Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Adi Ben-Israel, Michael J. L. Kirby

A Characterization of Equilibrium Points of Bimatrix Games

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 46 (1969), n.4, p. 402-407.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1969_8_46_4_402_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Ricerca operativa. - A Characterization of Equilibrium Points of Bimatrix Games. Nota di Adi Ben-Israel e Michael J. L. Kirby, presentata dal Socio B. Segre.

Riassunto. - I punti di equilibrio dei giochi bimatriciali vengon qui caratterizzati da certe sottomatrici della matrice di retribuzione.

Notations and preliminaries. - We denote by:
$\mathrm{R}^{n}=$ the n-dimensional real vector space,
$\mathrm{R}_{+}^{n}=\left\{x \in \mathrm{R}^{n}: x \geqq 0\right\}$ the nonnegative orthant in R^{n},
$e=$ the vector whose components are all I and whose dimension is to be determined by the context,
$\mathrm{M}=\{\mathrm{I}, 2, \cdots, m\}$,
$\mathrm{N}=\{\mathrm{I}, 2, \cdots, n\}$.
For any subsets ICM, JCN, let

$$
\overline{\mathrm{I}}=\{i: i \in \mathrm{M}, i \notin \mathrm{I}\} \quad, \quad \overline{\mathrm{J}}=\{j: j \in \mathrm{~N}, j \notin \mathrm{~J}\} .
$$

For any $m \times n$ real matrix

$$
\mathrm{A}=\left(a_{i j}\right) \quad i \in \mathrm{M}, j \in \mathrm{~N},
$$

define the submatrix

$$
\mathrm{A}(\mathrm{I} / \mathrm{J})=\left(a_{i j}\right) \quad i \in \mathrm{I}, j \in \mathrm{~J}
$$

For any vector $x=\left(x_{i}\right) \in \mathrm{R}^{m}$, define the subvector

$$
x(\mathrm{I})=\left(x_{i}\right), \quad i \in \mathrm{I} .
$$

For any subspace L of $\mathrm{R}^{n}, \mathrm{P}_{\mathrm{L}}$ denotes the perpendicular projection on L .
For any $m \times n$ real matrix A denote by
$R(A)$ the range space of A,
$N(A)$ the null space of A,
A^{T} the transpose of A,
$A^{+} \quad$ the generalized inverse of A, [8].
We recall from [2] that

$$
x=\mathrm{A}^{+} b+\mathrm{N}(\mathrm{~A})
$$

is the general solution of

$$
A x=b
$$

whenever solvable; also

$$
\mathrm{A}^{+\mathrm{T}}=\mathrm{A}^{\mathrm{T}+} \quad \text { and } \quad \mathrm{AA}^{+}=\mathrm{P}_{\mathrm{R}(\mathrm{~A})} .
$$

(*) Nella seduta del 19 aprile 1969 .

[197] A. Ben-Israel e M. J. L. Kirby, A Characterization of Equilibrium, ecc. 403

A bimatrix game is a two person game defined by two $m \times n$ matrices $\mathrm{A}=\left(a_{i j}\right), \mathrm{B}=\left(b_{i j}\right)$ so that if player I chooses $i \in \mathrm{M}$ and player II chooses $j \in \mathrm{~N}$ then the payoffs are $a_{i j}$ to player I and $b_{i j}$ to player II. Without loss of generality the matrices A, B can be taken to be positive matrices, [5]. A point $(x, y) \in \mathrm{R}^{m+n}$ is an equilibrium point of the bimatrix game (A, B) if and only if (x, y) satisfies
(I $b) \quad y \in \mathrm{R}_{+}^{n} \quad, \quad e^{\mathrm{T}} y=\mathrm{I}$,
$\mathrm{B}^{\mathrm{T}} x \leqq\left(x^{\mathrm{T}} \mathrm{B} y\right) e$,
(2b)
$\mathrm{A} y \leqq\left(x^{\mathrm{T}} \mathrm{A} y\right) e$.
Equilibrium points of bimatrix games, whose existence was first proved by Nash [7], were further studied in [3], [4], [5] and [6].
(1) and (2) imply the following complementary slackness conditions

$$
\begin{align*}
& x^{\mathrm{T}}\left[\mathrm{~A} y-\left(x^{\mathrm{T}} \mathrm{~A} y\right) e\right]=0, \tag{3a}\\
& y^{\mathrm{T}}\left[\mathrm{~B}^{\mathrm{T}} x-\left(x^{\mathrm{T}} \mathrm{~B} y\right) e\right]=0 .
\end{align*}
$$

