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Topologia. — Uniform Structures from Abstract Spaces. Nota ©
di GeorGE C. GasTL, presentata dal Socio B. SEGRE.

SUNTO. — Partendo da topologie e spazi astratti assegnati, se ne deducono uniformita
(generalizzate od estese) nel senso di Weil coll’uso di opportuni insiemi di funzioni.

INTRODUCTION.

Fréchet [2] and Appert [1] studied abstract spaces, and their work
involved generalized uniform structures. In his extended topology P. C.
Hammer considers abstract spaces using set-valued set-functions as the pri-
mitive notion. This approach has also been used by Z. P. Mamuzic [4].
In this paper the problem of obtaining generalized or extended uniformities
from given topologies and abstract spaces is considered.

Briefly recall that a Weil uniformity [7] for a set M is a non-empty
family @ of subsets of M XM satisfying the following:

(@ Ued implies UDA=1{(p,p)|peM}

(6) Ued implies U™le®,

(¢) U €® implies there exists V € ® such that V.V C U,
(d)U,Ved implies UNV €D, »
() Ue ®and UC V imply V€ ®. (This property is called « ancestral »).

The uniformity is separated if N ®= A.

In regard to set-functions, the terminology used will be that of Ham-
mer [3]. The empty set will be denoted by N. The term Fréchet space
will denote an ordered pair (M, ¢) in which g is an expansive function from 2M
into 2M.

UNIFORMITIES FROM ABSTRACT SPACES.

It is well-known that a topological space (M, T) is uniformizable if and
only if it is a completely regular space. Pervin has shown [5] that any topo-
logicalkspace is quasi-uniformizable where a quasi-uniformity on a set M
is collection of subsets of M XM satisfying conditions (a), (c), (), and (e
given in the introduction above.

For spaces more general than those (M ,#) with Kuratowski closure
function #, we want to know how the properties of the set-valued set-function
determine the properties of the @ obtained, in order to see what kind of uni-
form-like structure corresponds to the various abstract spaces. For this
purpose let (M ,/) be a generalized topology in the sense of Mamuzic [4]

(*) Pervenuta all’Accademia il 4 settembre 1969,
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and consider using f in a way analogous to an interior function, so that for
ACM, fA is treated as the open set in Pervin’s construction[35]. For each
ACM we define Ua = (fAXfA)U(¢fAXM). Then S ={Us|ACM},
B ={V|V is a finite intersection of sets in S} and ® = {UC _MxM|U
contains some V € B}.

THEOREM 1. Let (M, f) be a genzralized topology and suppose ® is defined
Jrom it as above. Then:

(i) @ 25 ancestral and U € O implies ACU
(ii) © 4s closed under intersection.
(iii) @ has property (c) but need not be symmetric.

Proof: (i) By the manner of its definition, U€ ® and V DU implies V
contains some element of B, so V € ®. For any p €M either p € fA or p € cfA
for each set ACM. If p€fA, then (p, p) €fAXFfA CUa, and if P ESA
then (p, ) €/ AXMCU,. Therefore each U, must contain A and each
member of @ contains A.

(i) If U,V € ® then each one contains a finite intersection of the
Uy4’s, hence U NV must also.

(i) We want to prove that for each ACM, Uy o U,CUx. Let
(x,2) €UsoUys. Then for some y we have (x,y) €U, and (v,2) €U,.
If y €fA then z€fA and (x,2)€Ua. If yecfA, then x €¢fA and also
(x,2) €Uys.  Therefore Upo Uy CU, for each ACM. Now if Ue O,
U contains some Uy, NUxN - N Uy, =V, and Ve€®. But V.VCV
because UAZ"’UAi CUa, for 2=1,2,---,% so this is a V€ ® which
satisfies VoV C U. To show that symmetry is not to be expected in @,
let (M, /) be a Ti~topology with f the Kuratowski closure and M at least
countably infinite. Then for p €M, fp = p, and we have U ={{,pru
U{lg,x)[x €M, gk p} € ®. But Uy ={(p, U, g) | x €M, g <=7},
and therefore V=U, N U{ﬁ} ={(p, U (c{ptxc{p)). If U{p} € ® then
Ve and V would have to contain some set U = (fA XfA) U (¢fA X M).
But {¢} XM is not contained in V for any g, so UsCV implies ¢fA =N
ande = M. This means Uy =M XM. Thus V cannot be in ® which means
U{f,}e ®, and ® is not symmetric.

