ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

OLAF TAMASCHKE

A Further Generalization of the Second Isomorphism Theorem in Group Theory

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 47 (1969), n.1-2, p. 1–8. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1969_8_47_1-2_1_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Ferie 1969 (Luglio-Agosto)

(Ogni Nota porta a pie' di pagina la data di arrivo o di presentazione)

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — A Further Generalization of the Second Isomorphism Theorem in Group Theory. Nota (*) di Olaf Tamaschke, presentata dal Socio G. Scorza Dragoni.

RIASSUNTO. — Sia \mathbf{T} un semigruppo di Schur sul gruppo G. I sottogruppi H e K di G soddisfacciano alla HK = KH; e K ed HK siano entrambi \mathbf{T} -sottogruppi di G (risultino cioè unioni di \mathbf{T} -classi di G). In queste condizioni \mathbf{T} induce un semigruppo di Schur (\mathbf{T}_{HK}) $_{HK/K}$ su HK, semigruppo che (con riferimento alla moltiplicazione fra complessi) è generato dagli insiemi del tipo KTK, con \mathcal{T} variabile nella totalità delle \mathbf{T} -classi di G contenute in HK. In questa Nota sarà dimostrato che gli insiemi del tipo KTK \cap H, con \mathcal{T} variabile in quella tal totalità, generano (con riferimento alla moltiplicazione fra complessi) un semigruppo di Schur, Σ , su H; che $\varphi: Y \to Y \cap H$ ($Y \in (\mathbf{T}_{HK})_{HK/K}$) fornisce una trasformazione isomorfa avente per dominio (\mathbf{T}_{HK}) $_{HK/K}$, semigruppo di Schur su HK, e per codominio Σ , semigruppo di Schur su H; e che $\psi: X \to XK$ ($X \in \Sigma$) è l'inversa di φ . Il significato di questo teorema consiste in ciò, che nella situazione descritta un semigruppo di Schur su un gruppo « grande » HK può essere sostituito con una sua immagine isomorfa, semigruppo di Schur sul gruppo H « più piccolo » e perciò spesso più semplice nella sua struttura. Se per \mathbf{T} si sceglie il gruppo G e per K un sottogruppo normale di G, il risultato precedente si riduce al secondo teorema sugli isomorfismi nella teoria dei gruppi.

The intention of introducing the concept of a Schur-semigroup in the theory of groups (cf. [1], [2] and [8], Chapter III) was not only that it might lead to a new differentiation in the structure of groups but also that it might make applicable to group theory various methods and results from the algebraic theory of semigroups.

(*) Pervenuta all'Accademia il 26 luglio 1969.

We can expect that the ease of dealing with a Schur-semigroup is directly related to the intricacy of the structure of the underlying group. Therefore theorems will be useful which allow an isomorphism of a Schur-semigroup on one group onto a Schur-semigroup on another group whose structure can be supposed to be less complicated. Such a situation is given if the underlying group of a Schur-semigroup is factorized in a certain way, and its investigation is the object of this note. This generalizes earlier results of [5] where we dealt with the special, though most important, case of double coset Schur-semigroups. (For the meaning of the double coset Schur-semigroups in the theory of permutation groups we refer to [6], Section 12, and to [8], Chapter IV). To make this paper self-contained we briefly recall some basic definitions from the theory of Schur-semigroups (cf. [1], [2] or [8], Chapter III).

Let G be a group. The set $\overline{G} := \{X \mid \varnothing \neq X \subseteq G\}$ is a semigroup with respect to subset multiplication (frequently called "complex" multiplication)

$$(X, Y) \rightarrow XY := \{xy \mid x \in X \text{ and } y \in Y\}.$$

DEFINITION 1. A subsemigroup \mathbf{T} of \overline{G} is called a Schur-semigroup on G if it has a unit element and if there exists a set $\mathfrak{T} \subseteq \overline{G}$ such that:

$$G = \bigcup_{\mathfrak{T} \in \mathfrak{T}} \mathfrak{T}.$$

(2)
$$S = \mathcal{E} \quad or \quad S \cap \mathcal{E} = \emptyset \quad for \quad all \quad S, \mathcal{E} \in \mathcal{I}.$$

(4)
$$X = \bigcup_{\substack{\mathfrak{T} \in \mathfrak{X} \\ \mathfrak{T} \cap X \neq \emptyset}} \mathfrak{T} \quad \text{for all} \quad X \in \mathbf{T}.$$

(5) **T** is generated by \mathfrak{T} , that is every element of **T** is the product of a finite number of elements of \mathfrak{T} .

