Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali RENDICONTI

George C. Gastl

Proximities and Abstract Spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 46 (1969), n.4, p. 395-401.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1969_8_46_4_395_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> $\mathrm{http}: / / \mathrm{www}$. bdim.eu/

Topologia. - Proximities and Abstract Spaces. Nota di George C. Gastl, presentata ${ }^{(*)}$ dal Socio B. Segre.

RiASSUNTO. - Si studiano le connessioni che intercedono fra varie relazioni di prossimità in un insieme M e varie topologie generalizzate od estese inerenti ad M .

Introduction.

This paper is concerned with various proximity relations and their associated set-functions.

A proximity space consists of a set M and a binary relation P on subsets of M such that the following conditions are satisfied.
P. I. For all $A \subseteq M,(A, N) \notin P$.
P. 2. If $(A, B) \in P$, then $(B, A) \in P$.
P. 3. If $(A \cup B, C) \in P$, then $(A, C) \in P$ or $(B, C) \in P$.
P. 4. $(\{x\},\{y\}) \in \mathrm{P}$ iff $x=y$.

If in addition P also satisfies
P. 5. If $(A, B) \notin P$, then there exist $C, D \subseteq M$ such that $C \cup D=M$ and $(\mathrm{A}, \mathrm{C}) \notin \mathrm{P},(\mathrm{B}, \mathrm{D}) \notin \mathrm{P}$
then P is a separated proximity.
In regard to abstract spaces, suppose k is a function from 2^{M} into 2^{M}. Then (M, k) will be called a Fréchet space if g is expansive, an Appert space if g is a closure function, and a Cech space if g is enlarging and additive.

Spaces from Proximity Relations.

A topology on M corresponding to a proximity P on M can be obtained by defining the set-valued set-function $k: 2^{\mathrm{M}} \rightarrow 2^{\mathrm{M}}$ by $k \mathrm{~A}=\{q /(\{q\}, \mathrm{A}) \in \mathrm{P}\}$; and 'if P satisfies all five given conditions, then it is well-known that k is a Kuratowski closure function on M and (M, k) is a completely regular T_{1}-space. The relationships between the conditions on P and the properties of k will be studied. First the term ancestral, as applied to binary relations among sets, is defined.

Definition i. Let R be a binary relation on subsets of M. If (A, B) $\in R$ and $A \subseteq C$ imply $(C, B) \in R$, then R is left ancestrat. If $(A, B) \in R$ and $\mathrm{B} \subseteq \mathrm{C}$ imply $(\mathrm{A}, \mathrm{C}) \in \mathrm{R}$, then R is right ancestral. If R has both of these properties it is ancestral.
(*) Nella seduta del 19 aprile 1969.

Theorem i. Let P be a binary relation on subsets of M and define the function $k: 2^{\mathrm{M}} \rightarrow 2^{\mathrm{M}}$ by $k \mathrm{~A}=\{q \mid(\{q\}, \mathrm{A}) \in \mathrm{P}\}$.
(a) If P is right ancestral then k is isotonic.
(b) If P has property P.I then $k \mathrm{~N}=\mathrm{N}$.
(c) If P is right ancestral and $(\{q\},\{q\}) \in \mathrm{P}$ for each $q \in \mathrm{M}$, then k is enlarging.
(d) If P is right ancestral and satisfies: $(\mathrm{C}, \mathrm{A} \cup \mathrm{B}) \in \mathrm{P}$ implies $(\mathrm{C}, \mathrm{A}) \in \mathrm{P}$ or $(\mathrm{C}, \mathrm{B}) \in \mathrm{P}$, then k is additive.
(e) If P is ancestral and satisfies: $(\mathrm{A}, \mathrm{B}) \notin \mathrm{P}$ implies there exist C, D disjoint for which $(\mathrm{A}, c \mathrm{C}) \notin \mathrm{P}$ and $(c \mathrm{D}, \mathrm{B}) \notin \mathrm{P}$, and $(\{q\},\{q\}) \in \mathrm{P}$ for each $q \in \mathrm{M}$, then k is idempotent.

