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Matematica. — Sturmian 7Theorems for Characteristic [nitial
Value Problems®. Nota ™ di Kurrt Krerrs, presentata dal Socio
M. Picone.

RIASSUNTO. — Si stabilisce un teorema sturmiano di confronto fra due equazioni del
tipo 2y, 4 pu = 0, considerando soluzioni delle equazioni che assumono valori prescritti su
caratteristiche dell’equazione stessa. Si da anche un teorema di oscillazione per soluzioni delle
sopraddette equazioni soddisfacenti ad opportune condizioni di regolarita e infinitesime su
una caratteristica.

In [1] the author considered functions # (s,#) and » (s, ¢) which are
solutions of the hyperbolic differential equations

<I> %tt—'%ss+ﬁ<yrt>%zo;
(2) Uy —v, +g(s,)v=0.

Considering s as a space variable and # as time, the functions = (s, #) and
v (s, #) may be interpreted as representing the motion of two vibrating strings
which are oscillating about the equilibrium lines # = o and v = o while
subject to restoring forces pz and gv, respectively. If ¢(s,¢) = p(s,?), then
the second string is subject to a greater restoring force and therefore should
oscillate faster than the first. The precise description of such behavior is
called a Sturmian theorem for hyperbolic equations. In [1] Sturmian theorems
were established of initial boundary value problems corresponding to (1)
and (2).

The purpose of this paper is to establish Sturmian theorems for (1)
and (2) in the context of the theory of characteristic initial value problems.
To that,end it is convenient to effect a change of variables k

x=15+¢
y=—s541

so that (1) and (2) become

(3) Uy + p14 =0,

) v, +qv =0,

respectively. It is assumed that p(x,y) and ¢(x, y) are continuous throughout
the first quadrant of the (x, ¥)-plane and that # and v are C? solutions of (3)
and (4) in the classical sense.

(*) Rescarch supported by a grant of the National Science Foundation NSF GP-11219.
(**) Pervenuta all’Accademia il 30 ottobre 1969.
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One form of Sturmian theorem for characteristic initial value problems
follows readily from comparison theorems for differential inequalities. In

particular, we shall make use of the following result which is a special case
of [2; 20 IV].

LEMMA. Let u(x,y) and v (x,y) satisfy
Uy, + P =0
Uy +gv <O
Jor (x,3)€RE,m)={(x,»]o<x<E o<y<n} [
v(2,0)+ 00,1 —2(0,0) <u(,0) +u0,1n—u,0)
then v(x,y) <u(x,y) in RE, ).
THEOREM 1. Let u(x,y) and v(x,y) be solutions of (3) and (4), respec-
tively, in a rectangle R (£ ,n) for which
() #(x,y)>o0 for (x,5)€RE,n)
) u(E,)=o.
If p(x,0) =q(x,y) m RE,m) and
vE,0)4+v(,n)—wv(0,0) <u’,0)+ul0,n)—ul,0),

then v (x,y) cannot remain nonnegative in R (€, ).

Proof. We write g(x,y) = p(x,») 4+ 8(x,»), where §(x,») >0 in
RE,nw). If v(x,y) >0 in R(E,n), then we have

Uy + pv=—208 <o,

so that by the Lemma v (x, ¥) < #(x, %) in R(¢, ). In particular, v(£,n)< o,
so that v (x, ¥) becomes negative in R (§, ).

Remarks.

I. An analogous result to Theorem 1 holds in case #(x,y) is negative
in R (&, ).

2. Using a more general version of the Lemma, one can easily gener-
alize Theorem 1 to nonlinear differential inequalities for # and 2.

The difficulty with Theorem 1 is that it is local in character and does
not provide a useful means of establishing oscillatory behavior in the entire
first quadrant of the (x, ¥)-plane. The next theorem is not restricted in this

way. Motivated by the fact that the characteristic initial value problem for
the telegraph equation

)

Uy, + At = O
u(x,0)=u(©,y) =1

has as its solution #(x, %) =Jo (2YAxy ), we consider a 1-parameter family
on nonintersecting curves C, whose graphs in the first quadrant are given
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by ¥ =/, (x). We assume that each f,(x) is continuously differentiable and
strictly decreasing for o<x << oo and that each C, is asymptotic to the
positive x and y axes.

Our comparison theorem will apply to solutions # and v of characteristic
initial value problems insofar as we shall require some mild regularity
conditions near the characteristics which are typical of stable solutions corre-
sponding to initial data tending to zero along the characteristics. Specifically
we shall say that v is u#-regular if for any pair of nodal curves C,, and G,
of ,

)
lim j lu(x, ) v, (x, )| dy=o0,
X > 00
S ()
)

lim ( \v(x, ) u,(x,y)| dxr=o0.
y—>o0
f_l

Making use of these regularity conditions it is possible to establish a Sturmian
comparison theorem and an oscillation theorem for (4).