Since \mathfrak{T} is uniquely determined by **T** and the axioms (1) to (5) we call the elements of \mathfrak{T} the **T**-classes of G. We denote by \mathfrak{T}_g the unique **T**-class containing $g \in G$.

A subgroup H of G is called a **T**-subgroup of G if H is the set theoretical union of **T**-classes, that is

$$H = \bigcup_{h \in H} \mathcal{T}_h.$$

Every T-subgroup H of G defines two Schur-semigroups, namely

- i. the Schur-semigroup T_H on H which is generated by all \mathcal{T}_h with $h \in H$,
- 2. the Schur-semigroup $\mathbf{T}_{G/H}$ on G which is generated by all HTH with $\mathcal{T} \in \mathfrak{T}$.

A T-subgroup K of G is called T-normal if

$$K \mathcal{C} = \mathcal{C} K$$
 holds for all $\mathcal{C} \in \mathfrak{T}$

Let F be a group, Σ a Schur-semigroup on F, and $\mathfrak S$ the set of all Σ -classes of F (that is $\mathfrak S$ plays the same role for Σ as $\mathfrak T$ does for T).

DEFINITION 2. A mapping φ of \mathbf{T} into Σ is called a homomorphism of the Schur-semigroup \mathbf{T} on G into the Schur-semigroup Σ on F if it has the following properties.

$$(I) \hspace{1cm} (XY)^{\phi} = X^{\phi} \, Y^{\phi} \hspace{0.2cm} \textit{for all} \hspace{0.2cm} X \, , \, Y \, \epsilon \, \textbf{T} \, .$$

(2)
$$X^{\varphi} = \bigcup_{x \in X} \mathfrak{T}_{x}^{\varphi} \quad \text{for all} \quad X \in \mathbf{T}.$$

(3) For every **T**-class & of G there exists a **Y**-class & of F such that

$$\mathfrak{T}^{\varphi} = \mathfrak{S}$$
 and $(\mathfrak{T}^{-1})^{\varphi} = \mathfrak{S}^{-1}$.

A homomorphism $\varphi: \mathbf{T} \to \Sigma$ is called an *isomorphism* if φ is a bijective mapping.

Now we start on our investigations with the main theorem of this paper.

Theorem 1. Let \mathbf{T} be a Schur-semigroup on the group G. Let H and K be subgroups of G such that HK=KH. Assume further that K and HK are \mathbf{T} -subgroups of G. Then

- (1) The semigroup Σ , which is generated (with respect to complex multiplication) by the set of all $\mathcal{E}_h := K\mathcal{E}_h K \cap H$ with $h \in H$, is a Schur-semigroup on H, and the \mathcal{E}_h , $h \in H$, are the Σ -classes of H.
- (2) KX = XK for all $X \in \Sigma$.
- (3) The mapping

$$\phi: Y \to Y \cap H \qquad (Y \in (\boldsymbol{T}_{HK})_{HK/K})$$

is an isomorphism of the Schur-semigroup $(T_{HK})_{HK/K}$ on HK, which is generated (with respect to complex multiplication) by the set of all K \mathbb{F}_g K with $g \in HK$, onto the Schur-semigroup Σ on H. The mapping

$$\psi: X \to XK \qquad (X \in \Sigma)$$

is the inverse mapping of ϕ , and hence is an isomorphism of the Schursemigroup Σ on H onto the Schursemigroup $(T_{HK})_{HK/K}$ on HK.