Proof: (a) Suppose $\mathrm{A} \subseteq \mathrm{B}$ and $q \in k \mathrm{~A}$. Then $(\{q\}, \mathrm{A}) \in \mathrm{P}$, and if P is right ancestral $(\{q\}, \mathrm{B}) \in \mathrm{P}$, hence $q \in k \mathrm{~B}$.
(b) If $q \in k \mathrm{~N}$, then $(\{q\}, \mathrm{N}) \in \mathrm{P}$, so property P . I requires that $k \mathrm{~N}=\mathrm{N}$.
(c) Let $\mathrm{A} \subseteq \mathrm{M}$ and $q \in \mathrm{~A}$. If $(\{q\},\{q\}) \in \mathrm{P}$ for each $q \in \mathrm{M}$, and P is right ancestral, then $(\{q\}, \mathrm{A}) \in \mathrm{P}$ and hence $q \in k \mathrm{~A}$. This is true for each $q \in \mathrm{~A}$, so $\mathrm{A} \subseteq k \mathrm{~A}$.
(d) If P is right ancestral then k is isotonic, so $k(\mathrm{~A} \cup \mathrm{~B}) \supseteq k \mathrm{~A} \cup k \mathrm{~B}$. Then it must be shown $k \mathrm{~A} \cup k \mathrm{~B} \supseteq k(\mathrm{~A} \cup \mathrm{~B})$. Let $q \in k(\mathrm{~A} \cup \mathrm{~B})$. Then $(\{q\}, \mathrm{A} \cup \mathrm{B}) \in \mathrm{P}$, and if this implies either $(\{q\}, \mathrm{A}) \in \mathrm{P}$ or $(\{q\}, \mathrm{B}) \in \mathrm{P}$ then $q \in k \mathrm{~A}$ or $q \in k \mathrm{~B}$ whence $q \in k \mathrm{~A} \cup k \mathrm{~B}$.
(e) If P is right ancestral and contains $(\{q\},\{q\})$ for all $q \in \mathrm{M}$, then from (c) k is enlarging; i.e., $k(k \mathrm{~A}) \supseteq k \mathrm{~A}$ for each $\mathrm{A} \subseteq \mathrm{M}$. Then only $k^{2} \subseteq k$ is needed. Let $q \in k^{2} \mathrm{~A}=k(k \mathrm{~A})$. Then $(\{q\}, k \mathrm{~A}) \in \mathrm{P}$. Suppose $q \notin k \mathrm{~A}$. Then $(\{q\}, \mathrm{A}) \notin \mathrm{P}$. By assumption there are sets C and D such that $\mathrm{C} \cap \mathrm{D}=\mathrm{N},(\{q\}, c \mathrm{C}) \notin \mathrm{P}$, and $(c \mathrm{D}, \mathrm{A}) \notin \mathrm{P}$. If $\mathrm{A} \cap c \mathrm{D} \neq \mathrm{N}$, then there is some $s \in \mathrm{~A} \cap c \mathrm{D}$ and $(\{s\},\{s\}) \in \mathrm{P}$, hence $(c \mathrm{D}, \mathrm{A}) \in \mathrm{P}$ which is a contradiction. Thus $\mathrm{A} \subseteq \mathrm{D}$. Also if $s \in k \mathrm{~A} \cap c \mathrm{D}$, then $(\{s\}, \mathrm{A}) \in \mathrm{P}$ and then $(c \mathrm{D}, \mathrm{A}) \in \mathrm{P}$ which is not true. Hence $k \mathrm{~A} \subseteq \mathrm{D}$. Since $q \in k^{2} \mathrm{~A},(\{q\}, k \mathrm{~A}) \in \mathrm{P}$, and because $k \mathrm{~A} \subseteq \mathrm{D} \subseteq c \mathrm{C}$ the right ancestral property yields $(\{q\}, c \mathrm{C}) \in \mathrm{P}$ which is a contradiction. Therefore $k^{2} \subseteq k$, and k is idempotent.

