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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — A Further Generalization of the Second Isomor-
phism  Theorem in Group Theory. Nota @ di OLaF TAMASCHKE,
presentata dal Socio G. Scorza DrAGONT.

RI1ASSUNTO. — Sia T un semigruppo di Schur sul gruppo G. I sottogruppi H e K di G
soddisfacciano alla HK = KH; e K ed HK siano entrambi T-sottogruppi'di G (risultino
cioe unioni di T—classi di G). In queste condizioni T induce un semigruppo di Schur (Turlur/x
su HK, semigruppo che (con riferimento alla moltiplicazione fra complessi) & generato dagli
insiemi del tipo K%K, con % variabile nella totalithd delle T—classi di G contenute in HK.
In questa Nota sara dimostrato che gli insiemi del tipo KGKNH, con % variabile in quella
tal totalitd, generano (con riferimento alla moltiplicazione fra complessi) un semigruppo di
Schur, ¥, su H; che ¢: Y- YnH (Ye (Tug)uk/x) fornisce una trasformazione isomorfa
avente per dominio (THK)HK/K’ semigruppo di Schur su HK, e per codominio ¥, semigruppo
di Schur su H; e che ¢: X - XK (XeX) & linversa di ¢. Il significato di questo teorema
consiste in cid, che nella situazione descritta un semigruppo di Schur su un gruppo «grande »
HK pubd essere sostituito con una sua immagine isomorfa, semigruppo di Schur sul gruppo H
«pil piccolo » e percid spesso pilt semplice nella sua struttura. Se per T si sceglie il gruppo G
e per K un sottogruppo normale di G, il risultato precedente si riduce al secondo teorema
sugli isomorfismi nella teoria dei gruppi.

The intention of introducing the concept of a Schur-semigroup in the
theory of groups (cf. [1], [2] and [8], Chapter III) was not only that it
might lead to a new differentiation in the structure of groups but also that
it might make applicable to group theory various methods and results from
the algebraic theory of semigroups.

(*) Pervenuta all’Accademia il 26 luglio 1969.

1. — RENDICONTI 1969, Vol. XLVII, fasc. 1-2.
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We can expect that the ease of dealing with a Schur-semigroup is directly
related to the intricacy of the structure of the underlying group. Therefore
theorems will be useful which allow an isomorphism of a Schur-semigroup on
one group onto a Schur-semigroup on another group whose structure can be
supposed to be less complicated. Such a situation is given if the underlying
group of a Schur-semigroup is factorized in a certain way, and its investigation
is the object of this note. This generalizes earlier results of [5] where we
dealt with the special, though most important, case of double coset Schur-
semigroups. (For the meaning of the double coset Schur-semigroups in
the theory of permutation groups we refer to [6], Section 12, and to [8],
Chapter IV). To make this paper self-contained we briefly recall some
basic definitions from the theory of Schur-semigroups (cf. [1], [2] or [8],
Chapter III).

Let G be a group. The set G: ={X|@ ==X C G} is a semigroup with
respect to subset multiplication (frequently called ‘“ complex ”’ multiplication)

(X,Y) > XY: ={xy|reX and yeY]}.

DEFINITION 1. A subsemigroup T of G is called a Schur-semigroup
on G if it has a unit element and if there exists a set TCG such that:

(1) G= U %T.
TET
(2) 8=T or SNT=0 forall §,%€Z
(3) el ={g | g€TIeT forall TeT.
(4) X= U @ Sfor all XeT.
geg
TNX+0

(5) T ds generated by X, that is every element of T is the product of a finite
number of elements of <.

Since ¥ is uniquely determined by T and the axioms (1) to (5) we call
the elements of T the T—classes of G. We denote by %, the unique T—class
containing g € G.

A subgroup H of G is called a' T-subgroup of G if H is the set theoretical
union of T-classes, that is

Every T-subgroup H of G -defines two Schur-semigroups, namely

I. the Schur-semigrbup Tu on H which is generated by all ¢, with Z€H,

2. the Schur-semigroup Tem on G which is generated by all HGH with
G €T
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A T-subgroup K of G is called T-normal if

K% = %K holds for al %e€g.

Let F be a group, ¥ a Schur-semigroup on F, and & the set of all
Y-classes of F (that is & plays the same role for & as T does for T).

DEFINITION 2. A4 mapping ¢ of T into X is called a homomorphism
of the Schur-semigroup T on G into the Schur-semigroup % on F if it has the
Jollowing properties.

(1) (XY)? = XYY for all X,YVE€T.

(2) XY= U o forall XeT.

x€X
(3)  For every T—class T of G there exists a S~class 8 of F such that
¥ =8 and (TTH =1,

A homomorphism ¢ : T — X is called an isomorphism if ¢ is a bijective
mapping.