Therefore the ® defined in such a way is a quasi-uniformity regardless
of the properties of £

THEOREM 2. Let (M, f) be a generalized topology. If ® is constructed from
it as above, and r: 2M—2M is defined by rA = {p | U[p]C A for some U € @},
then:

(i) If f is shrinking, f C7,
(if)y If f is an interior function, f = 7.

Proof: (i) Let ACM and p €fA. Then Ux = (FAXSA) U (¢fAXM) €D
and Ua[p] =fA CA because f is a shrinking function. Thus p€7A and
FCr
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(ii) Although the definition given for ® seems to use every ACM,
if / is a topological interior function then fA is an open set G, so in reality,
in this case, only the open sets are used, and the ® constructed is the same
as that of Pervin. Since the quasi-uniform topology from @ is the topology
we had originally, the interior function » must be the same as £.

Therefore ‘at least in these two cases we know the relation between f
and the topology obtained from ®. Without such restrictions on f such a
relationship between f and » does not necessarily hold.

We will now consider a second method of constructing a collection ®
of subsets of M XM starting with an extended topology. Let (M ,f) be an
extended topology and for each ACM define Vo == {(a,8)|6€A, or else
b€A and a€fA} = (M XA)U((fA X A). Note that Vx =MxM and
Vu =/MXM. Let ® ={Vy|A CM} and consider the properties of ®.

THEOREM 3. Let (M, f) be an extended topology and ® a nonempty family
of subsets of M XM defined as above. Then:

() If f is enlarging, © satisfies property (a) for Weil uniformities,
(i) If f s isotonic, then the function t defined by tA = {p|{p}xA
intersects every N € @} is the same as f, provided fN = N.

Proof: (i) If fA D A for each ACM, then for a particular Ay look at
Va, = M X cAo) U (fAoxAo). If p€Ao, p€fAg and thus (p, p) €fAgxAg CVa,.
If pecho, then (p,p) €EMXcAy. Hence (p,p) €Va, for every p€M;
ie, ACV,,

(if) From the definition of the function #, we have p €zA iff {p} XA
intersects every V € ® and this means iff { p} X A intersects every Vg, BC M.
If Anc¢B==N, then clearly {p} XA intersects M X¢BCZ Vg, hence {p}xA
intersects every Vp iff it intersects every Vg for which A C B. If
{p}XxANVeg==N for all BDA, then {p} XA NVa==N and thus
{pyXANFAXA==N. Then p€fA. Conversely if p €fA and A C B then
isotonicity gives p €fB. Then, assuming A ==N, ({p}XA)N (fBXB)=EN
so {p}yXANVe==N for all BDA. This proves p €A iff { p} XA intersects
every Vg with B DA, which is true iff p €fA; under the assumptions f
isotonic and A ==N. Hence we know that when £ is isotonic, fA = A for
all A4=N. Clearly #N = N, so # = f is possible only if /N = N. Otherwise
¢ and f agree, everywhere except at N.

COROLLARY 1. [If f is a contractive function, then f = t.

Proof: When f is contractive it is isotonic, hence from part (ii) in the
above theorem we know fA = A for all A==N. Since f is shrinking,
JN = N; therefore f = ¢

Because éhe given ® is not ancestral, the function » which was defined
by #A = { p | there exists V€ ® for which V [p] = A} need not be isotonic
and hence its dual ¢7¢ also may not be isotonic. The following example illus-
trates this situation.

12. — RENDICONTI 1969, Vol. XLVII, fasc. 3-4.
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Example 1. Let M ={a,b,c,d,e,f,g,%,k,m,n}, and define

Vl:{<¢,6)y<4:5>:<é:m>)(6’£>’<&:g>};
Vg:{(d,e),(g,é),(d,é),(é,m),(é,c),(,é,g)}, and
V3:{<m’d>’<”:'é>!(g»d>’<'é’“>}'

For ® ={V1,Vz2,Vs} we have »({6,¢}) ={a,d} but »({a,b,e}) =N
and in fact » (M) = N. Thus » is not isotonic for this ®.