Therefore k is a Kuratowski closure function when P satisfies the properties:
(i) For all $\mathrm{A} \subseteq \mathrm{M},(\mathrm{A}, \mathrm{N}) \notin \mathrm{P}$
(ii) P is ancestral
(iii) For each $q \in \mathrm{M},(\{q\},\{q\}) \in \mathrm{P}$
(iv) When $(\mathrm{C}, \mathrm{A} \cup \mathrm{B}) \in \mathrm{P}$, then $(\mathrm{C}, \mathrm{A}) \in \mathrm{P}$ or $(\mathrm{C}, \mathrm{B}) \in \mathrm{P}$
(v) When $(\mathrm{A}, \mathrm{B}) \notin \mathrm{P}$, then there exist C and D disjoint such that $(\mathrm{A}, c \mathrm{C}) \notin \mathrm{P}$ and $(c \mathrm{D}, \mathrm{B}) \notin \mathrm{P}$.

The symmetry property P. 2 is not necessary, and P. 3 is replaced by the same property on the right. Also it may be true that $(\{x\},\{y\}) \in \mathrm{P}$ even when $x \neq y$.

Relations on subsets of M which are weaker than a proximity have been studied by Mattson and Pervin. Pervin [5] has defined what he calls a quasi-proximity as a relation between subsets of M which has the four properties

1) For all $\mathrm{A} \subseteq \mathrm{M},(\mathrm{A}, \mathrm{N}) \notin \mathrm{P}$
2) For each $q \in \mathrm{M},(\{q\},\{q\}) \in \mathrm{P}$
3) $(\mathrm{C}, \mathrm{A} \cup \mathrm{B}) \in \mathrm{P}$ iff $(\mathrm{C}, \mathrm{A}) \in \mathrm{P}$ or $(\mathrm{C}, \mathrm{B}) \in \mathrm{P}$
4) If $(A, B) \notin P$ then there exist two disjoint sets U and V such that $(\mathrm{A}, c \mathrm{U}) \notin \mathrm{P}$ and $(c \mathrm{~V}, \mathrm{~B}) \notin \mathrm{P}$.
Clearly a quasi-proximity plus the symmetry condition is a proximity, not necessarily separated. These conditions used by Pervin are equivalent to (i), (iii), (iv), (v), plus the right ancestral property for P. If the set-valued set-function k is defined as it has been above, then it is not a Kuratowski closure function when P is only a quasi-proximity. E. F. Steiner [6] has given an example showing this.

In order to assure that k is a Kuratowski closure it is necessary to include the one condition which appears in (i)-(v) above and is not required of a quasi-proximity, and that is that P is left ancestral. Steiner has added the following condition: $(A \cup B, C) \in P$ iff $(A, C) \in P$ or $(B, C) \in P$. Certainly this is sufficient when added to the quasi-proximity requirements to make k a Kuratowski closure, but it is not necessary because it includes the "right hereditary" property $(A \cup B, C) \in P \Rightarrow(A, C) \in P$ or $(B, C) \in P$, which is not used.

The above results on obtaining the set-function k by using a relation P can be summarized in terms of abstract spaces as follows:

Theorem 2. Let P be a relation on the subsets of M and $k: 2^{\mathrm{M}} \rightarrow 2^{\mathrm{M}}$ be given by $k \mathrm{~A}=\{q \mid(\{q\}, \mathrm{A}) \in \mathrm{P}\}$.
(a) (M, k) is an isotonic space if P is right ancestral.
(b) (M, k) is a Fréchet space if P is right ancestral and if $(\{q\},\{q\}) \in \mathrm{P}$ for each $q \in \mathrm{M}$; i.e., if P is Mattson's generalized quasi-proximity.
(c) (M, k) is an Appert space if P has conditions (ii), (iii), and (v).
(d) (M, k) is a Cech space if P has conditions (iii) and (iv) and is right ancestral.

Mattson [4] has studied a weaker form of proximity, called a generalized quasi-proximity. He required that P have property (iii) and the right ancestral property, hence k for this case is expansive and (M, k) is a Fréchet space. By adding the symmetry requirement to the two given for a generalized quasi-proximity, Mattson obtained a generalized proximity for M and proved that this type of proximity is the complement in $2^{\mathrm{M}} \times 2^{\mathrm{M}}$ of a Wallace separation [7]. Other similar forms of weaker proximity relations have been considered by Leader [2] and Lodato [3], and these are complements in $2^{\mathrm{M}} \times 2^{\mathrm{M}}$ of weak topological separations [4].

Proximity Relations from Spaces.