Results. - Equilibrium points of a bimatrix game are characterized in the following

Theorem:

Assumptions: Let A, B be positive $m \times n$ matrices and let $x \in \mathrm{R}_{+}^{m}, y \in \mathrm{R}_{+}^{n}$.
Conclusions: (x, y) is an equilibrium point for the bimatrix game (A, B) if and only if there are sets $I \subset M, J C N$ for which the following 8 conditions are satisfied.

$$
\begin{array}{ll}
e=\mathrm{A}(\mathrm{I} / \mathrm{J}) u & \text { for some } u \geqq 0, \\
e=\mathrm{B}(\mathrm{I} / \mathrm{J})^{\mathrm{T}} v & \text { for some } v \geqq 0, \tag{5}
\end{array}
$$

$$
\begin{equation*}
x(\overline{\mathrm{I}})_{-}=\mathrm{o} \tag{6}
\end{equation*}
$$

$$
y(\overline{\mathrm{~J}})=\mathrm{o}
$$

$$
\begin{equation*}
x(\mathrm{I})=\mathrm{B}(\mathrm{I} / \mathrm{J})^{\mathrm{T}+} e\left[\frac{\mathrm{I}-e^{\mathrm{T}} w}{e^{\mathrm{T}} \mathrm{~B}(\mathrm{I} / \mathrm{J})^{+} e}\right]+w, \quad \text { for some } \quad w \in \mathrm{~N}\left(\mathrm{~B}(\mathrm{I} / \mathrm{J})^{\mathrm{T}}\right) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
y(\mathrm{~J})=\mathrm{A}(\mathrm{I} / \mathrm{J})^{+} e\left[\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}\right]+z, \quad \text { for some } \quad z \in \mathrm{~N}(\mathrm{~A}(\mathrm{I} / \mathrm{J})) \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{B}(\mathrm{I} / \mathrm{N})^{\mathrm{T}} x(\mathrm{I}) \leqq\left[\frac{\mathrm{I}-e^{\mathrm{T}} w}{e^{\mathrm{T}} \mathrm{~B}(\mathrm{I} / \mathrm{J})^{+} e}\right] e \tag{io}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{A}(\mathrm{M} / \mathrm{J}) y(\mathrm{~J}) \leqq\left[\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}\right] e \tag{II}
\end{equation*}
$$

31. - RENDICONTI 1969, Vol. XLVI, fasc. 4.

Proof. - I. If:
First we show that for the z defined by (9), $e^{\mathrm{T}} z \neq \mathrm{I}$. For if $e^{\mathrm{T}} z=\mathrm{I}$, then (II) implies that $y(\mathrm{~J})=\mathrm{o}$ (since A is positive), so by (9) $z=\mathrm{o}$ contradicting $e^{\mathrm{T}} z=\mathrm{I}$.

Now we show that y, satisfying (7) and (9), is a probability vector:

$$
\begin{aligned}
e^{\mathrm{T}} y & =e^{\mathrm{T}} y(\mathrm{~J}) & & \text { by (7) } \\
& =\mathrm{I} & & \text { by }(9) .
\end{aligned}
$$

