Atti Accademia Nazionale dei Lincei Classe Scienze Fisiche Matematiche Naturali **RENDICONTI**

Elisabetta Foresti, Lodovico Riva di Sanseverino

The x-ray crystal and molecular structure of an organic mineral: simonellite, $C_{19}H_{24}$

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **47** (1969), n.1-2, p. 41–54. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1969_8_47_1-2_41_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1969.

Mineralogia. — The x-ray crystal and molecular structure of an organic mineral: simonellite, $C_{19}H_{24}$ ^(*). Nota di Elisabetta Foresti e Lodovico Riva di Sanseverino ^(**), presentata ^(***) dal Socio P. Gallitelli.

RIASSUNTO. — Si descrive uno studio cristallografico della simonellite, chimicamente I, Idimetil-7-isopropil-I, 2, 3, 4-tetraidrofenantrene. I dati cristallografici sono a = 9.231 Å, b = 9.134 Å, c = 36.01 Å, *Pnaa*, Z = 8.

Mentre ogni tentativo di risolvere la struttura per mezzo di un calcolo tridimensionale Patterson risultava inutile, l'impiego dei metodi diretti attraverso la formula «sigma 2» di Karle e Karle (1966) ha rivelato subito 18 dei 19 atomi di carbonio della simonellite.

Il raffinamento con il metodo dei minimi quadrati con fattori di temperatura isotropi ha dato un R finale di 12%, su 2432 riflessi misurati.

Si discute la stereochimica intramolecolare e si prospetta una possibilità di biogenesi per questo minerale organico, trovato come incrostazioni biancastre in una miniera di lignite di Fognano, Siena.

INTRODUCTION.

Simonellite had been studied in this Institute by Boeris (1919) about fifty years ago; it appears as white-yellowish crusts in the lignite mine, at Fognano, Siena (Italy).

Optical, morphological and crystal data were then collected by Emiliani and Pellizzer (1952, 1953) and x-ray crystal structure analysis began during the fall 1964. Ghigi and Fabbri (1965) studied simonellite by chemical and spectroscopic means and then synthetized the mineral (Ghigi *et al.*, 1968). This is a report of the crystal structure analysis.

EXPERIMENTAL.

Simonellite, $C_{19}H_{24}$, M.W. 252, M.P. 59°-60°C; samples selected in the Museum of this Institute and recrystallized from benzene. Orthorhombic, *Pnaa*⁽¹⁾ from systematic absences; cell dimensions measured by Emiliani and Pellizzer (1953) have been confirmed, $a = 9.231 \pm 0.003$ Å, $b = 9.134 \pm 0.003$ Å, $c = 36.01 \pm 0.01$ Å. They have been calculated by a least squares refinement on 84 reflection angles ϑ , obtained from o k l and h o l Weissenberg photographs, calibrated with Al (Van den Berg, 1964), V = 3037 Å³, Dm = 1.08,

(*) Istituto di Mineralogia e Petrografia dell'Università di Bologna.

(**) Work performed with the financial aid of the Consiglio Nazionale delle Ricerche, Roma, under contract no. 115.0376.04468.

(***) Nella seduta del 12 giugno 1969.

(1) This space group has been preferred to the conventional *Pccn*, to respect a tendency to tetragonal symmetry pointed out by Emiliani and Pellizzer (1953).

Dx = 1.10, Z = 8. Crystal dimensions $0.5 \times 0.5 \times 0.6$ mm., radiation used CuK ($\lambda = 1.5418$ Å).

Of the 2432 densitometrically measured reflections, 899 have been classified as "unobserved", giving them 1/2 of the minimum observed intensity. Data have been recorded with the Weissenberg multiple film equinclination technique along the *a* axis ($o \ k \ l$ till $7 \ k \ l$) and corrected for spot deformation (Riva di Sanseverino, 1967) but not for absorption. Scaling was assured through cross layer correlation calculations.

Atomic scattering factors have been taken from the International Tables for Crystallography, vol. III. During the first steps computer programs written by Albano *et al.* (1963) have been used, but more recently the Stewart "X Ray 63" system (1964) has been adopted.

THE FIRST TRIAL FOR STRUCTURE SOLUTION.

As the simonellite structure (fig. 1) was suspected to be similar to retene (Ghigi and Fabbri, 1965), it was then supposed that the stereographic projection of the Patterson function could reveal the molecular plane. This method,

Fig. 1. – Simonellite (a) and the two related structures, retene (b) and abietic acid (c).

developed by the MacGillavry school in Amsterdam (Stam and Riva di Sanseverino, 1966; Bart and MacGillavry, 1968), consists in building spheres of a chosen radius around the origin of the Patterson function and then in plotting a stereographic projection of the maxima lying on the sphere.

In the case of planar hydrocarbon molecules, containing chains or rings, typical sequencies of 3 peaks will be aligned along the same major circle in the stereographic projection of the 1.4 and the 2.4 Å spheres. Alternatively three 1.4 Å peaks will be disposed at 60° interval, as well as the three 2.4 Å peaks, as shown by the scheme in fig. 2 c. Peak heights will be proportional to the vector multeplicity in the internal geometry of the molecule.

Fig. 2 *a* more than fig. 2 *b* shows these features. The direction cosines of the normal (full square in fig. 2) to the supposed molecular plane in the x, y, z coordinates system are respectively $\cos \varphi = 0.54$, $\cos \chi = 0.78$, $\cos \psi = 0.36$.

Although these values were later confirmed (Table V) no trial succeeded in the positioning of the molecule. A noteworthy influence on these negative [11]

approaches could possibly be caused by the high symmetry of the orthorhombic system and/or by the not perfect planarity of the molecule and/or by the exaggerate grid of the Patterson function, forcedly imposed by the contrasting conditions of large cell dimensions and of the relatively small IBM 1620 computer.