Consider the converse problem of obtaining a binary relation on subsets of M from a given set-valued set-function. In the case of a topological space when k is a Kuratowski closure, the separation $(\mathrm{A} \cap k \mathrm{~B}) \cup(k \mathrm{~A} \cap \mathrm{~B}) \neq \mathrm{N}$ is a familiar one, and it suggests the "closeness" relation (A,B) $\in \mathrm{P}$ iff $(\mathrm{A} \cap k \mathrm{~B}) \cup(k \mathrm{~A} \cap \mathrm{~B}) \neq \mathrm{N}$. This relation would certainly be symmetric regardless of the properties of k. Similarly if $(A, B) \in P$ provided $k A \cup k B \neq N$, this would be symmetric by the manner of definition. A definition which does not require symmetry will be used, so the resulting relation P will not have all properties of a proximity.

Theorem 3. Assume $k: 2^{\mathrm{M}} \rightarrow 2^{\mathrm{M}}$ and $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$ iff $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$.
(a) P is left ancestral by definition.
(b) If k is isotonic, then P is right ancestral.
(c) If $\mathrm{kN}=\mathrm{N}$, then $(\mathrm{A}, \mathrm{N}) \notin \mathrm{P}$ for each $\mathrm{A} \subseteq \mathrm{M}$.
(d) If k is enlarging, then $(\{q\},\{q\}) \in \mathrm{P}$ for each $q \in \mathrm{M}$.
(e) If k is additive, then P has the property: $(\mathrm{C}, \mathrm{A} \cup \mathrm{B}) \in \mathrm{P}$ implies either $(\mathrm{C}, \mathrm{A}) \in \mathrm{P}$ or $(\mathrm{C}, \mathrm{B}) \in \mathrm{P}$.
(f) If k is idempotent, then P has the property: if $(\mathrm{A}, \mathrm{B}) \notin \mathrm{P}$ then there exist C, D disjoint such that $(\mathrm{A}, c \mathrm{C}) \notin \mathrm{P}$ and $(c \mathrm{D}, \mathrm{B}) \notin \mathrm{P}$.
Proof: (a) By the definition of P , if $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$ then $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$, hence if $\mathrm{C} \supseteq \mathrm{A}, \mathrm{C} \cap k \mathrm{~B} \neq \mathrm{N}$ and $(\mathrm{C}, \mathrm{B}) \in \mathrm{P}$.
(b) If k is isotonic, then $\mathrm{B} \subseteq \mathrm{C}$ implies $k \mathrm{~B} \subseteq k \mathrm{C}$; hence $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$ and $\mathrm{B} \subseteq \mathrm{C}$ imply $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$ and $\mathrm{A} \cap k \mathrm{C} \neq \mathrm{N}$ which means ($\mathrm{A}, \mathrm{C}) \in \mathrm{P}$.
(c) If $k N=N$, then $A \cap k N=N$ for each $A \subseteq M$ and $(A, N) \notin P$.
(d) Suppose k is enlarging. Then $q \in \mathrm{~A}$ implies $q \in k \mathrm{~A}$ which means $(\{q\}, \mathrm{A}) \in \mathrm{P}$. Thus $(\{q\},\{q\}) \in \mathrm{P}$ for each $q \in \mathrm{M}$.
(e) When $k(\mathrm{~A} \cup \mathrm{~B})=k \mathrm{~A} \cup k \mathrm{~B}, k$ is isotonic, hence P is right ancestral by (a). Also $k(\mathrm{~A} \cup \mathrm{~B}) \subseteq k \mathrm{~A} \cup k \mathrm{~B}$, whence $(\mathrm{C}, \mathrm{B} \cup \mathrm{A}) \in \mathrm{P}$ implies $\mathrm{C} \cap k$ $(\mathrm{B} \cup \mathrm{A}) \neq \mathrm{N}$ and consequently either $\mathrm{C} \cap k \mathrm{~B} \neq \mathrm{N}$ or $\mathrm{C} \cap k \mathrm{~A} \neq \mathrm{N}$. This means $(C, B) \in P$ or else $(C, A) \in P$.
(f) Suppose k is idempotent and (A, B) $\notin \mathrm{P}$. Then $\mathrm{A} \cap k \mathrm{~B}=\mathrm{N}$. Choose $\mathrm{C}=c k \mathrm{~B}$ and $\mathrm{D}=k \mathrm{~B}$. Then $(\mathrm{A}, k \mathrm{~B}) \notin \mathrm{P}$ because $\mathrm{A} \cap k(k \mathrm{~B})=\mathrm{A} \cap k \mathrm{~B}=\mathrm{N}$. Also $(c k \mathrm{~B}, \mathrm{~B}) \notin \mathrm{P}$ because $c k \mathrm{~B} \cap k \mathrm{~B}=\mathrm{N}$. Thus C and D are disjoint and $(\mathrm{A}, c \mathrm{C})=(\mathrm{A}, k \mathrm{~B}) \notin \mathrm{P}$ and $(c \mathrm{D}, \mathrm{B})=(c k \mathrm{~B}, \mathrm{~B}) \notin \mathrm{P}$. Also in this case $\mathrm{C} \cup \mathrm{D}=\mathrm{M}$.