Hence
(I b) is satisfied.
(I a) is similarly proved.
To prove (2b) we calculate

$$
\begin{align*}
& x^{\mathrm{T}} \mathrm{~A} y=x(\mathrm{I})^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J}) y(\mathrm{~J}) \tag{I2}\\
& \text { by (6), (7) } \\
& =x(\mathrm{I})^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J}) \mathrm{A}(\mathrm{I} / \mathrm{J})^{+} e\left[\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}\right]+x(\mathrm{I})^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J}) z \quad \mathrm{by}(9) \\
& =x(\mathrm{I})^{\mathrm{T}} e\left[\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}\right] \text { since } z \in \mathrm{~N}(\mathrm{~A}(\mathrm{I} / \mathrm{J})) \text {, (4) and } \\
& \mathrm{A}(\mathrm{I} / \mathrm{J}) \mathrm{A}(\mathrm{I} / \mathrm{J})^{+}=\mathrm{P}_{\mathrm{R}(\mathrm{~A}(\mathrm{I} / \mathrm{J}))} \\
& =\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}
\end{align*}
$$

(2b) follows now from (II) and (I2)
(2a) is similarly proved.
2. Only if:

Let (x, y) be an equilibrium point and define

$$
\begin{align*}
& \mathrm{I}=\left\{i: \sum_{j=1}^{n} a_{i j} y_{j}=x^{\mathrm{T}} \mathrm{~A} y\right\} \tag{13}\\
& \mathrm{J}=\left\{j: \sum_{i=1}^{m} b_{i j} x_{i}=x^{\mathrm{T}} \mathrm{~B} y\right\} \tag{I4}
\end{align*}
$$

Both I, J are nonempty since I empty implies that

$$
\mathrm{A} y<\left(x^{\mathrm{T}} \mathrm{~A} y\right) e
$$

which implies by using (I a) that

$$
x^{\mathrm{T}} \mathrm{~A} y<x^{\mathrm{T}} \mathrm{~A} y, \quad \text { a contradiction. }
$$

(6) and (7) follow from (2) (3) and the definitions (13) (I4).

Using (7) and (13) we get

$$
\begin{equation*}
\mathrm{A}(\mathrm{I} / \mathrm{J}) y(\mathrm{~J})=\left(x^{\mathrm{T}} \mathrm{~A} y\right) e \tag{15}
\end{equation*}
$$

which proves (4) since $y(\mathrm{~J}) \geqq 0, x^{\mathrm{T}} \mathrm{A} y>0$. (5) is similarly proved. The general solution of (15) is

$$
\begin{equation*}
y(z)=\mathrm{A}(\mathrm{I} / \mathrm{J})+e\left(x^{\mathrm{T}} \mathrm{~A} y\right)+z, \quad \text { for some } z \in \mathrm{~N}(\mathrm{~A}(\mathrm{I} / \mathrm{J})) . \tag{ı}
\end{equation*}
$$

But

$$
\begin{aligned}
\mathrm{I} & =e^{\mathrm{T}} y \\
& =e^{\mathrm{T}} y(\mathrm{~J}) \\
& =e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e\left(x^{\mathrm{T}} \mathrm{~A} y\right)+e^{\mathrm{T}} z
\end{aligned} \quad \text { by (7) }
$$

In general, $\mathrm{A}(\mathrm{I} / \mathrm{J})$ positive does not imply that $e^{\mathrm{T}} \mathrm{A}(\mathrm{I} / \mathrm{J})^{+} e \neq 0$. For example

$$
\mathrm{A}(\mathrm{I} / \mathrm{J})=\left(\begin{array}{ll}
3 & \mathrm{I} \\
4 & 2
\end{array}\right) \quad, \quad \mathrm{A}(\mathrm{I} / \mathrm{J})^{+}=\frac{\mathrm{I}}{2}\left(\begin{array}{rr}
2 & -\mathrm{I} \\
-4 & 3
\end{array}\right) .
$$

Since a positive constant may be added to all elements of A and B without changing the equilibrium points, it can thus be assumed without loss of generality that

$$
e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e \neq 0, \quad \text { by }(\mathrm{I} 6)
$$

so

$$
x^{\mathrm{T}} \mathrm{~A} y=\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}
$$

which when inserted in (I6) and (2.b) gives (9) and (II) respectively. (8) and (Io) are similarly proved.
Q.E.D.