Remarks. – I. If in the above theorem the Schur-semigroup $(T_{HK})_{HK/K}$ on HK is considered as a "factor structure" of HK modulo K then Theorem I states that there exists a "factor structure" of H modulo $H \cap K = \delta_1$ which is isomorphic to the first, namely the Schur-semigroup Σ on H. Thus

the situation of a Second Isomorphism Theorem is given. In fact, the Second Isomorphism Theorem in group theory is a special case of Theorem 1 if we apply it to $\mathbf{T} = G$ and to a normal subgroup K of G.

2. An analogous theorem holds for Schur-rings on finite groups instead of Schur-semigroups. It will be stated and proved in [9].

Proof. I. Since the $K\mathcal{C}_gK$, $g \in G$, are the $\mathbf{T}_{G/K}$ -classes of G ([2], Proposition 1.4 (2)) for the sets $\delta_h = K\mathcal{C}_hK \cap H$, $h \in H$, the following hold.

I.
$$H = \bigcup_{\lambda \in H} S_{\lambda}.$$

2.
$$\delta_g = \delta_h$$
 or $\delta_g \cap \delta_h = \emptyset$ for all $g, h \in H$.

3.
$$\mathbb{S}_h^{-1} = \mathbb{S}_{h^{-1}}$$
 for all $h \in H$.

Hence for the semigroup Σ which is generated (with respect to complex multiplication) by all the \mathcal{S}_h , $h \in H$, the properties (1), (2), (3), (5) of Definition 1 are satisfied by $\mathfrak{S} := \{ \mathcal{S}_h \mid h \in H \}$.

In order to prove (4) of Definition 1 for Σ and $\mathfrak S$ (instead of $\mathbf T$ and $\mathfrak S$) we observe that every $g \in HK$ can be written as g = hk with $h \in H$ and $k \in K$. Because of $h \in K\mathfrak S_gK$ and the properties of the $\mathbf T_{G/K}$ -classes of G (cf. [2], Proposition 1.4 (2)) we have $K\mathfrak S_hK = K\mathfrak S_gK$. Furthermore, each product $(K\mathfrak S_xK)$ $(K\mathfrak S_yK)$ is the union of $\mathbf T_{G/K}$ -classes, and if we choose x, $y \in H$ these $\mathbf T_{G/K}$ -classes have the form $K\mathfrak S_zK$ with $z \in H$.

It was shown in [5], p. 136, that

(i)
$$(X \cap H)(Y \cap H) = XY \cap H$$
 for all $\emptyset \neq X$, $Y \subseteq HK$ such that $KXK = X$ and $KYK = Y$.

Setting $X = K \mathcal{E}_x K$ and $Y = K \mathcal{E}_y K$ with $x, y \in H$, we obtain

$$\mathbb{S}_{\boldsymbol{x}}\mathbb{S}_{\boldsymbol{y}} = (\mathbf{K}\mathbb{T}_{\boldsymbol{x}}\mathbf{K})\,(\mathbf{K}\mathbb{T}_{\boldsymbol{y}}\mathbf{K})\cap\mathbf{H} = \underset{\boldsymbol{z}\,\in\,(\mathbf{K}\mathbb{T}_{\boldsymbol{x}}\mathbf{K})\,(\mathbf{K}\mathbb{T}_{\boldsymbol{y}}\mathbf{K})}{\cup}\mathbf{K}\mathbb{T}_{\boldsymbol{z}}\mathbf{K}\cap\mathbf{H} = \underset{\boldsymbol{z}\,\in\,(\mathbf{K}\mathbb{T}_{\boldsymbol{x}}\mathbf{K})\,(\mathbf{K}\mathbb{T}_{\boldsymbol{y}}\mathbf{K})}{\cup}\mathbb{S}_{\boldsymbol{z}}\,.$$

It follows that every element of Σ is the set theoretical union of elements of \mathfrak{S} , and therefore (4) of Definition 1 holds for Σ and \mathfrak{S} (instead of T and \mathfrak{T}). Hence Σ is a Schur-semigroup on H.