Defining P in the given way from a function k means that an isotonic space (M, k) determines an ancestral relation P . A Fréchet space determines a generalized quasi-proximity (Mattson) with the additional left ancestral property. Mattson has proved the function $k^{\prime} \mathrm{A}=\{q \mid(\{q\}, \mathrm{A}) \in \mathrm{P}\}$ corresponding to this constructed generalized quasi-promixity is equal to the k of he Fréchet space. If (M, k) is an Appert space then the resulting P has properties (ii), (iii), and (v) given above after Theorem I. If (M, k) is a topological
space, then P has all properties (i) through (v) and is a quasi-proximity on M, but is not necessarily symmetric.

Theorem 4. Let $(\mathrm{M}, k$) be a topology and construct a relation P by: (A, B) $\in \mathrm{P}$ provided $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$. Then P has properties (i) through (v) given above, and the function t obtained from P by: $t \mathrm{~A}=\{q \mid(\{q\}, \mathrm{A}) \in \mathrm{P}\}$, is equal to k.

Proof: From the results of Theorem 3, P has the given five properties when k has the properties of a Kuratowski closure, so $k=t$ must be proved. Let $\mathrm{A} \subseteq \mathrm{M}$ and $q \in t \mathrm{~A}$. Then $(\{q\}, \mathrm{A}) \in \mathrm{P}$ which means. $\{q\} \cap k \mathrm{~A} \neq \mathrm{N}$; i.e., $q \in k \mathrm{~A}$. Thus $t \subseteq k$. If $q \in k \mathrm{~A}$, then $\{q\} \cap k \mathrm{~A} \neq \mathrm{N}$, hence $(\{q\}, \mathrm{A}) \in \mathrm{P}$ and $q \in t \mathrm{~A}$. Therefore $t=k$.

The proof used only the definition of P in terms of k and the definition of t in terms of P , and was independent of the properties of k and P . Given any extended topology (M, k) the function t obtained in the given way must be identical with k, hence the construction $(\mathrm{M}, k) \rightarrow(\mathrm{M}, \mathrm{P}) \rightarrow(\mathrm{M}, t)$ always produces the same extended topology as that given. The same procedures when beginning with a proximity (M, P) do not always yield the original (M, P) however.

THEOREM 5. Let P be a relation on subsets of M and define $k: 2^{\mathrm{M}} \rightarrow 2^{\mathrm{M}}$ by $k \mathrm{~A}=\{q \mid(\{q\}, \mathrm{A}) \in \mathrm{P}\}$. Then the relation P^{\prime} given by $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}^{\prime}$ provided $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$, satisfies $\mathrm{P}^{\prime} \subseteq \mathrm{P}$ if P is left ancestral.

Proof: Suppose $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}^{\prime}$. Then $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$, hence there exists some $q \in \mathrm{~A} \cap k \mathrm{~B}$. For this $q,(\{q\}, \mathrm{B}) \in \mathrm{P}$ by the definition of k. Therefore if P is left ancestral, $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$ and $\mathrm{P}^{\prime} \subseteq \mathrm{P}$.

If one considers the original relation P and has $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$, this does not imply that there is some point $q \in \mathrm{~A}$ for which $(\{q\}, \mathrm{B}) \in \mathrm{P}$. If that were true, then $q \in k \mathrm{~B}$ and hence $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}^{\prime}$. The following example is one in which $\mathrm{P} \neq \mathrm{P}^{\prime}$.