Fig. 2. – Stereographic projection of spherical sections around the origin of the Patterson function for simonellite with radii 1.4 A (a) and 2.4 A (b). The dashed lines indicate the probable plane of two of the eight molecules in the unit cell and the full square the emergence of the normal to the plane. As an example, naphtalene and its Patterson vectors pattern are reported in (c): numbers indicate peak multiplicity.

The application of Σ_2 .

More recently a bigger computer (IBM 7094) and the development of direct methods (see Karle and Karle, 1966) encouraged a new attack to the structure solution from a different point.

As only the listing of E's and the relative statistics were available, a program for the application of the Σ_2

$$sE_{h} \cong s \sum_{k} E_{k} E_{h-k}$$

was prepared (Foresti and Guerrieri, 1969). While the statistics (Table I) confirmed the centrosymmetric space group, the criteria for the choice of the origin (Stout and Jensen, 1968) were applied, giving positive signs to reflections 4, 5, 16; 1, 1, 31; and 4, 4, 25.

These assignments were sufficient to attribute signs to 134 of the 153 chosen E's with E > 1.85, probably owing to the large number of internal relations among orthorhombic structure factors. When the refinement was terminated, it was found that only three signs were inverted.

The 134 signs produced the first E map, which showed all atoms but one (C16); this last was revealed by a successive three-dimensional F_0 fourier, including all the observed structure factors.

43

A full matrix least squares refinement cycle with isotropic temperature factors lowered R from 28 % to 18.8 %. The successive difference fourier gave significant positive electron density at 20 sites which were correspondent to good positions for hydrogen atoms. The remaining 4 were assigned theoretical positions and the structure factor calculation gave R = 16.7 %.

TABLE I.Normalized structure factors.

Theoretical for Experimental for Values Simonellite Non-centrosymmetric Centrosymmetric <|E|> 0.745 0.798 o.886 $< | E^2 - I | > . . .$ 1.083 0.968 0.736 $< |E|^2 >$ 1.000 I.000 I.000 E > I 30.5% 32.0% 36.8% E>2 5.0% 5.0% 1.8% $E > 3 \cdot \cdot \cdot \cdot \cdot$ 0.9% 0.3% 0.01%

Two further refinement cycles as before, with hydrogen coordinates held constant ($B = 6 \text{ Å}^2$), brought R ⁽²⁾ to 12.0 % and refinement was terminated, as standard deviations and stereochemical results seemed satisfactory.

Final parameters are listed in Table II, observed and calculated structure factors in Table III ⁽³⁾, bond distances in fig. 3 and angles in Table IV. Standard deviations for distances, obtained from the final least squares refinement cycle are $\overline{\sigma} = 0.008$ Å for C—H (sp^2) with a maximum of 0.009 Å for C9—C10 and $\overline{\sigma} = 0.009$ Å for C—H (sp^3) with a maximum of 0.01 Å for C17—C18.

DISCUSSION.

It is encouraging to notice from Table II that the refined temperature factors are highest for the atoms departing from the phenanthrene nucleus, as expected. Furthermore, while atom C16 could not be found, atoms C15, C17, C18 and C19 appeared well as peaks in the E map, but with a height about 30 % lower than the average peak height.

(2) The last cycle was run with weights, following the expression recommended by Cruickshank *et al.* (1961) for photographic data.

(3) Reflections 004, 006, 008, 019 and 0, 2, 10 were discarded as they were too strong to be measurable.

[13]

TABLE	Π

Fractional positional parameters with s.d. and temperature factors.

	Атом	x	у	z	σ (x)	σ (γ)	σ (z)	B (Ų)
		e es 159	0					
- CI		0.09458	0.58012	0.18070	0.00066	0.00059	0.00015	3.45
C2		0.11495	0.47394	0.21374	0.00071	0.00063	0.00015	4.07
С3		0.26874	0.46425	0.22579	0.00072	0.00065	0.00016	3.83
C4		0.36318	0.40037	0.19476	0.00067	0.00060	0.00015	3 · 47
C5	• • • •	0.56490	0.37095	0.13186	0.00067	0.00061	0.00014	3.46
C6	• • • • •	0.66610	0.35811	0.10416	0.00070	0.00064	0.00016	4.06
С7	••••	0.64867	0.43797	0.07029	0.00064	0.00058	0.00014	3.31
C8		0.53031	0.52239	0.06625	0.00067	0.00060	0.00015	3.39
C9	••••	0.29930	0.62198	0.08954	0.00073	0.00067	0.00016	3.97
Сю	o	0.19724	0.63518	0.11755	0.00069	0.00063	0.00015	3.55
Ст	I	0.21548	0.56019	0.15204	0.00063	0.00057	0.00014	2.92
Ст	2	0.33539	0.47711	0.15772	0.00060	0.00054	0.00013	2.74
Cı	3	0.44191	0.45964	0.12869	0.00059	0.00052	0.00013	2.60
CL	4 • • • •	0.42167	0.53550	0.09458	0.00062	0.00055	0.00013	2.98
Ст	5	0.09385	0.74048	0.19488	0.00076	0.00074	0.00016	4.73
Cıe	5	0.05379	0.54551	0.16356	0.00081	0.00077	0.00019	5.07
Cı	7 • • • •	0.76321	0.42646	0.03970	0.00071	0.00067	0.00016	4.34
C18	8	0.91250	0.46952	0.05351	0.00090	0.00085	0.00020	5.95
Ст	9	0.76532	0.27374	0.02213	0.00083	0.00084	0.00019	5.71
<u>.</u>								

The average distances C—C $(sp^2) = 1.401$ Å and C—C $(sp^3) = 1.539$ Å agree extremely well with those published by Sutton (1965). The observed trend in simonellite follows a certain regularity and corresponds with features found in phenanthrene (Trotter, 1963). Trotter compares theoretical and observed values for each bond length and concludes that for f bond and g bond (see fig. 3) there is no agreement. This is repeated in the simonellite structure: again, bond f in noteworthy longer and bond g somewhat shorter than foreseen. The first seems to show a smaller, and the second a larger aromatic character than it might be deduced by the resonance structures or by LCAO bond orders (Dictionary of values of molecular constants, 1955).