Now we start on our investigations with the main theorem of this
paper.

THEOREM 1. ZLet T be a Schur-semigroup on the group G. Let H and K
be subgroups of G such that HK = KH. Assume further that K and HK are
T—subgroups of G. Then

(1) The semigroup X, which is generated (with respect to complex multiplication)
by the set of all &,: =Ke,KNH with 2 €H, is a Schur-semigroup on H,
and the &,, h€H, arethe X-classes of H.

(2) KX =XK for all X€X.

(3) The mapping
o:Y—->YNH (Y € (Tur)uk/x)

is an isomorphism of the Schur-semigroup (Tux)uxx on HK, which is
generated (with respect to complex multiplication) by the set of all Ke,K
with g € HK, onto the Schur-semigroup % on H. The mapping

$:X - XK XeY)

is the inverse mapping of @, and hence is an isomorphism of the Schur-
semigroup X on H onto the Sehur-semigroup (Tux)uxx on HK.

Remarks. — 1. If in the above theorem the Schur-semigroup (Tuk)uk/x
on HK is considered as a ““ factor structure ’ of HK modulo K then Theorem 1
states that there exists a “ factor structure’”” of H modulo HN K = 1 -
which is isomorphic to the first, namely the Schur-semigroup ¥ on H. Thus
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the situation of a Second Isomorphism Theorem is given. In fact, the Second
Isomorphism Theorem in group theory is a special case of Theorem 1 if we
apply it to T=G and to a normal subgroup K of G.

2. An analogous theorem holds for Schur-rings on finite groups instead
of Schur-semigroups. It will be stated and proved in [9].

Proof. 1. Since the K¢, K, ¢€G, are the Tgx—classes of G ([2], Pro-
position 1.4 (2)) for the sets §, = K%,KNH, Z€eH, the following hold.

I. H: U§h
h€H
2. 8, =9, or §,NY, =g forall g,reH.

3. §;' =8, forall ie€eH.

Hence for the semigroup X which is generated (with respect to complex multi-
plication) by all the §,, % € H, the properties (1), (2), (3), (5) of Definition 1
are satisfied by ©:={3,|2€H}.

In order to prove (4) of Definition 1 for X and & (instead of T and %)
we observe that every ¢ € HK can be written as ¢ = 4£ with 2 € H and %€ K.
Because of 2 € K%,K and the properties of the Tgk—classes of G (cf. [2],
Proposition 1.4 (2)) we have K%K = K% K. Furthermore, each product
(K%,.K) (K%, K) is the union of Tgk—classes, and if we choose x, ¥ € H these
Tgx—classes have the form K% ,K with ze€ H.

It was shown in [5], p. 136, that

) XNnH)YoH)=XYNH for e/l 25X,Y cHK
such that KXK =X and KYK =Y.

Setting X = K%, K and Y = K%K with x,y €H, we obtain

z € (KTxK) (KGyK) z € (KGxK) (KG,K)

8,8, = (Ke,K)(Ke,K)nH= U KgKnH= U 5,

It follows that every element of X is the set theoretical union of elements
of &,  and therefore (4) of Definition 1 holds for X and & (instead of T and %).
Hence ¥ is a Schur-semigroup on H.

II. In [5], p. 136, it was also shown that
KYNH)=Y forall g==Y cHK such that KY =Y.

Similarly one proves
(ii) NNH)K=Y foral o==YCHK suck that YK =Y.
In particular

K(YNH)=Y=(YNH)K for all ==Y c HK such that KYK =Y.
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Since every element X € ¥ can be written as
X=8, 8§, =(K5,K)--- (K%, K)NnH (b1, +, heH)
we obtain KX = XK for all XeX.

ITII. Since every element Y € (Tug)ux/xk can be written as
Y:(K%",ZIK)-H(K?;,WK) (b1, -, 2, € H)
equation (i) shows that

YAH =5, -3,

is an element of X. Conversely, every element X =§;,---8, of Y can be
written as =YNH with Y = (K%, K) --- (K%;, K) € (Tux)ug/x -
Therefore

is a surjective mapping ‘of (Tug)ug/x onto X which, using (i) once again,
satisfies Definition 2 (with H instead of F). Hence ¢ is a homomorphism of
the Schur-semigroup (Tug)ux/xk on HK onto the Schur-semigroup Y on H.
Since ¢ is a surjective mapping (ii) shows that

¢:X - XK (X eX)

is a mapping of ¥ into (Tux)uk/x such that both o{ and ¢ are identity
mappings. Hence ¢ and ¢ are bijective mappings. Therefore they are isomor-
phisms of the relevant Schur-semigroups, and Theorem 1 is proved.