Example i. Let M be the real line E^{1} and t the closure function of the usual topology. Define the relation. P by $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$ iff $t \mathrm{~A} \cap t \mathrm{~B} \neq \mathrm{N}$. Then the function k given by $k \mathrm{~A}=\{q \mid(\{q\}, \mathrm{A}) \in \mathrm{P}\}=\{q \mid q \in t \mathrm{~A})=t \mathrm{~A}$. The new relation P^{\prime} is then $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}^{\prime}$ provided $\mathrm{A} \cap k \mathrm{~B}=\mathrm{A} \cap t \mathrm{~B} \neq \mathrm{N}$. Thus $\mathrm{P}^{\prime} \subseteq \mathrm{P}$ and $\mathrm{P}^{\prime} \neq \mathrm{P}$.

Steiner [6] has proved that, when the original relation P satisfies the condition: $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$ iff $(\{a\}, \mathrm{B}) \in \mathrm{P}$ for some $a \in \mathrm{~A}$, the construction produce $\mathrm{P}^{\prime}=\mathrm{P}$. The condition he gives is just the condition mentioned prior to Example I in addition to left ancestral. It is stronger than the "left hereditary" condition which was mentioned above as being required for the relation P in order to assure that k is a Kuratowski closure. But it is necessary to assure that the procedure $(\mathrm{M}, \mathrm{P}) \rightarrow(\mathrm{M}, k) \rightarrow\left(\mathrm{M}, \mathrm{P}^{\prime}\right)$ will give $\mathrm{P}^{\prime}=\mathrm{P}$. Clearly, any P^{\prime} which is defined using k, as $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}^{\prime}$ iff $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$, has this property. Therefore when P and P^{\prime} are to be the same, P also has the property. The relation P is called strongly left hereditary
provided (A , B) $\in \mathrm{P}$ implies $(\{a\}, \mathrm{B}) \in \mathrm{P}$ for some $a \in \mathrm{~A}$. For each abstract space then there is the corresponding proximity relation.

Theorem 6. Let (M, k) be an extended topology and P a relation on subsets of M.
(a) (M, k) an isotonic space corresponds to an ancestral and strongly left hereditary relation P .
(b) (M, k) a Fréchet space corresponds to an ancestral and strongly left hereditary relation P which has condition (iii) as given above following Theorem I.
(c) An Appert space (M, k) corresponds to an ancestral and strongly left hereditary relation P satisfying conditions (iii) and (v).
(d) A topology (M, k) is equivalent to a quasi-proximity P which is left ancestral and strongly left hereditary.

Example 2. Let P be defined on subsets of M by (A, B) $\in \mathrm{P}$ provided $\mathrm{A} \cap \mathrm{B} \neq \mathrm{N}$. Then P is clearly a proximity relation and is separated. The corresponding function k is the identity function $k \mathrm{~A}=\mathrm{A}$, so the space (M, k) is the discrete topology on M.

Example 3. Let (M, k) be a compact Hausdorff space and let (A, B) $\in \mathrm{P}$ iff $k \mathrm{~A} \cap k \mathrm{~B} \neq \mathrm{N}$. Because k is a Kuratowski closure function (A, N) $\notin \mathrm{P}$ for each $A \subseteq M$, and $(A \cup B, C) \in P$ implies $(A, C) \in P$ or $(B, C) \in P$. P is symmetric since $k \mathrm{~A} \cap k \mathrm{~B} \neq \mathrm{N}$ is symmetric in A and B . The Hausdorff property ensures $(\{x\},\{y\}) \in \mathrm{P}$ iff $x=y$. If $(\mathrm{A}, \mathrm{B}) \notin \mathrm{P}$, then $k \mathrm{~A} \cap k \mathrm{~B}=\mathrm{N}$. Both $k \mathrm{~A}$ and $k \mathrm{~B}$ are compact because they are closed subsets of a compact space. Thus $k \mathrm{~A}$ and $k \mathrm{~B}$ are disjoint compact subsets of a Hausdorff space and have disjoint neighborhoods. Say $k \mathrm{~A} \subseteq \mathrm{U}$ open and $k \mathrm{~B} \subseteq \mathrm{~V}$ open and $\mathrm{U} \cap \mathrm{V}=\mathrm{N}$. Let $\mathrm{C}=c \mathrm{U}$ and $\mathrm{D}=\mathrm{U}$. Then $(\mathrm{A}, \mathrm{C}) \notin \mathrm{P}$ because $k \mathrm{~A} \cap k \mathrm{C}=$ $=k \mathrm{~A} \cap c \mathrm{U}=\mathrm{N}$, and $(\mathrm{B}, \mathrm{D}) \notin \mathrm{P}$ because $k \mathrm{~B} \cap k \mathrm{D} \subseteq k \mathrm{~B} \cap c \mathrm{~V}=\mathrm{N}$. Thus P. 5 for a proximity is satisfied and (M, P) is a separated proximity space. The function $k^{\prime} \mathrm{A}=\{q \mid(\{q\}, \mathrm{A}) \in \mathrm{P}\}=\{q \mid q \in k \mathrm{~A}\}=k \mathrm{~A}$.