A fair analogy with these findings has been also found in different aromatic compounds, with a similar disposition of fused rings (Ferrier and Iball, 1963 a, b).

Regarding bond angles (Table IV), simonellite shows a remarkable planarity at junctions, while angles at C5 and C8 are slightly greater than expected; tetrahedral angles do not reveal any particular strain. The average standard deviation for angles is 0.5°.

Fig. 3. - Numbering and bond distances in Å for simonellite.

The planarity of the aromatic part of the molecule is calculated through the equations (I D and I A) listed in Table V, together with atomic distances in Angstrom from the least square plane. Two further equations (2 D and 2 A) are quoted for a comparison, calculated for the least square plane through the whole molecule. The equations have been listed both for fractional coordinates (direct space) and for actual position in the crystal cell (Angstrom space).

As already noticed, these equations (specially I A) correspond almost perfectly with that resulting from the stereographic projection of the Patterson function (fig. 2), regardless of the distance from the origin, obviously indeterminated in the three-dimensional synthesis.

The inverse and probably significant displacement of C4 and C5 needs one more comment; the same behaviour is shown by the equivalent atoms in the 1,2-*cyclo*-penteno-phenanthrene molecule studied by Entwistle and Iball (1961). In the simonellite molecule a noticeable agreement is found with the considerations made by Trotter (1963) who attributed the effect to « slight intermolecular overcrowding involving the hydrogen atoms bonded to C4 and C5 ».

TABLE III.

Structure factors for simonellite: columns are l, 10 $\rm F_{0}$ and 10 $\rm F_{c}$. Unobserved reflections are marked with L.

