly the function

(11.28) Y, x) =W, x)—p02 (¢, %)

is square integrable on R. We now choose the function Q (¢, x) as follows

(I1.26) Q(l‘,@:%ff@)(f,E)G(l‘,x;r,i)di.dr,

which satisfies the boundary condition (IL.21). Further we have V2 Q (7, x) =
= {§ (¢, ), which, on account of Egs. (I1.27), (I1.28), yields

(I1.30) Jf{W(z‘,x)—p,Ovo (¢, %)} dx dz = o.
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Thus, W (¢, x) —up92° (¢, x) vanishes almost everywhere in R.
(I1.31) w o (2, x) =W(,x) a.e.

Since W (¢, x) is twice differentiable, almost everywhere in R, the function
2% (¢, x) is also twice differentiable almost everywhere in R. Further, making
use of Egs. (II.24) and (II.25), we find

(I1.32) WOV o0 (1, 2) — o0 (¢, 2) =

=<p1<t,x>+ﬂK1<z,x;s,n>v°<a,n>dndc,
R -

which is the Euler-Lagrange equation associated with the functional F ().

Note that, by virtue of Eq. (I.32), V®29 (¢, x) is square integrable on R,
20 (¢, x)
ot

on R. Since the function 29 (¢, x) is continuously differentiable

which implies the absolute continuity of the partial derivatives a

920
and 222, 2)
ox

on R, again by Eq. (IL.32), V220 (¢, x) is absolutely continuous on R.

We now establish the equalities (II.14). For this purpose consider Eq.
(I.18) and pass to the limit as #-—>oco. Then, by virtue of Egs. (IL3),
(I1.8) and (II.13), we obtain

2Q (z,
(IL33) [l neen—uwleen 20,
R
Q¢ %)) —
where Q (¢,x) is an arbitrary function satisfying the boundary condition
(IL.z1) and twice continuously differentiable in R, and w (¢, x) is given by

Eq. (I.24). Further, integrating by parts in (I1.23) and observing that 2° (¢, x)
satisfies the boundary conditions (I.3), we find

oz, 30 (2,
s [[lee e —w [0 Qe |
R
0 (2,x) 3Q (¢, x) .
+ 22 ¢ dedt—o,

or, subtracting (I1.33) from (11.34),

e ’ 9 ’
(IL33) [P —g ¢ m] 202 ¢
o :
920 (¢, o
—{-(# k(z, x\} Qéi >$dzdt:o

Now, taking into account the arbitrariness of the function Q (¢, x), we easily
establish Egs..(IL.14). Hence 20 (¢, x) is admissible. Since it also minimizes
the functional J() on the set V, it is optimal as asserted.
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III. UNIQUENESS OF THE OPTIMAL CONTROLS.

So far we have only established the existence of an optimal control.
We have also shown that an optimal control satisfies the integro-differential
equation (II.32), where p, (> 0) is the minimal value of the functional J(2)
in the space V. The uniqueness of the optimal controls is closely connected
with the uniqueness of the solutions of Eq. (II.32) subject to the conditions
(I.3) and (I.4). We now investigate briefly this problem.

In the previous section we constructed the solution 29 (¢, x) of Eq. (I1.32)
which satisfies the conditions (I.3) and (I.4). Suppose that Eq. (I1.32) has
another solution, say ! (¢, x) which satisfies the same conditions. Consider
the function

(I11.1) v(t,x) =00 (¢, x)—ol(z,x).
Clearly we have

v(©,x)=v(n,x) =0 for o< x <,
(I1L.2) v, 0)=U @) , v, =) for o<r<m,

where

AIL3) @O =2"(, 00— (z,0) , ¢, 2) =2°(¢,m) —ol (¢, m),
b1 (0) = b1 () = Yy (0) = ¢ (m) = 0.

The function o (#, x) satisfies the following homogeneous equation

(II1.4) p.OVZ‘U(z‘,x)mv(z‘,af): ({Kl(z‘,x;c,n)v(c,v))dwdc

Jo
R

for (#,x) € R. TFirst we consider the case {; () = Yy (/) = 0. In this case
the function (¢, x) is the solution of the following homogeneous Fredholm
integral equation:

(I1L5) u°v<z,x>:%ﬂcrl<z,m,a>v<f,a>dadr
K
where

(I11.6) Gl(z‘,x;’r,i):G(z‘,x;'r,i)—}-ffG(z‘,x;s,v;)K(c,V);T,E)dndc,
¥

and G (#,x;7,£) is the Green’s function of the domain R. According to
Fredholm’s theorem, we have two possibilities: mud is a regular value or an
eigenvalue of the kernel Gy (#,x; 7v,£). In the first case v (, %) = o is the
only solution, and consequently, o' (¢, x) = ¢ (¢, x), i.e., the optimal control
is unique. If mu® is an eigenvalue of the kernel Gy (#,x;7,%), then there
exists at least one non-trivial solution of the integral equation (III.s5), in
which case the uniqueness of the optimal controls is no longer valid.
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We now consider the general case where ¢, (#) 2= 0 andfor {y (¢) = o:

Let o* (¢, x) be the solution of the Laplace equation V2w (¢, %)= o
satisfying the boundary conditions (IIL.2). Then, putting v (¢, x) = o* (¢, x) +
+ ™ (¢, x), we obtain the following non-homogeneous Fredholm integral
equation for v** (¢, x):

(I11.7) WO (2, x) = g* (¢, x) + %Jf Gy (t,x;7,8) v (x,8) dE dr,
R

where Gy (¢, x; v, &) is defined by (II1.6), and

(I11.8) g, x) = UG #,x;7,8)v*(r, E)dE dn.
‘R

If g°(¢,%)=o0 and if =ud is a regular value of the kernel Gy (z,x; 7, £)
then the uniqueness of the optimal control is assured by the Fredholm theory.
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