II. In [5], p. 136, it was also shown that $K(Y\cap H)=Y \text{ for all } \varnothing \neq Y\subseteq HK \text{ such that } KY=Y.$ Similarly one proves

(ii) $(Y \cap H) K = Y$ for all $\emptyset \neq Y \subseteq HK$ such that YK = Y. In particular

$$K(Y \cap H) = Y = (Y \cap H) K$$
 for all $\emptyset \neq Y \subseteq HK$ such that $KYK = Y$.

Since every element $X \in \Sigma$ can be written as

$$\mathbf{X} = \mathbf{S}_{h_1} \cdots \mathbf{S}_{h_r} = ((\mathbf{K} \mathbf{T}_{h_1} \mathbf{K}) \cdots (\mathbf{K} \mathbf{T}_{h_r} \mathbf{K})) \cap \mathbf{H} \qquad (h_1, \cdots, h_r \in \mathbf{H})$$

we obtain KX = XK for all $X \in \Sigma$.

III. Since every element $Y \in (T_{HK})_{HK/K}$ can be written as

$$Y = (K\mathcal{C}_{h_1}K) \cdots (K\mathcal{C}_{h_r}K) \qquad (h_1, \cdots, h_r \in H)$$

equation (i) shows that

$$Y \cap H = \delta_{h_1} \cdots \delta_{h_r}$$

is an element of Σ . Conversely, every element $X=\mathbb{S}_{h_1}\cdots\mathbb{S}_{h_r}$ of Σ can be written as $X=Y\cap H$ with $Y=(K\mathfrak{T}_{h_1}K)\cdots(K\mathfrak{T}_{h_r}K)\in (\mathbf{T}_{HK})_{HK/K}$. Therefore

$$\phi: Y \to Y \cap H \qquad (Y \in (\boldsymbol{T}_{HK})_{HK/K})$$

is a surjective mapping of $(T_{HK})_{HK/K}$ onto Σ which, using (i) once again, satisfies Definition 2 (with H instead of F). Hence ϕ is a homomorphism of the Schur-semigroup $(T_{HK})_{HK/K}$ on HK onto the Schur-semigroup Σ on H. Since ϕ is a surjective mapping (ii) shows that

$$\psi: X \to XK \qquad (X \in \Sigma)$$

is a mapping of Σ into $(T_{HK})_{HK/K}$ such that both $\phi\psi$ and $\psi\phi$ are identity mappings. Hence ϕ and ψ are bijective mappings. Therefore they are isomorphisms of the relevant Schur-semigroups, and Theorem 1 is proved.

Particularly interesting is the case where H is a subgroup and K is a **T**-subgroup of G such that G = HK. Furthermore: the **T**-class \mathcal{T}_1 which contains the unit element $1 \in G$ is a subgroup ([2], Lemma 1.2 (2)), and hence it is a **T**-subgroup, and even a **T**-normal subgroup of G. For any subgroup H of G such that $G = H\mathcal{T}_1$, Theorem 1 shows that the Schur-semigroup **T** on G is isomorphic to a Schur-semigroup Σ on H. The hypotheses of this statement are satisfied for any transitive permutation group G and any transitive subgroup H of G if we take for **T** the double coset Schur-semigroup G/G_{α} where G_{α} is the stabilizer in G of a letter α . If the transitive subgroup H is even a regular subgroup of G then we obtain the Schur-semigroup version of Schur's theorem of the "transitivity module" of G_{α} on H (cf. [5], pp. 140–141).

We return to Theorem 1. Apart from the permutability with the \mathbf{T} -subgroup K we have assumed nothing of the subgroup H of G except that HK is a \mathbf{T} -subgroup. Let us look at the special case where both

H and K are T-subgroups of G such that HK = KH.