10	0.0,L	28 30 32	131 - 123 34L 39	6 .8	29L 49 89 -106 281 37	,	1,3,L	17	152 123 154 -149	9 10	37L -47 198 -164		2,1,L	18 19	103 73 84 63
12 14 16 18	537 -482 199 113 222 -243 106 10	34 36 38 40	64 -77 30L -52 27L 27 24L 26	12 14	27L 17 26L -37 0.11.L	2 3 4 5	239 223 223 215 619 -639 488 -495	20 21 22 23	36L 61 84 -75 147 -129 37L -25	12 13 14 15	37L 71 129 148 37L -70 37L -78	1 2 3 4	96 95 512 -573 206 -208 407 431	21 22 23 24	102 -87 59 63 28L 6 82 -59
20 22 24 26	100 -5 171 -181 195 -140 129 112	1	0,5,L 103 78	1357	88 - 127 89 158 138 175	6 7 8 9	233 -162 74 -57 22L -3 23L -6	24 25 26 27	37L 4 83 -55 37L -24 72 62	16 17 18 19	37L 44 37L -17 36L -23 36L -40	5 6 7 8	593 686 696 764 719 768 539 -530	25 26 27 28	89 -100 181 157 70 -73 69 -57
30 32 34 34	169 142 421 398 245 -235	5 7 9	516 -583 26L 67 411 -394	9 11 13	57 -93 63 -86 19L -22 17L 54	10 11 12 13	126 131 242 -241 166 152	28 29 30 31	37L -11 37L 14 66 61 36L 10	20 21 22 23	35L -25 119 -119 103 110 33L 66	9 10 11 12	15L 4 201 195 275 212 391 -299	29 30 31 32	115 76 181 -177 211 203 30L 27
38 40 42	88 -32 64 30 57 -34	13 15 19 21	355 379 64 -60 320 -317 221 239	,,	15L -22	15 16 17	209 155 28L 5 78 79	33 34 35	172 131 123 108 83 69 60 -45 59 -75	24 25 26 27	32L 54 31L -6 73 -95 29L 29	13 14 15 16	444 418 276 - 195 40 13 473 440	33 34 35 36	155 124 60 79 29L 9 28L -17
3	0,1,L 450 -403	23 25 27 29	239 212 71 -69 113 -142 341 -73	2 6 7 8	936 933 364 -397 74 -110 822 -757	19 20 21	163 - 163 128 109 123 - 93	37 38 39	79 -93 26L -13 24L 30	20	1+9+L	18 19 20	115 -98 151 -145 23L 13 53 67	38 39 40	62 50 25L 38 24L -19 44 40
5 7 11 13	806 -810 208 -261 480 -402 213 214	31 33 35	87 91 31L 30 29L 15	9 10 11 12	554 524 314 292 139 71 121 -80	23 24 25 26	183 - 144 109 105 35L 40 141 - 133	41	18L -41 1,6,L	2 3 4 5	37L 33 37L -52 66 65 84 70	22 23 24 25	87 -89 61 55 62 -61 175 -173	42	80 -102 2,4,L
15 17 19 21	193 -169 152 -149 67 -85 26L 19	0	0,6,L 257 -250 90 72	13 14 15 16	133 99 597 542 562 524 106 75	27 28 29 30	36L 35 37L -43 37L 0 101 -76	1 2 3 4	71 51 93 81 311 -337 269 253	6 7 8 9	95 75 36L 39 112 -95 103 -83	26 27 28 29	300 255 101 -104 127 -136 60 -10	0 1 2 3	443 426 155 134 183 187 618 640
23 25 27 29	28L -39 30L 8 224 216 101 88 210 -207	4 8 10	229 -203 335 -354 350 336 30L -58	17 18 19 20	200 - 147 289 - 245 430 - 368 61 - 34	31 32 33 34	157 154 93 93 76 81 36L 62	5 6 7 8	200 -190 78 104 33L -13 233 -249	10 11 12	125 -120 35L 8 35L 58	30 31 32 33	101 -97 92 97 31L 23 31L 36	4 5 6 7	403 -410 420 -416 531 -520 287 -299
33 35 37 39	129 - 121 217 - 195 143 - 145 301 - 33	14 16 18 20	126 146 130 -128 353 338	21 22 23 24 25	70 54 144 -126 32L 28	35 36 37 38	36L -51 161 -156 165 -163 90 -80	10 11 12	318 358 93 115 83 -91 71 71	1	33L 7 32L 13	34 35 36 37	56 46 112 -87 65 55 28L -19	8 9 10 11	233 -229 535 527 251 215 135 -110
41 43 45	73 -71 23L 15 59 64	22 24 26 28	70 -74 34L 48 169 -156 33L -17	26 27 28 29	115 116 185 -166 286 269 137 114	40 41 42 43	134 133 26L 20 24L 29 52 42	14 15 16 17	105 -152 138 -124 36L 2 130 126	54567	94 94 121 140 129 152 321 -7	39 40	26L -36 25L 29	13 14 15	23L 28 176 155 158 -145 182 -185 152 134
24	0.2.L 341 -333 730 -693	30	31L 19 0,7,L	30 31 32 33	429 -374 462 434 192 -195 93 -83	44	50 -58 1,4,L	18 19 20 21	63 -74 37L 48 37L -4 113 -132	8 9 10 11	95 -94 141 -133 123 -141 105 -104	0 1 2	548 520 642 684 744 784	17 18 19 20	285 -244 84 68 203 213 165 158
6 8 12 14	529 -529 779 -790 322 306 677 655	1 3 5 7	176 - 189 130 117 32L - 38 32L 48	34 35 36 37	101 100 150 -149 95 78 137 -119	1 2 3 4	173 -179 238 -230 266 -291 637 612	22 23 24 25	106 120 198 189 138 138 37L 24	12 13 14 15	29L 2 100 113 28L 44 27L -13	3 4 5 6	363 427 282 -307 539 -508 209 -156	21 22 23 24	53 -50 29L -41 29L 53 86 88
18 20 22 24	415 - 355 581 521 109 - 78 115 91 105 90	11 ¹ 13 15 17	33L - 53 33L - 63 194 202 34L 5 69 87	39 40 41	34L -27 33L 1 31L 37 29L 16 27L 11	5 6 7 8 0	196 211 134 155 102 89 426 -384	26 27 28 29	36L -39 96 -86 35L -58	1	1,11,L 51 -62	8 9 10	83 133 88 -34 139 122 197 214	25 26 27 28	102 89 30L 8 31L -32 31L -5