Remarks.

I. An important special class of bimatrix games are 2 -person o-sum games, in which case

$$
\begin{equation*}
\mathrm{B}=-\mathrm{A} . \tag{I7}
\end{equation*}
$$

Then $e^{\mathrm{T}} w=0$ in (8) and $e^{\mathrm{T}} z=0$ in (9), since in this case

$$
\begin{array}{ll}
e \in \mathrm{R}(\mathrm{~A}(\mathrm{I} / \mathrm{J})) & \text { by }(7), \\
e \in \mathrm{R}\left(\mathrm{~A}(\mathrm{I} / \mathrm{J})^{\mathrm{T}}\right) & \text { by } \star(5) \text { and (17), } \\
w \in \mathrm{~N}\left(\mathrm{~A}(\mathrm{I} / \mathrm{J})^{\mathrm{T}}\right) & \text { by (8) and (17), } \\
z \in \mathrm{~N}(\mathrm{~A}(\mathrm{I} / \mathrm{J})) & \text { by }(9) .
\end{array}
$$

We use here the fact that for any matrix $A, R(A)$ and $N\left(A^{T}\right)$ are orthogonal subspaces.

For 2-person o-sum games the theorem of [1] is thus a corollary of our theorem. In particular, the value of the game is then $\frac{I}{e^{T} A(I / J)^{+} e}$
2. In general $e^{\mathrm{T}} w$ and $e^{\mathrm{T}} z$ are not zero, as shown by the following example. Let

$$
\mathrm{A}=\left(\begin{array}{cc}
\mathrm{I} & 2 \\
\frac{1}{2} & \frac{I}{2}
\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{cc}
\mathrm{I} & \mathrm{I} \\
\frac{\mathrm{I}}{2} & \frac{1}{2}
\end{array}\right)
$$

then $(x, y)=\left(\binom{\mathrm{I}}{\mathrm{o}},\binom{\alpha}{\mathrm{I}-\alpha}\right)$ is an equilibrium point for all $0 \leq \alpha \leq \mathrm{I}$. For $\mathrm{o}<\alpha<\mathrm{I}$ (I3) and (I4) give

$$
\mathrm{I}=\{\mathrm{I}\} \quad, \quad \mathrm{J}=\{\mathrm{I}, 2\}
$$

and the submatrices $A(I / J), B(I / J)$ are

$$
\mathrm{A}(\mathrm{I} / \mathrm{J})=\left(\begin{array}{ll}
\mathrm{I} & 2
\end{array}\right) \quad, \quad \mathrm{B}(\mathrm{I} / \mathrm{J})=\left(\begin{array}{ll}
1 & \mathrm{I}
\end{array}\right)
$$

with

$$
\mathrm{A}(\mathrm{I} / \mathrm{J})^{+}=\frac{1}{5}\binom{\mathrm{I}}{2} \quad, \quad \mathrm{~B}(\mathrm{I} / \mathrm{J})^{+}=\frac{\mathrm{I}}{2}\binom{\mathrm{I}}{\mathrm{I}} .
$$

Now z defined by (9) is of the form

$$
z=\binom{2 \beta}{-\beta} \text { for some real } \beta, \quad \text { since } z \in \mathrm{~N}(\mathrm{~A}(\mathrm{I} / \mathrm{J})) .
$$

But (9) gives:

$$
\begin{aligned}
y(\mathrm{~J})=\binom{\alpha}{\mathrm{I}-\alpha} & =\mathrm{A}(\mathrm{I} / \mathrm{J})^{+} e\left[\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}\right]+z \\
& =\frac{\mathrm{I}}{5}\binom{\mathrm{I}}{2} \frac{\mathrm{I}-\beta}{\left(\frac{3}{5}\right)}+\binom{2 \beta}{-\beta} \\
= & \binom{\frac{1}{3}+\frac{5}{3} \beta}{\frac{2}{3}-\frac{5}{3} \beta}
\end{aligned}
$$

so that $\beta=\frac{3}{5} \alpha-\frac{1}{5}$, and $\beta \neq 0$ if $\alpha \neq \frac{1}{3}$ in which case $e^{\mathrm{T}} z=\beta \neq 0$. In this example, however, $w=0$ since

$$
\mathrm{N}\left(\mathrm{~B}(\mathrm{I} / \mathrm{J})^{\mathrm{T}}\right)=\{\mathrm{o}\}
$$