THEOREM 2. Le u be a solution of (3) which vanishes on C, and C,,
and is of constant sign in the wvegion D enclosed by C, and C,,. If

g(x,y) =p(x,), g(x, ) == p(x, ), then every u—regular solution v of (4)
has a zero in D.

Proof. Suppose v does not have a zero in D. Without loss of generality
we may assume that # and v are both positive in D. Multiplying (3) by
and (4) by » and subtracting yields

Uty — UV, + (p —gq) uv = 0
or
®) (o), — () = (g — p) uo.
Let Dy ={(x,7)€D|o<x <M and o<y <M}. Integrating (6) over
Dwm and applying Green’s theorem yields
—fj) vu, dx + uv, dy :// (¢g—p)uvdxdy >o0.

Dy Dy

In order to obtain the desired contradiction it is sufficient to show that

¢ Mli_I:l s, dx -+ wv, dy > 0.
.
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To establish (7), suppose that f, (x) </, (x) and define

X = Jr, (M) ; i=1,2,
=/ (M) i=1,2,
Then the boundary integral in (7) can be written
M 7
J o p @ £ e [ (M50, (M ) dy
R §

M *p
—jv(x,frz(x)) w, (%, fr,(x)) dthv(x,l\/[) u, (x , M) dx .

The regularity conditions on % and v assure that the second and fourth integrals
in (8) tend to zero as M— oco. Furthermore since 2%, >0 on C,, and #, < o
on C,,, the first and third terms make non-negative contributions for all M.
This shows that (7) is satisfied and completes the proof.

An oscillation theorem follows readily from Theorem 2. A solution of
(4) is said to be oscillatory at oo if it has zeros in the first quadrant arbitrarily
far from the origin.

THEOREM 3. Swuppose v is a solution of (4), where q(x,y) = (xy)* for
some constants h >0 and o >—1. If v is w-regular with respect to (10)
below, then v is oscillatory at oo.

Proof. Consider the characteristic initial value problem

ey + N (2y)*u = 0,

u(x,0)=u(©,y) =1,

)

where >0 and o> — 1. Assuming a solution of the form # (x,y) = « (2)
where z = xy, (9) becomes

st + u -+ A%u =0
%(0) =1

which has the solution

%:JO<BZ u;{—l)

22 .
where = a1 Thus (9) has the solution
W2 atl
(10) u<x,y>:Jo(§+, (ay) 2 )

whose nodal lines C, are determined by
2

(et e
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where 7, is the 7' zero of Jo. It follows from Theorem 2 that every #-regular
solution of (4) is oscillatory at oo.

In order to apply Theorems 2 and 3 it is necessary to establish the exist-
ence of a class of #-regular functions. The following theorem makes precise
our earlier assertion that the regularity conditions are realized by stable
solutions corresponding to initial data tending to zero along the characteristics.

THEOREM 4. Swuppose g (x,y) is bounded and that v (x ) is a solution
of (4). If there exists an €> 0 such that

(11) lim |v(x,y)| =0 uniformly for o<y <e¢,
(12) lim v (x,y) | =0 uniformly for o<<x<e,
¥ —>00

then v is w-regular with respect to (10).

Proof. Let C,, and C,, be nodal curves for (10) so that the C,, are given
by ¥ = kx for i =1,2 and Ay> & >0. Let K be a bound for g (x, )|
From (4) it follows that

zu@ny>=v-fq@,y>v@,ywﬁ
0

and
o0 <K [ |0, 5)] di.
0
By (11), lim |z, (x,%)| = 0o (x) uniformly in y, and since the function

u(x,y) given by (10) is bounded,

kyfx

lim / | (x,9) v, (x,»)|dy=o0.
balx

To establish the second condition of #-regularity we note that

21/2 2312 o+l otl
uy(x,y) =——T1 (xy) ? )-(xy}z .

x o+ 1

For /f1<xy< £ we have
|2 (x,9) | = O(y)
so that the assumption (12) implies the second regularity condition
Ry ‘
lim flv(x,;vD u (x,7)] dr =o.

y—>00
Fly



144 Lincei — Rend. Sc. fis. mat. e nat. — Vol. XLVII — Ferie 1969 [44]

Remarks.

1. While it is customary to discuss Sturmian theorems for linear equa-
tions, no essential use of linearity was made above. Thus, for example, it is
possible to consider p=p(x,y,%) and ¢ =¢(x,y,v) so long as the
inequalities hypothesized for ¢ and p hold for all values of x,y, % and v.

2. It is also possible to replace equations (3) and (4) by inequalities
of the form.

@37 Uty + pu >0,

@) V0, + g <0,

In this case equation (6) becomes

6" (o), — (wv,). > (g — p) uv,
which also leads to the desired contradiction.

3. It is essential to impose some sort of regularity conditions on solu-
tions of (4) in order for Theorem 2 to be valid. To illustrate this fact, consider
the function ¢ which is a solution of (4) with ¢ =1 but does not have
a zero in any nodal domain defined by the telegraph equation (3).
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