26 28 30 32	31L -3 33L -11 90 76 324 332	19 21 23 25	135 -137 109 140 33L 26 82 -60	43 44 45 46	25L -16 22L -34 79 101 13L 68	10 11 12 13	209 197 27L -0 28L 26 28L -53	31 32 33 34	68 56 32L -31 31L -4 29L 8	3 4 5 6	24L 30 24L -3 85 101 24L 45	12 13 14 15	19L 4 230 225 137 -160 239 -204	30 31 32 33	30L 35 30L -18 86 63 29L 41
34 36 38 40	131 -104 238 -259 30L 12 28L -1 73 -50	27 29 31 33	113 -90 65 -66 71 85 23L 1 201 22	1	1,2,L 1419 1532	14 15 16 17	29L -19 30L -5 30L -30 120 97	35 36 37 38	27L 12 25L 36 23L 55 51 25	7	23L -32 2,0,L	16 17 18 19	405 369 240 -206 23L -38 342 -346	34 35 36 37	87 66 27L 5 26L -27 140 -150
44	76 87 0.3.L	0	0,8,L 34 59	3456	78 ÷14 903 965 1230 1302 583 585	19 20 21 22	33L 16 33L 29 237 -204 159 156	40	9L -56	5 6 7 8	152 54 189 165 192 256 732 -708	21 22 23 24	198 - 191 152 127 163 - 128 116 89 281 17	30 39 40 41	108 - 114 47 51 66 -51 74 84
1 3 5 7	554 -573 479 408 542 -539 90 -83	2 4 6 8	34L -20 42 -74 55 -101 111 114	7 8 9 10	162 -170 352 -326 152 -138 122 -70	23 24 25 26	67 -42 129 133 70 -26 37L -57	1 2 3 4	137 121 35L 30 155 -156 245 253	9 10 11 12	381 341 197 -166 559 -474 81 -22	25 26 27 28	165 127 413 -406 377 360 30L -41	43	10L -64 2,5,L
9 11 13 15	217 132 508 -482 1248 1176 345 350	10 12 14 16	234 254 106 -110 64 -28 33L 67	11 12 13 14	211 -170 190 -176 155 210 414 363	27 28 29 30	186 -146 37L -61 108 -107 37L 28	5 6 7 8	36L -0 115 128 112 111 36L 14	13 14 15 16	409 435 389 416 162 224 923 894	29 30 31 32	340 -362 132 101 31L -19 31L 32	0 1 2 3	460 426 344 385 132 -92 218 169
19 21 23 25	154 152 49 52 177 123 32L 59	20 22 24 26	32L 40 31L -19 29L 13 53 -64	16 17 18 19	65 -27 27L -15 416 -375 29L 3	32 33 34 35	82 -73 127 -125 35L -12 72 74	10 11 12 13	91 -91 80 82 82 70 37L -6 37L 3	17 18 19 20 21	391 -344 76 -52 544 -483 117 -110 241 -22	33 34 35 36 37	72 91 54 25 130 -126 29L -25 28L 45	4 5 6 7 8	215 - 187 294 284 281 313 109 91
27 29 31 33	107 -107 117 114 353 -335 275 -260	28 30 32	93 -109 22L 18 19L -3	20 21 22 23	87 69 71 -37 31L 38 32L -22	36 37 38 39	68 74 113 142 30L 50 28L -11	14 15 16 17	57 53 37L -63 37L 4 37L 13	22 23 24 25	137 137 158 115 185 171 296 295	38 39 40 41	27L 34 25L 7 24L -34 70 58	9 10 11 12	137 - 132 119 - 131 88 - 41 163 - 156
35 37 39 41	241 257 30L -5 28L -12 78 -67 201 -30	135	0,9,L 94 -117 112 135	24 25 26 27	138 107 34L 23 59 -4 81 -105	40 41 42	58 -76 23L -5 20L -11	18 19 20 21	37L 22 37L -21 37L 64 66 60	26 27 28 29	453 -473 439 427 29L -14 431 -418	42	89 80 2,3,L	13 14 15 15	170 148 83 -102 27L 45 93 130
0	0.4.L 451 507	7 9 11 13	33L -2 205 -202 32L 4 65 85	29 30 31 32	37L -39 37L 25 129 119 177 -158	1 2 3	55 24 28L -55 28L -7	22 23 24 25 26	36L 2 63 -76 64 -61 77 78	30 31 32 33 34	307 299 148 -139 59 58 31L 29 63 -92	1 2 3	163 - 131 100 - 91 216 - 184 194 - 229 171 - 67	17 18 19 20 21	46 - 32 104 - 102 139 - 143 164 - 135 168 - 148
2468	83 -78 750 711 298 287 411 -429	15 17 19 21	31L -53 100 85 95 -104 54 66	33 34 35 36	145 -142 37L 2 67 51 111 118	4 5 6 7	28L 10 179 -154 29L -29 126 138	27 28	34L -14 33L 23	35 36 37 38	97 -80 29L -15 119 99 113 99	5 6 7 8	464 474 541 558 230 229 19L - 19	22 23 24 25	130 142 55 -52 84 -98 31L -26
10 12 14 16	585 -382 119 147 468 465 295 -272 238 230	23 25 27	25L -66 23L -63 20L 45	37 38 39 40	137 115 33L 35 32L -8 87 -83	8 9 10 11	29L 9 223 -187 149 161 124 102	1 2 3	63 62 37L 34 37L -36	39 40 41 42	26L -1 57 -43 24L 13 36 29	9 10 11 12	289 -310 371 -391 353 -367 153 -205	26 27 28 29	49 24 31L 37 126 - 124 100 - 91
20 22 24 26	77 -36 273 -247 135 -114 60 -73	0 2 4	212 -237 30L -19 133 153	42 43 44 45	26L -26 24L -35 55 60 17L -42	13 14 15 16	166 153 32L 46 130 -136 111 -116	4 5 6 7 8	193 209 260 287 37L 24 172 -174	40 44 45 46	46 -38 14L 21 6L 9	13 14 15 16 17	241 -249 205 -207 271 260 388 -373	30 31 32	29L 21 29L 25 28L 28