Then $H \cap K$ and HK are also **T**-subgroups ([2], Theorem 1.5), and the semigroup $(\mathbf{T}_H)_{H/H \cap K}$ which is generated by all the sets $(H \cap K)$ $\mathcal{E}_{\mathbf{A}}(H \cap K)$

with $h \in H$ is a Schur-semigroup on H ([2], Proposition 1.4). For the Schur-semigroup Σ on H, defined by Theorem 1, each Σ -class $\mathcal{S}_h = K\mathcal{T}_h K \cap H$ of H is, under the present assumption, the union of T-classes of G:

$$\mathcal{S}_h = \bigcup_{x \in \mathcal{S}_h} \mathcal{T}_x \qquad (h \in \mathcal{H}).$$

Each \mathcal{S}_{h} is invariant under all left and right multiplications by all the elements of $H \cap K$. Hence we also have

$$\mathbb{S}_{\hbar} = \bigcup_{x \in \, \mathbb{S}_{\hbar}} (\mathbf{H} \cap \mathbf{K}) \, \, \mathbb{T}_{x} \left(\mathbf{H} \cap \mathbf{K}\right) \qquad (\hbar \in \mathbf{H}) \, .$$

Therefore each Σ -class, even if it is not an element of the Schur-semigroup $(T_H)_{H/H\cap K}$, is at least an element of the set theoretical closure

$$\overline{(\mathbf{T}_{H})}_{H/H \cap K} \colon = \{ \varnothing \not= X \subseteq H \mid X = \bigcup_{x \in X} (H \cap K) \, \mathfrak{T}_{x} (H \cap K) \} \,,$$

which means

$$\Sigma \subseteq \overline{(T_H)}_{H/H \cap K}$$
.

Under which conditions do we have the equation

$$\Sigma = (T_H)_{H/H \cap K}$$
 ?

Theorem 2. Let T be a Schur-semigroup on G, and let both H and K be T-subgroups of G such that HK = KH. We denote by Σ the Schur-semigroup on H defined by Theorem 1. Then the following statements are equivalent.

$$\mathbf{\Sigma} = (\mathbf{T}_{\mathrm{H}})_{\mathrm{H}/\mathrm{H} \cap \mathrm{K}} \,.$$

$$(2) \hspace{1cm} KX = XK \hspace{3mm} \text{for all} \hspace{3mm} X \in (\textbf{T}_H)_{H/H \hspace{0.5mm}\cap\hspace{0.5mm} K} \, .$$

Proof. (I) implies (2) by Theorem I (2). Assume that (2) holds. Every element $X \in (T_H)_{H/H \cap K}$ has the form

$$\mathbf{X} = (\mathbf{H} \cap \mathbf{K}) \, \mathfrak{T}_{h_1}(\mathbf{H} \cap \mathbf{K}) \cdots (\mathbf{H} \cap \mathbf{K}) \, \mathfrak{T}_{h_r}(\mathbf{H} \cap \mathbf{K})$$

with $h_1, \dots, h_r \in H$. From the permutability property (2) of K we obtain

$$XK = (K\mathcal{C}_{h_1}K) \cdots (K\mathcal{C}_{h_r}K) \in (\mathbf{T}_{HK})_{HK/K}$$
.

Since every element $Y \in (T_{HK})_{HK/K}$ has the form

$$Y \models (K\mathfrak{T}_{\mathtt{A}_1}K) \cdots (K\mathfrak{T}_{\mathtt{A}_r}K) = (H \cap K)\,\mathfrak{T}_{\mathtt{A}_1}(H \cap K) \cdots (H \cap K)\,\mathfrak{T}_{\mathtt{A}_r}(H \cap K)K$$

with $h_1, \dots, h_r \in H$ the correspondence

$$\chi: X \to XK$$
 $(X \in (T_H)_{H/H \cap K})$

is a surjective mapping of $(T_H)_{H/H\cap K}$ onto $(T_{HK})_{HK/K}$. Taking into account that the