When @ is not ancestral, the function ¢7¢ may not be the same as ¢
but when the ® is obtained as described above using (M, f) we have the
following information about crec.

THEOREM 4. Let(M, f) be an isotonic space and construct ® ={V,| ACM}
where Va= (M XcA) U (fAXA). Then the function r as defined previously
has its dual crc =t

Proof: From the definition of » we know p € crcA iff for each Vg € @,
{71(?,y) €V} ==cA. Since Vx =M XM, e7eN =N =/N. Let A==N,
Then pé&fA implies {y|(p,»)€Va} =cA, which means pe&ccA and
ereACFA. If B==A, then ¢Be=cA and {y|(p, ¥)€ Vg} =M or ¢B, neither
of which is ¢A. Thus p €crcA iff {y|(p,y) €Va}==cA which is true iff
p €fA, provided A==N. But when f is isotonic, fA = zA for all A ==N.

This theorem shows that in this situation, even though @ is not ancestral,
the function ¢7¢ is isotonic because it agrees with ¢ everywhere, and they
both agree with / on every set except perhaps at N. Therefore, using ¢rc it
is not possible to get a function which comes any closer to f than the func-
tion # does.

Suppose we changed the method of constructing the family ® from
a given (M, f) in order to try to make the resulting function ¢»¢ coincide
with f; i.e., in order to have ¢#¢N = fN. This we already have if /N = N,
so assume fN == N.

THEOREM 5. If (M, f) is an isotonic space and fN == N, and © is any
Samily of subsets of M XM, then the function given by creA = {p| for each
V€D, V[p]==cA} does not agree with f everywhere.

Proof: Assume that crc agrees with /. Then ¢re is isotonic, and p € c#cM
iff for each V€ ®,V[p]==N hence {p} XM intersects every V€ ®. Also
p €creN iff for each V € @, { p} XM is not a subset of V. Then p €N iff
there exists some Vo € @ such that {p}XxMCVy. For any ACM we have
ereNCereA CoreM.  Let p€creN. Then {p}xM is not a subset of any
Ved, but p€crcM so {p} XM intersects every Ve ®. Let U € ®. Then
2y xM (.U, but U[p] 4=N. Let A =U[p]. We know A ==N and A =M.
Consider ¢A.  Since U [p] =A = c(cA), p€crc(cA)=crA. This is a

contradiction since p € c7eN C cre (cA).

Therefore, no matter how the family ® is constructed, the function cr¢
could not be the same as the isotonic function f if /N ==N. It could never
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be closer to f than it is for the given construction of @ for which # = cr¢ for
all sets except N. Given a space (M , f) then, it is not possible to have a uni-
formity @ on M for which f is the associated function if f is isotonic and
SN =E=N.

The construction of ® can be changed slightly to make @ ancestral.
For a given (M,f) let V4o = (MXcA) U (fAXA) as before but define
¢ ={UCMXM | for some ACM, U DV,}. This does not interfere with
the functions # or » because the small elements of ® determine the function
values. Suppose the given space (M ,f) is a Fréchet space with /N = N.
Then @, under the new definition, is ancestral, and it has property (a) of
Weil uniformities because f is enlarging. Due to the fact that f is isotonic
and fN = N we know that #=j#. These results are summarized in the
following.

THEOREM 6. Let (M, f) be a given space and ® = {UCMXM |U DV,
Sfor some ACMY}. (i) If f is dsotonic and fN = N, then © is a generalized
uniformity (i.e. is ancestral) for which t = f. (ii) If f is expansive and fN = N,
then © is an extended uniformity [6] for whick ¢ = f.

The following example is a case in which £ is isotonic.

FExample 2. Let M be the set of positive integers and suppose f: 2M— 2M
is defined by fA = {2 |z = a1-a2 for a1,a2€A}. Clearly f is isotonic and
SN =N. For ACM we have V= (MXcA) U (fAAXA), and ® is defined
as {UCMXM |UDV, for some ACM}. Then p€zA iff p €fA which
is true iff p can be factored in A. Notice that if 1 € A then AC fA, but £ is
not an enlarging function. The dual function » = ¢ and p €7A means
p €t (cA) and hence p cannot be factored in cA.
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