TABLE III (continued).

_

TABLE III (continued).

3312334 12345678901123456789012234567890122222222223 012222222222223 012	$\begin{array}{ccccc} 4,7,1\\ 65 & 54\\ 21L & -27\\ 33 & -45\\ 161L & -32\\ 161L & -32\\ 161L & -32\\ 161L & -34\\ 34L & -9\\ 101 & -102\\ 34L & -9\\ 34L & -34\\ 34L & -3$	3233356789941 1234567899011123456789 101123456789011123422224256782930 31	$\begin{array}{c} 32L - 17\\ 31L 14\\ 30L 15\\ 29L -0\\ 47 41\\ 88 75\\ 270 - 151\\ 23L 9\\ 20L 17\\ 71 - 74\\ 5, 2, L\\ 79 - 60\\ 46 25\\ 18L -23\\ 281 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 278\\ 284 - 284\\ 284 - 28$	21 22 24 26 78 290 312 333 345 123 345 67 890 111 131 145 145 222 24 222 24 223 333 345 123 345 56 78 900 111 131 145 145 145 222 24 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 278 222 224 226 227 224 226 278 <	$\begin{array}{c} 279 & -272 \\ 113 & -99 \\ 34L & 16 \\ 34L & -55 \\ 33L & -55 \\ 33L & -34 \\ 75 & -55 \\ 32L & -60 \\ 103 & 96 \\ 284 \\ 291 & -34 \\ 294 \\ -8 \\ 24L & -8 \\ 2$	16178 19201 12222245 124356789 1011234 167189 111134 166789 1011234	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18901223452678290312 0123456789011123345678901112314516778901222222222222222222222222222222222222		1011213145 116722224526728931223345567 01234567899011234 1234567899011234 11234567899011234 112345678990111234	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 11 12 14 15 14 15 16 17 19 20 12 22 22 22 0 12 23 45 67 89 10 11 12 13 14 15 16 17 18 19 20 12 22 22 25 0 12 23 45 67 89 10 10 10 10 10 10 10 10 10 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 167 18 190 221 223 123 45 67 89 101 123 223 223 123 45 67 89 101 123 223 223 223 223 223 223 223 225 227 123	29L -14 30L 2-4 30L 2-4 30L 2-4 30L 2-1 58 152 31L -15 31L -15 31L -15 31L -15 31L -15 31L -15 24L 26 25L -19 25L 11 25L -41 25L -41 25L -14 152 -41 25L -14 152 -148 174 172 358 -331 258 -331 258 -331 258 -331 37, 3, L 258 -331 258 -331 37, 3, 1 258 -331 258 -331 31L -35 31L
2345678901112341567 901112341567 1234567	31L 78 76 56 31L 70 30L 52 30L 52 30L 22 29L -52 28L -61 28L 21 27L -32 28L 21 27L -32 267 66 82 -71 48 -50 65 43 50 46 22L 16 22L 16 4.10.L 91 91 -117 26L -71 25L -70 24L 41	1 2 3 4 5 6 7 8 9 0 111 123 145 17 8 9 0 111 123 145 17 8 9 0 111 123 145 17 8 9 0 211 223 244 256 276 207 207 207 207 207 207 207 207	$\begin{array}{c} 95 & 95\\ 22L & 12\\ 68 & -48\\ 22L & -28\\ 224 & -28\\ 244 & 231\\ 1& -56\\ 307 & 281\\ 350 & -330\\ 27L & -10\\ 128 & -145\\ 307 & 281\\ 350 & -330\\ 27L & -10\\ 128 & -145\\ 307 & 281\\ 350 & -330\\ 27L & -15\\ 154 & 160\\ 175 & 167\\ 268 & 235\\ 264 & 234\\ 72 & 41\\ 329 & -292\\ 267 & -248\\ 99 & -85\\ 33L & -25\\ 165 & 423\\ 472 & 41\\ 329 & -292\\ 267 & -248\\ 99 & -85\\ 33L & -25\\ 165 & 423\\ 412 & 41\\ 33L & -16\\ 33L & -35\\ 33L & -35\\ 33L & -35\\ 78 & -77\\ \end{array}$	289 230 332 333 333 123 456 789 111 123 145 167 189 101 112 115 116 118 120 112 112 112 112 112 112 112	30L 10 29L -21 28L -24 27L 48 77L 48 5 -39 50 -52 20L -15 17L 30 5.6.L 32L 38 109 -120 33L -53 33L -53 33L -54 33L -54 34L -10 33L -54 34L -10 33L -54 34L -10 33L -54 34L -10 34L -10	9 11 12 13 14 15 16 17 18 19 10 11 13 14 15 6 7 8 9 10 11 13 14 15 16 17 18 19 21 13 14 15 16 17 18 19 21 11 15 16 17 18 19 21 18 19 10 21 13 16 17 18 19 21 10 11 15 16 17 18 19 21 11 15 16 17 17 18 19 21 11 15 16 17 17 18 19 10 21 11 15 16 17 17 18 19 10 11 11 15 16 17 17 18 19 10 11 11 15 16 17 17 18 19 10 11 11 11 11 11 11 11 11 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 28 30 31 23 33 34 35 36 0 1 2 3 4 5 6 7 8 90 11 12 13 4 15 16 7 18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1416 1567 19012234 222222222301 233333 0123456	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4 5 6 7 8 9 10 1 1 1 3 1 4 5 6 7 8 9 10 1 1 1 3 1 4 5 6 7 8 9 10 1 1 1 3 1 4 5 1 1 2 3 4 5 6 7 8 9 10 1 1 1 3 1 4 5 16	$\begin{array}{c} 25L & -35\\ 25L & -32\\ 25L & -24\\ 24L & 3\\ 84 & 16\\ 122 & 43\\ 22L & 10\\ 69 & -80\\ 125 & -122\\ 20L & 22\\ 19L & -54\\ 1025 & -122\\ 20L & 22\\ 19L & -54\\ 7, 1, L\\ 141 & 179\\ 64 & -70\\ 118 & 136\\ 160 & 199\\ 148 & -198\\ 164 & -174\\ 156 & 126\\ 20L & 22\\ 237 & 258\\ 454 & -477\\ 156 & 126\\ 61 & 52\\ 25L & 23\\ 26L & 23\\ 26L & 9\\ 7, 25L & 23\\ 26L & 9\\ 7, 26L & 16\\ 102 & 10\\ 102 & 10\\ 102 & 10\\ 102 &$	3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 3 3 4 2 2 2 2 2 2 2 3 3 1 2 3 3 4 3 3 4 3 3 4 3 4 5 6 7 8 9 0 1 2 3 4 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
123456789011234567890111234567890111234567890131222222222222222233	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31 323 356 373 367 373 3940 123 456 789 101 112 134 101 112 114 116 117 118 101 112 113 112 112 112 1	53 - 24 31L 32 29L - 5 46 - 26 27L 2 39 30 60 45 16L - 18 15L - 12 5.4,L 26L 27 77 - 70 26L 30 87 - 90 27L 6 27L 6 27L 2 80 30 87 - 90 27L 6 27L - 32 80 30 27L 6 27L 6 27L - 32 80 30 27L 6 27L 6 30 30 27L 6 27L 6 32 91 192 195 176 - 194 455 2 210 300 254 224 - 223 300 254 224 - 93 128 - 93	21223452678901222456789011123345 123456789011123145 101123145	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20122345678900 12345678900 1111345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 1112345678900 111234578900 111234578900 1112345789000 1112345789000 1112345789000 1112345789000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	190122234 222222222222222222222222222222222	$\begin{array}{c} 32 \lfloor -4 \\ 32 \lfloor -4 \\ 32 \lfloor -3 \\ 13 \rfloor -2 \\ 33 \lfloor -2 \\ 33 \rfloor -2 \\ 33 \rfloor -2 \\ 33 \rfloor -2 \\ 33 \rfloor -2 \\ 100 \\ 100 \\ 95 \\ 125 \\ 133 \\ 11 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ 47 \\ -28 \\ -37 \\ 27 \\ -17 \\ 21 \\ -107 \\ 41 \\ -16 \\ 6, 4, L \\ 233 \\ -250 \\ 27 \\ -27 \\ -17 \\ 112 \\ -122 \\ 28 \\ -37 \\ -28 \\ -27 \\ -17 \\ 112 \\ -122 \\ 28 \\ -37 \\ -7 \\ 152 \\ 139 \\ -7 \\ 152 \\ -7 \\ -7 \\ 152 \\ -7 \\ -7 \\ 152 \\ -7 \\ -7 \\ 152 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -$	7 8 9 10 11 12 13 14 5 6 7 8 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 18 201 23 223 24 224 26 27 28 331 1 123 4 567 8 901 11 123 4 567 8 901 11 123 14	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 1 13 14 5 6 7 8 9 10 1 1	7,5,L 31L -32 31L 13 80 80 80 810 100 -110 64 -68 61 -69 81L -13 31L -43 85 -43 85 -43 85 -43 85 -43 81L -18 7,6,L 211 211 237 31L 9 31L -16 177 -146 31L 26 31L -26 34 -26 34 -7 31L 7 31L -26 34 -63 31L 7 31L 7