$$(H \cap K) \, \mathcal{C}_h \, (H \cap K) \qquad (h \in H)$$

are the $(T_H)_{H/H \cap K}$ -classes of H and that the

$$K \mathcal{C}_h K$$
 $(h \in H)$

are the $(T_{HK})_{HK/K}$ -classes of HK, it is easy to check that χ satisfies Definition 2, and hence is a Schur-semigroup homomorphism. The kernel Ker χ ([2], Definition 2.6) is the set theoretical union of all those $(T_H)_{H/H\cap K}$ -classes $(H\cap K)$ \mathcal{C}_{k} $(H\cap K)$ of H which χ maps onto the unit element K of $(T_{HK})_{HK/K}$, that is Ker $\chi=H\cap K$. Therefore Ker χ is the $(T_H)_{H/H\cap K}$ -class of H which contains the unit element I \in H. By [2], Proposition 2.11, χ is an injective mapping, and hence χ is an isomorphism of the Schur-semigroup $(T_H)_{H/H\cap K}$ on H onto the Schur-semigroup $(T_{HK})_{HK/K}$ on HK. On the other hand

$$\phi: Y \to Y \cap H \qquad (Y \in (\boldsymbol{T}_{HK})_{HK/K})$$

is an isomorphism of the Schur-semigroup $(T_{HK})_{HK/K}$ on HK onto the Schursemigroup Σ on H by Theorem 1 (3). It follows that $\chi \phi$ is an isomorphism of the Schur-semigroup $(T_H)_{H/H\cap K}$ on H onto the Schur-semigroup Σ on H. This implies that

$$(H \cap K) \, \mathcal{C}_{h} \, (H \cap K)^{\chi \varphi} = K \, \mathcal{C}_{h} \, K \cap H = \delta_{h} \quad \text{ for all } h \in H.$$

But we have

$$\mathfrak{S}_{\hbar} = \bigcup_{x \in \mathfrak{S}_{\hbar}} (H \cap K) \, \mathfrak{T}_{x} \, (H \cap K)$$

and we also have

$$(H \cap K) \, \mathcal{E}_x \, (H \cap K)^{\chi \varphi} = \delta_h \quad \text{ for all } x \in \delta_h.$$

Therefore, by the bijectivity of $\chi \varphi$,

$$(H \cap K) \mathcal{E}_h (H \cap K) = \mathcal{E}_h \quad \text{for all} \quad h \in H.$$

From this we obtain $\Sigma = (T_H)_{H/H \cap K}$, and Theorem 2 is proved.

The permutability condition (2) of Theorem 2 is satisfied if K is a T_{HK} -normal subgroup of HK, and in particular if K is a T-normal subgroup of G. In this last case Theorem 1 becomes the Second Isomorphism Theorem for Schur-semigroups ([2], Theorem 2.13).

REFERENCES.

- [I] TAMASCHKE O., An extension of group theory. Istituto Nazionale di Alta Matematica. «Symposia Mathematica», 1, 5–13 (1968).
- [2] TAMASCHKE O., An extension of group theory to S-semigroups, «Math. Zeitschrift », 104, 74-90 (1968).
- [3] TAMASCHKE O., A generalization of subnormal subgroups, « Archiv d. Math. », 19, 337-347 (1968).
- [4] TAMASCHKE O., A generalization of conjugacy in groups, « Rendiconti del Seminario Matematico Università di Padova », 40, 408–427 (1968).
- [5] TAMASCHKE O., A generalization of the second isomorphism theorem in group theory. Accademia Nazionale dei Lincei, « Rendiconti della Classe di Scienze fisiche, matematiche e naturali », Serie VIII, 45, 135–141 (1968).
- [6] TAMASCHKE O., On permutation groups, «Annali di Matematica», Serie IV, 80, 235–279 (1968).
- [7] TAMASCHKE O., On the theory of Schur-rings, «Annali di Matematica», Serie IV, 81, 1-43 (1969).
- [8] TAMASCHKE O., Permutationsstrukturen. B. I. Hochschulskripten 710/710a, Bibliographisches Institut, Mannheim-Wien-Zürich 1969.
- [9] TAMASCHKE O., Schur-Ringe. B. I. Hochschulskripten. Bibliographisches Institut, Mannheim Wien Zürich. To appear.