Particularly interesting is the case where H is a subgroup and K is a
T-subgroup of G such that G = HK. Furthermore: the T—class %1 which
contains the unit element 1€ G is a subgroup ([2], Lemma 1.2 (2)), and hence
it is a T-subgroup, and even a T-normal subgroup of G. For any subgroup H
of G such that G=H®1, Theorem 1 shows that the Schur-semigroup T on G is
isomorﬁhic to a Schur-semigroup X on H. The hypotheses of this statement
are satisfied for any transitive permutation group G and any transitive
subgroup H of G if we take for T the double coset Schur-semigroup G/G,
where G, is ‘the stabilizer in G of a letter o. If the transitive subgroup H is
even a regular subgroup of G then we obtain the Schur-semigroup version
of Schur’s theorem of the ¢ transitivity module ” of G, on H (cf. [3], pp. 140~
I41).

We return to Theorem 1. Apart from the permutability with the T—sub-
group K we have assumed nothing of the subgroup H of G except that HK
is a T-subgroup. Let us look at the special case where both

H and XK are T-subgroups of G suckh that HK = KH.

Then HN K and HK are also T-subgroups ([2], Theorem 1.3), and the
semigroup (Tu)mmnx which is generated by all the sets (HN K) %, (HN K)
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with %2 € H is ‘'a Schur-semigroup on H ([2], Proposition 1.4). For the Schur-
semigroup X% on H, defined by Theorem 1, each Y-—class §, = K%, K H
of H is, under the present assumption, the union of T-classes of G:

S = U T, (% €H).

x€ gy

Each §, is invariant under all left and right multiplications by all the elements
of HN K. Hence we also have

= UMHNK T, HANK)  (heH).

x€ gy

Therefore each X—class, even if it is not an element of the Schur-semigroup
(Te)wEnk, is at least an element of the set theoretical closure

(Te)umnk : = {Qf +=XCcH|X = éJX(HmK)%‘x(HmK)},
which means
T ¢ (Tu)mmnk.
Under which conditions do we have the equation
Y = (Twumaxk ?
THEOREM 2. . Let T be a Schur-semigroup on G, and let both H and K be

T—subgroups of G such that HK = KH. We denote by X the Schur-semigroup
on H defined by Theorem 1. Then the following statements are equivalent.

(D) Y= (Twwurk -

(2) KX = XK f07" all X € (TH>H/H0K .

Proof. (1) implies (2) by Theorem 1 (2). Assume that (2) holds. Every
element X € (Tu)uunx has the form

X=MHnNK)F, H an) - (HNK)%, HNK)
with, /1 ,---, 2, € H. From the permutability property (2) of K we obtain
XK = (K%, K) - (K%, K) € (Tux)ux/x -
Since every element Y € (Tux)ux/x has the form
Y= (K%, K)-- (K¢, K)=HNK)%;,, HNK)---(HNK)%, Hn K)K
with /1,---, %, € H the correspondence

y: X —+ XK (X € (To)umnk)
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is a surjective mapping of (Tw)mmnk onto (Tux)uxx . Taking into account
that the

HNK)E,(HNK) (eH)
are the (Tu)wmnx—classes of H and that the
K%,K (€eH)

are the (Tuk)ug/x—classes of HK, it is easy to check that y satisfies Definition 2,
and hence is a Schur-semigroup homomorphism. The kernel Ker ¥ ([2],
Definition 2.6) is the set theoretical union of all those (Tw)wmnk—classes
H N K)%, (HN K) of H which y maps onto the unit element K of (Tur)HK/K ,
that is Ker y-=H M K. Therefore Ker 7 is the (Te)umnx—class of H which
contains the unit element 1 € H. By [2], Proposition 2.11, % is an injective
mapping, and hence y is an isomorphism of the Schur-semigroup (Tu)mmnk
on H onto the Schur-semigroup (Tux)ukx on HK. On the other hand

¢:Y—>YNH (Y € (Tur)ux/x)

is an isomorphism of the Schur-semigroup (Tux)uk;x on HK onto the Schur-
semigroup X on H by Theorem 1 (3)- It follows that 3¢ is an isomorphism
of the Schur-semigroup (Tu)um~x on H onto the Schur-semigroup ¥ on H.
This implies that

HNK)%HNK™ =K&GKNH =8, forall seH.

But we have

Si= U HOK) & HMK)

x € §y

and we also have
HNK)T, HNK =§, forall xe€g§,.
Therefore, by the bijectivity of yo,
HNK)T,HNK)=2¢§, forall Z€eH.
From this we obtain ¥ = (Tw)umn~k, and Theorem 2 is proved.
The permutability condition (2) of Theorem 2 is satisfied if K is a
Tux—normal subgroup of HK, and in particular if K is a T-normal subgroup

of G. In this last case Theorem 1 becomes the Second Isomorphism Theorem
for Schur-semigroups ([2], Theorem 2.13).
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