4. — RENDICONTI 1969, Vol. XLVII, fasc. 1-2.

														-
7.6,L 12 31L -27 13 70 -57 14 30L 32 15 30L -6	16 17 18 19 20 21	30L 1 57 1 59 -3 28L 50 +2 27L	4 22 8 23 1 24 9 25 1 26 3 27	26L 14 51 -46 24L -8 43 45 21L 3 59 -70	28 29 1	50 45 13L -20 7,7,L 100 -99	2 3 4 5 6 7	30L 29 30L 44 104 -109 85 -54 30L -32 30L 16	8 9 10 11 12 13	29L 19 101 92 107 -92 29L 1 28L 17 58 -55	14 15 16 17 18 19	27L 1 62 -44 26L -14 78 72 42 35 64 66	20 21 22 23	23L -3 43 -28 20L 0 19L -3

TABLE IV.

apex	end	end			ap	ex	end	end	
				sp ³ ator	ns			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Ст	C2	Сп	110°.81		C	2	Ст	C3	112°.20
CI	C2	С15	109°.86		C	3	C2	C4	110°.67
Ст	C2	C16	106°.77		C	4	C3	C12	III ^o .47
Ст	Сп	C15	109°.71		С	17	C7	C18	111°.95
Ст	Сп	C16	110°.78		C	17	C7	C19	111°.63
Ст	C15	C16	1080.84		С	17	C18	C19	1110.10
				sp² atom	es				
Cr	6	CTO	1000 85		C		C	C	
C6	Cr	C7	1100 00		Č		с.	CTT	119.09
	CS	C7	11999		C	12	C4	CII	1210.64
C7.	C6	68	1180.43		C	12	C4	C13	117 ⁰ .82
C7	C6	C17	1200.06		C	12	Сп	C13	I 20 ⁰ . 52
C7	C8	C17	1210.51		С	13	C5	C12	123°.87
C8	C7	C14	122 ⁰ .57		C	13	C5	C14	1170.33
C9	С10	C14	1200.46		С	13	C12	C14	1180.80
Сіо	C9	Сп	120 ⁰ .74		C	14	C8	C9	1210.48
Сп	Сі	Сіо	1160.31		C	14	C8	C13	1180.76
CII	Сı	C12	1240.01		C	14	C9	С13	1190.75

Interatomic angles.

TABLE III (continued).

PLANE FORMED BY	EQUATIONS FOR									
		Direct space		Angstrom space						
13 sp^2 bonded atoms	(11	0) 4.537x + 7.222y + 13.168	ε=7.029	(1A) 0.491x + 0.790y + 0.366z = 7.02						
all C atoms .	(2I	0) $4.298x + 7.575y + 11.147$	z=6.867	(2A) 0.465 <i>x</i> +	-0.829y + 0.310z = 6.867					
	1	DISTANCES IN ANGSTROM	FROM TH	IE PLANE (IA))					
Сі	• • •	0.031	С10 .		0.00I					
С4		0.074	С11 .		0.004					
C5		0.051	C12 .		0.015					
C6		0.049	С13 .	· · · · · · ·	0.010					
С7		0.002	С14 .		0.003					
C8	•••	0.022	С17 .		0.036					
C9	•••	0.000	σ	; · · · · ·	0,033					

TABLE V.

TABLE VI.

Atom 1	Atom 2	Symmetry	operation	on atom 2	Distances in Å
C6	C16	I + x	у	Z	3.78
C18	Сто	I + x	у	Z	3.81
CI7	C19	3/2 - x	1/2 — y	Z	3.88
C15	C15	x	3/2 — y	1/2 — <i>z</i>	3.97
C4	C15	1/2 + x	3/2 — y	Z	3.91
C8	Сто	1/2 + x	3/2 — y	Z	3.95
C12	C15	1/2 + x	3/2 — y	Z	3.76
C13	C15	I/2 + x	3/2 — y	Z	3.89
C15	C16	1/2 + x	3/2 — y	Z	3.95
C3	C2	I/2 + x	У	1/2 — Z	3.87
C6	C12	I/2 + x	I/2 — <i>y</i>	Z	3.94
C6	C13	I/2 + x	I/2 — y	Z	3.96
C19	C8	1/2 + x	1/2 — <i>y</i>	z	3.98

Intermolecular distances smaller than 4 Å

The large angle at C13 (ends C5 and C12) and perhaps also the long distance C12—C13 are probably caused by interactions of this kind. The effect is less comprehensible here, as C4 is a tetrahedrally bonded atom, and its two hydrogens (instead of a single one) ought to be symmetrically disposed in respect of the least square plane 1A and then of H5. The observed distances between the hydrogens attached to C4 and H5 are in fact 2.1 Å,

Fig. 4. – Projections of the simonellite structure along [010] (*a*, half cell) and [001] (*b*); the second projection is divided into two parts, to overcome exaggerated superposition.