The payoffs to the players at the equilibrium point $\left(\binom{\mathrm{I}}{\mathrm{o}},\binom{\alpha}{\mathrm{I}-\alpha}\right)$ are thus

$$
x^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J}) y=\frac{\mathrm{I}-e^{\mathrm{T}} z}{e^{\mathrm{T}} \mathrm{~A}(\mathrm{I} / \mathrm{J})^{+} e}=2-\alpha \quad, \quad x^{\mathrm{T}} \mathrm{~B}(\mathrm{I} / \mathrm{J}) y=\frac{\mathrm{I}-e^{\mathrm{T}} w}{e^{\mathrm{T}} \mathrm{~B}(\mathrm{I} / \mathrm{J})^{+} e}=\mathrm{I}
$$

to players I and II respectively.
For $\alpha=0$ or I the set J is $\{2\}$ or $\{\mathrm{I}\}$ respectively. This illustrates the nonuniqueness of the equilibrium points and the nonuniqueness of the corresponding payoffs to each player.
3. Any equilibrium point (x, y) corresponds, via the conditions (4)-(iI), to two index sets $I C M$ and $J C N$. The corresponding submatrices $A(I / J)$ and $\mathrm{B}(\mathrm{I} / \mathrm{J})$, which are the essential parts of the payoff matrices A and B at the given equilibrium point, satisfy (4) and (5) (among other conditions). This fact may be used in excluding certain submatrices from consideration as possible optimal $A(I / J)$ or $B(I / J)$. For instance, in the above example, mixed strategies are excluded for player I since the matrix.

$$
A=\left(\begin{array}{cc}
1 & 2 \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

does not satisfy (4).
4. Extreme equilibrium points, e.g. [6], may be characterized in the same way that basic optimal strategies were characterized in [9] and in corollaries I and 2 of [I].

Acknowledgement: Part of the research was undertaken for the U. S. Army Research Office-Durham, Contract No. Da-3I-I24-ARO-D-322, and for the National Science Foundation, Project GP 7550 at Northwestern University in Evanston, Illinois.

References.

[I] Ben-Israel, A., On optimal solutions of 2-person o-sum games, «Rend. Acc. Lincei», ser. VIII, Vol. XLIV, fasc. 4, 274-278 (1968).
[2] Ben-Israel, A. and A. Charnes, Contributions to the theory of generalized inverses, «J. Soc. Indust. Appl. Math. », II, nr. 3, 667-699 (1963).
[3] Kuhn, H. W., An algorithm for equilibrium points in bimatrix games, «Proc. Nat. Acad. Sci U.S.A. », 47, 1657-1662 (1961).
[4] Lemke, C. E., Bimatrix equilibrium points and mathematical programming, «Management Sci.»II, 681-689 (1965).
[5] Lemke, C. E., and J. T. Howson, Jr., Equilibrium points of bimatrix games, «J. Soc. Indust. Appl. Math.» I2, nr. 2, 413-423 (i964).
[6] Mangasarian, O. L., Equilibrium points of bimatrix games, " J. Soc. Indust. Appl. Math.» I2, nr. 4, 778-780 (1964).
[7] Nash, J. F., Noncooperative games, «Ann. Math.» 54, 286-295 (1951).
[8] Penrose, R., A generalized inverse for matrices, «Proc. Cambridge Philos. Soc.» 5I, 406-413 (1955).
[9] Shapley, L. S. and R. N. Snow, Basic solutions of discrete games pp. 27-35 in «Contributions to the Theory of Games» Vol. I (edited by H. W. Kuhn and A. W. Tucker) Princeton University Press, Princeton, N. J. 1950.

