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Matematica. — Sturmian Theorems for Characteristic In itia l 
Value Problems Nota ((*) **} di K urt K r e it h , presentata dal Socio 
M. P I C O N E .

R iassunto . — Si stabilisce un teorem a sturm iano di confronto fra due equazioni del 
tipo uxy p p u  — o, considerando soluzioni delle equazioni che assumono valori prescritti su 
caratteristiche dell’equazione stessa. Si dà anche un teorema di oscillazione per soluzioni delle 
sopraddette equazioni soddisfacenti ad opportune condizioni di regolarità e infinitesime su 
una caratteristica.

In  [1] the author considered functions u (s , t) and v (s , t) which are 
solutions of the hyperbolic differential equations

( 0  Utt — uss +  p (s  , t) u  =  o ,

(2) vtt — vss +  q ( s , t ) v  =  O .

Considering j  as a space variable and t as time, the functions u (s , t) and 
v (s , t) m ay be interpreted as representing the motion of two vibrating strings 
which are oscillating about the equilibrium  lines u =  o and v — o while 
subject to restoring forces p u  and qv, respectively. If  q(s , t) >  p (s  , /), then 
the second string is subject to a greater restoring force and therefore should 
oscillate faster than  the first. The precise description of such behavior is 
called a S turm ian theorem  for hyperbolic equations. In [1] S turm ian theorems 
were established of initial boundary value problems corresponding to (1) 
and (2).

The purpose of this paper is to establish S turm ian theorems for (1) 
and (2) in the context of the theory of characteristic initial value problems. 
To th a t , end it is convenient to effect a change of variables

x  =  s t

y  — — J +  t

so th a t (1) and (2) become

(3) Uxy +  PU =  O ,

(4) vxy +  qv =  o ,

respectively. It is assumed tha t p ( x  }ÿ )  and q ( x , y)  are continuous throughout 
the first quadran t of the (x  , jy)-plane and that u  and v are C2 solutions of (3) 
and (4) in thie classical sense.

(*) Research supported by a g rant of the N ational Science Foundation NSF GP-11219.
(**) Pervenuta all’Accademia il 30 ottobre 1969.
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One form of S turm ian theorem  for characteristic initial value problems 
follows readily from com parison theorems for differential inequalities. In  
particular, we shall m ake use of the following result which is a special case 
of [2; 20 IV].

LEMMA. Let u (pc , y) and v (x  , y) satisfy

Uxy +  p u  =  o

Vxy +  qv <  O

fo r  (x  , y ) e R  (E, , r\) =  { (x  , y )  | o <  x <  E, ; o <  y  <  7)}. I f

V (E, , o ) +  V (o  , 7j)  V (o  , o ) <  U  (E, , o ) +  U  (O , 7]) ---  « ( 0 , 0 )

2 7̂2 (# , JV) <  7/ (# , y ) in  R  (E, , 7]).

THEOREM i. and v ( x ,y )  be solutions o f (3) and  (4), respec­
tively , in  a rectangle R (E, , 73) fo r  which

(i) u (x  , y )  >  o for (V , y ) e R (E, , v})
(ii) «  (£ , yj) =  o .

I f  p ( x  ,y )  <  q(x ,y )  in  R  ( f  , 7]) tmZ

Z/ (E, , o ) +  ^  (o  , 7j) ----  V ( o  ', O) <  U  (E, , o ) +  U  (o , 7]) --- ^  (o , o ) ,

v (x , y )  cannot remain nonnegative in  R  (E, , 73).

Proof. W e write ç ( x  , y )  — p ( x  ,y )  - f  § (x  , y), where S (x  , y )  > 0  in 
R  ( f  , 7j). If  v (x  , y )  >  o in R  (E, , tj), then we have

+  p v  =  — 8v < 0 ,

so th a t by the Lem m a v ( x , y )  <  ^  (yr , jy) in R (E, , 7]). In  particular, v (E, , tj) <  o, 
so th a t 27 (# , y )  becomes negative in R (E, , tj).

Remarks.
1. A n analogous result to Theorem  1 holds in case u (x  , y)  is negative

in R  (Ç , 7]).
2. U sing a more general version of the Lem m a, one can easily gener­

alize Theorem  1 to nonlinear differential inequalities for u  and v.

T he difficulty with Theorem  1 is tha t it is local in character and does 
not provide a useful m eans of establishing oscillatory behavior in the entire 
first quadran t of the (x  , jy)-plane. The next theorem  is not restricted in this 
way. M otivated by the fact th a t the characteristic initial value problem  for 
the telegraph equation

uxv ~~f~ Lu =■ o
( 5)

u  (x  , o) — u  (o , y )  =  I

has as its solution u ( x  ,y )  = ] q (2  ^Xxy ), we consider a i-p aram eter family 
on nonintersecting curves Cr whose graphs in the first quadran t are given
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by y  -— fripe). W e assume th a t each f r (x) is continuously differentiable and 
strictly decreasing for o <  x <  00 and that each Cr is asym ptotic to the 
positive x  and y  axes.

O ur com parison theorem  will apply to solutions u  and v of characteristic 
initial value problems insofar as we shall require some mild regularity  
conditions near the characteristics which are typical of stable solutions corre­
sponding to initial data  tending to zero along the characteristics. Specifically 
we shall say tha t v is ^ -reg u lar if for any pair of nodal curves CTl and Cu 
of u i

frf*)

lim \u (x , y ) vy (x , y )  | dy =  o ,
x ->oo J

f r C)

f-Hy)
r ”alim J I v ( x , y ) ux (x y y)\ dx =  o .

y~>oo j
Z“1o

M aking use of these regularity  conditions it is possible to establish a S turm ian 
com parison theorem  and an oscillation theorem  for (4).