The molecular packing is shown in fig. 4: fig. 4 b has been split owing to the overlapping of the molecules along the c axis. Few intermolecular contacts smaller than 4 Å are shown in Table VI.

It is interesting to notice how the molecules lie almost linearly along a, in agreement with high refraction index in this direction, called b by Emiliani and Pellizzer (1952).

The possible biogenetical provenience of simonellite could be a doublestep action on abietic acid (fig. 1 c): hydrogenation of the carboxyl group and contemporary loss of the methyl group at C12, followed by an incomplete aromatization. Acknowledgements.—The Authors are indebted to Prof. P. Gallitelli for suggesting the problem and for constant advice, to Prof. C. H. MacGillavry for her hospitality and for checking this paper, to Mr. A. Kreuger (University of Amsterdam) for carrying out the X ray work, to Prof. P. L. Orioli for the calculations on the IBM 1620, and to Dr. J. C. J. Bart and Dr. A. Menichetti for suggestions at the "sigma 2" stage.

The valid cooperation of Dr. L. Dall'Olio and Mr. V. Guerrieri, of the Centro di Calcolo del CNEN, Bologna, during the calculations on the IBM 7094-7040 computer, is also gratefully acknowledged.

One of the authors (L.R.S.) thanks the Dutch Ministry of Education for a prolonged scholarship at the Laboratorium voor Kristallografie, University of Amsterdam.

References.

- ALBANO V., BELLON P. L. E POMPA F., Programmi cristallografici per l'elaboratore IBM 1620, «Ric. Scient.», Suppl. 33, 285 (1963).
- BART J. C. J. e MACGILLAVRY C. H., The crystal structure of 15,15'-dehydrocanthaxanthin, «Acta Cryst. », B24, 1569–1587 (1968).
- BOERIS G., Sopra un idrocarburo della lignite di Fognano, Nota preliminare. « Rend. R. Acc. Sc. Bologna », 23, 83-87 (1919).
- CRUICKSHANK D. W. J., PILLING D. E., BUJOSA A., LOVELL P. M. e TRUTER M. R., Computing Methods and the Phase Problem in X-ray Analysis. Oxford, Pergamon press, 41 (1961).

EMILIANI F. e PELLIZZER R., Studio morfologico ed ottico della simonellite, « Rend. Acc. Naz, Lincei », Ser. VIII, 12, 724-728 (1952).

EMILIANI F. e PELLIZZER R., Cella elementare e gruppo spaziale della simonellite, «Rend. Acc. Naz. Lincei», Ser. VIII, 14, 652–657 and 15, 101–107 (1953).

ENTWISTLE R. F. e IBALL J., The structure of 1,2-cyclo-penteno-phenanthrene, «Zeit. Krist.», 116, 251-262 (1961).

FERRIER R. P. e IBALL J., The structure of methyl 1: 2-benzanthraquinones.-II. The crystal and molecular structure of 5-methyl-1: 2-benzanthraquinone, «Acta Cryt.», 16, 269-276 (1963 a).

FERRIER R. P. e IBALL J., Idem.-III. The crystal and molecular structure of 2'-methyl-1:2--benzanthraquinone, «Acta Cryst.», 16, 513-519 (1963 b).

- FORESTI E. e GUERRIERI V., Un programma per l'applicazione della sigma 2 in gruppi spaziali centrosimmetrici, «Atti Acc. Sci. Lett. Arti. Palermo», in corso di stampa (1969).
- GHIGI E. e FABBRI G., Sulla struttura di un terpenoide fossile, «Atti Acc. Scienze Bologna», Ser. XII, 2 (1965).
- GHIGI E., DRUSIANI A. M., PLESSI L. e CAVRINI V., Sulla struttura di un terpenoide fossile. Nota II. Sintesi della simonellite, «Gazz. Chim. Ital.», 98, 795–799 (1968).
- KARLE I. L. e KARLE J., The symbolic addition procedure for phase determination for centrosymmetric and noncentrosymmetric crystals, «Acta Cryst.», 21, 849–859 (1966).
- RIVA DI SANSEVERINO L., On the correction for the deformation effect, to be seen on upper layer Weissenberg photographs, «Miner. Petrogr. Acta », 13, 157–173 (1967).
- STAM C. H. e RIVA DI SANSEVERINO L., The crystal structures of 1,6-di-p and 1,6-di-o-chlorophenyl-3,4-dimethylhexatriene, «Acta Cryst.», 21, 132-138 (1966).

- STEWART J. M., Crystal structure calculation system X-ray 63. TR-64-6, University of Maryland, USA. (1964).
- STOUT G. H. e JENSEN L. H., X-ray structure determination. A pratical guide. Macmillan Co., New York, 327 (1968).
- SUTTON L. E., Tables of Interatomic Distances and Configuration of Molecules and Ions. Suppl. 1956–1959. Special Publ. n. 18, The Chemical Society, London, S14s and S16s. (1965).
- TROTTER J., The crystal and molecular structure of phenanthrene, «Acta Cryst. », 16, 605–608 (1963).
- VAN DEN BERG, J. M., Unpublished (1964).