Example 4. Let $\mathrm{M}=\mathrm{E}^{2}$, the Euclidean plane, and let $k: 2^{\mathrm{M}} \rightarrow 2^{\mathrm{M}}$ be $k \mathrm{~A}=$ the convex hull of A . Define P by: $(\mathrm{A}, \mathrm{B}) \in \mathrm{P}$ iff $\mathrm{A} \cap k \mathrm{~B} \neq \mathrm{N}$. Clearly k is isotonic, enlarging, idempotent, and $k N=N$, hence from Theorem 3, P satisfies all of the conditions for a quasi-proximity except the right hereditary property. A set C may intersect the convex hull of $A \cup B$ but not intersect either $k \mathrm{~A}$ or $k \mathrm{~B}$ as k is not additive. P satisfies the two conditions for Mattson's generalized quasi-proximity. The function k^{\prime} obtained from P is again the convex hull function. Notice that the condition given by Pervin for quasi-proximity which states ($\mathrm{A}, \mathrm{B}) \notin \mathrm{P}$ implies there exist U and V disjoint such that $(\mathrm{A}, c \mathrm{U}) \notin \mathrm{P}$ and $(c \mathrm{~V}, \mathrm{~B}) \notin \mathrm{P}$, is not stronger than condition P. 5 given for a proximity. The P in this example satisfies the former because k is idempotent, but it does not satisfy P. 5. To illustrate this let E^{2} be given a Cartesian coordinate system and let $\mathrm{A}=\left\{p_{1}, p_{2}\right\}$ and $\mathrm{B}=\left\{p_{3}\right\}$ where p_{1} is the point (O, I) and p_{2} is $(\mathrm{O},-\mathrm{I})$ while p_{3} is (O, O).

Then clearly $k \mathrm{~B}=\mathrm{B}$ and $\mathrm{A} \cap k \mathrm{~B}=\mathrm{N}$, so $(\mathrm{A}, \mathrm{B}) \notin \mathrm{P}$. It is not possible to find C and D which satisfy P . 5. Since B should not intersect the convex hull of D , at least one of the points p_{1} and p_{2} must lie in $c \mathrm{D}=\mathrm{C}$. This would mean $\mathrm{A} \cap \mathrm{C} \subseteq \mathrm{A} \cap k \mathrm{C} \neq \mathrm{N}$ contrary to the restriction that $(\mathrm{A}, \mathrm{C}) \notin \mathrm{P}$.

References.

[i] P. C. Hammer, Extended topology: set-valued set-functions, "Nieuw Arch. Wisk.», io, 55-77 (1962).
[2] S. Leader, On clusters in proximity spaces, «Fund. Math.», 47, 205-213 (1959).
[3] M. Lodato, Generalized proximity relations, «Proc. Amer. Math. Soc.», 15, 417-422 (1964).
[4] D. A. Mattson, Extended Topology: On Abstract Spaces, Doctoral Dissertation. University of Wisconsin, Madison, Wisconsin 1965.
[5] W. J. Pervin, Quasi-proximities for topological spaces, «Math. Ann.», 150, 325-326 (1963).
[6]. E. F. Steiner, The relation between quasi-proximities and topological spaces, «Math. Ann.», 155, 194-195 (1964).
[7] A. D. Wallace, Separation spaces, «Ann. of Math.», 42, 686-697 (1941).