T h e o r e m  2. Le u  be a solution o f (3) which vanishes on Crj and Cr2 
and is o f constant sign in  the region D enclosed by CTi and CTti. I f  

> y ) P (x  j ) ,  q fc  , y)  ^  p  (x  , y), then every u-regular solution v o f (4) 
has a zero in  D.

Proof. Suppose v does not have a zero in D. W ithout loss of generality 
we m ay assum e th a t u  and v are both positive in D. M ultiplying (3) by v 
and (4) by u  and subtracting yields

vuXy —  uvxy +  (p  —  q) uv  =  o

(6) ( v u x)y  —  (u V y )x  =  (q —  p )u v  .

Let Dm — { (x  , y ) e D  | o < ; r < M  and o < y  < M } . Integrating (6) over 
Dm and applying Green’s theorem  yields

<j> vux dx  +  uvy dy =  j j  (q ■— f ) u v  dx dy 
3Dm Dm

>  o .

In  order to Obtain the desired contradiction it is sufficient to show that

M-
lim (b vux dx  -f- uv dy  >  o ,

sda

(7)
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To establish (7), suppose that f , x(x) < f r,(x )  and define

Xi = f r i Q&)\ i

M );

Then the boundary integral in (7) can be written

M'
r

y*('
v \ x  J r L 0 ) )  Ux ( x  , f n  ( x ) )  d x  + 1 u (M  , y )  vy (M , y )  d y

J
X1

J
yi

M/• x%/»
—  \ V ( X  , f r ,(X)) %’ (X d x  — J v  ( x , M) % , M) d^:

j J
xx

1 ) 2 ,

1 , 2 ,

The regularity  conditions on u  and v assure tha t the second and fourth integrals 
in (8) tend to zero as M ->  00. Furtherm ore since ux >  o on CYj and ux <  o 
on Cr2, the first and th ird  term s m ake non-negative contributions for all M. 
This shows that (7) is satisfied and completes the proof.

A n oscillation theorem  follows readily from Theorem  2. A  solution of 
(4) is said to be oscillatory at 00 if it has zeros in the first quadran t arbitrarily  
far from the origin.

THEOREM 3. Suppose v is a solution o f (4), where q (x  , y )  >  X (xy)a fo r  
some constants X >  o and  a >  — 1. I f  v is u-regular w ith respect to (10) 
below, then v is oscillatory at 00.

Proof. Consider the characteristic initial value problem

u  +  X (xy)a u  =  o ,
(9 )

u (x  , o) =  u (o , y)  =  I ,

where X >  o and a >  —  1. Assum ing a solution of the form u  (x , y) — u (z) 
where z — ;ry, (9) becomes

zu ” +  u ’ +  l z au =  o

which has the solution

u ( o )  =  I

where ß : 

(10)

1/22 X 
OC 4 - I

Thus (9) has the solution

I 9 V/2
u ( x , y )  =  Jo ( ■ -  (xy) 2

whosb nodal lines Cr are determ ined byn J
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w here j n is the ntJt zero of Jo. It follows from, Theorem 2 that every u—regular 
solution of (4) is oscillatory at 00.

In  order to apply Theorem s 2 and 3 it is necessary to establish the exist­
ence of a class of ^ —regular functions. The following theorem  m akes precise 
our earlier assertion th a t the regularity  conditions are realized by stable 
solutions corresponding to initial data  tending to zero along the characteristics.

THEOREM 4. Suppose q ( x  yy ) is bounded and that v (x , y) is a solution
° f  (4)- I f  there exists an z >  0 such that

( i i ) lim I v (pc , y )  1 =  0
 ̂—>■ 00

uniform ly for O <: y  <  £

(12) lim j v (x  , y )  1 =  0
y ->oo uniform ly for O <Ç X <f £

then v is u-regular w ith respect to (10).

Proof. Let Cri and Cr, be nodal curves for (10) so that the Cr. are given 
by y  =  k f x  for 2 = 1  , 2 and k2 >  h  >  o. Let K be a bound for \ q ( x ,y ) \ .  
From  (4) it follows that

X

vy (x-, y )  =  —  j" q (£ , y) v (£ , y)  d£
Ò

and

\vy (x >y) \ <  K.
0

v £ , y )  |dV

By (11), lim I Vy (x  , y ) \ — o (x) uniform ly in y, and since the function
x ->oo

u (x  ,y )  given by (io ) is bounded,

lim
x —>00

k jx

\u  (x  , y)
k jx

vy (x  >y)\ dy =  o .

To establish the second condition of z/—regularity we note that

5,1 /2  /  . 1 /2  ^±1 \  °L±h
ux ( x ,y )  = ------—  Ji ( (xy) 2 j • (xy) 2 .

For k \ < . x y f i k 2 we have

I u x (* , y)  I =  o  O )

so th a t the Assumption (12) implies the second regularity condition
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Remarks.

1. W hile it is custom ary to discuss S turm ian theorems for linear equa­
tions, no essential use of linearity was m ade above. Thus, for example, it is 
possible to consider p  == p  (x , y  , u) and q =  q (x  , y  , v) so long as the 
inequalities hypothesized for q and p  hold for all values of x  , y  , u  and v.

2. It is also possible to replace equations (3) and (4) by inequalities 
of the form.

(3') uuxy +  p u % >  o ,

(4') vvxy +  qv% <  O ,

In  this case equation (6) becomes

(60 {vUx)y —  (uvy)x > { q — p ) u v ,

which also leads to the desired contradiction.

3. It is essential to impose some sort of regularity conditions on solu­
tions of (4) in order for Theorem  2 to be valid. To illustrate this fact, consider 
the function ex y which is a solution of (4) w ith q ~  1 but does not have 
a zero in any nodal dom ain defined by the telegraph equation (5).
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