ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

GEORGE C. GASTL

Proximities and Abstract Spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **46** (1969), n.4, p. 395–401.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1969_8_46_4_395_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1969.

Topologia. — *Proximities and Abstract Spaces.* Nota di George C. GASTL, presentata ^(*) dal Socio B. Segre.

RIASSUNTO. — Si studiano le connessioni che intercedono fra varie relazioni di prossimità in un insieme M e varie topologie generalizzate od estese inerenti ad M.

INTRODUCTION.

This paper is concerned with various proximity relations and their associated set-functions.

A *proximity space* consists of a set M and a binary relation P on subsets of M such that the following conditions are satisfied.

P. I. For all $A \subseteq M$, $(A, N) \notin P$.

P. 2. If $(A, B) \in P$, then $(B, A) \in P$.

P. 3. If $(A \cup B, C) \in P$, then $(A, C) \in P$ or $(B, C) \in P$.

P. 4. $(\{x\}, \{y\}) \in P$ iff x = y.

If in addition P also satisfies

P. 5. If (A , B) \notin P, then there exist C , $D\subseteq M$ such that $C\cup D=M$ and $(A\,,C)\notin$ P , (B , D) \notin P

then P is a separated proximity.

In regard to abstract spaces, suppose k is a function from 2^{M} into 2^{M} . Then (M, k) will be called a *Fréchet space* if g is expansive, an *Appert space* if g is a closure function, and a *Čech space* if g is enlarging and additive.

SPACES FROM PROXIMITY RELATIONS.

A topology on M corresponding to a proximity P on M can be obtained by defining the set-valued set-function $k: 2^{M} \rightarrow 2^{M}$ by $kA = \{q \mid (\{q\}, A) \in P\}$; and if P satisfies all five given conditions, then it is well-known that k is a Kuratowski closure function on M and (M, k) is a completely regular T₁-space. The relationships between the conditions on P and the properties of k will be studied. First the term ancestral, as applied to binary relations among sets, is defined.

DEFINITION I. Let R be a binary relation on subsets of M. If $(A, B) \in R$ and $A \subseteq C$ imply $(C, B) \in R$, then R is *left ancestral*. If $(A, B) \in R$ and $B \subseteq C$ imply $(A, C) \in R$, then R is *right ancestral*. If R has both of these properties it is *ancestral*.

(*) Nella seduta del 19 aprile 1969.

THEOREM 1. Let P be a binary relation on subsets of M and define the function $k : 2^{M} \rightarrow 2^{M}$ by $kA = \{q \mid (\{q\}, A) \in P\}$.

- (a) If P is right ancestral then k is isotonic.
- (b) If P has property P.1 then kN = N.
- (c) If P is right ancestral and $(\{q\}, \{q\}) \in P$ for each $q \in M$, then k is enlarging.
- (d) If P is right ancestral and satisfies: (C, A ∪ B) ∈ P implies (C, A) ∈ P or (C, B) ∈ P, then k is additive.
- (e) If P is ancestral and satisfies: (A, B) ∉ P implies there exist C, D disjoint for which (A, cC) ∉ P and (cD, B) ∉ P, and ({q}, {q}) ∈ P for each q ∈ M, then k is idempotent.

Proof: (a) Suppose $A \subseteq B$ and $q \in kA$. Then $(\{q\}, A) \in P$, and if P is right ancestral $(\{q\}, B) \in P$, hence $q \in kB$.

(b) If $q \in kN$, then ($\{q\}$, N) \in P, so property P. 1 requires that kN = N.

(c) Let $A \subseteq M$ and $q \in A$. If $(\{q\}, \{q\}) \in P$ for each $q \in M$, and P is right ancestral, then $(\{q\}, A) \in P$ and hence $q \in kA$. This is true for each $q \in A$, so $A \subseteq kA$.

(d) If P is right ancestral then k is isotonic, so $k (A \cup B) \supseteq kA \cup kB$. Then it must be shown $kA \cup kB \supseteq k (A \cup B)$. Let $q \in k (A \cup B)$. Then $(\{q\}, A \cup B) \in P$, and if this implies either $(\{q\}, A) \in P$ or $(\{q\}, B) \in P$ then $q \in kA$ or $q \in kB$ whence $q \in kA \cup kB$.

(e) If P is right ancestral and contains $(\{q\}, \{q\})$ for all $q \in M$, then from (c) k is enlarging; i.e., $k(kA) \supseteq kA$ for each $A \subseteq M$. Then only $k^2 \subseteq k$ is needed. Let $q \in k^2 A = k(kA)$. Then $(\{q\}, kA) \in P$. Suppose $q \notin kA$. Then $(\{q\}, A) \notin P$. By assumption there are sets C and D such that $C \cap D = N$, $(\{q\}, cC) \notin P$, and $(cD, A) \notin P$. If $A \cap cD \neq N$, then there is some $s \in A \cap cD$ and $(\{s\}, \{s\}) \in P$, hence $(cD, A) \in P$ which is a contradiction. Thus $A \subseteq D$. Also if $s \in kA \cap cD$, then $(\{s\}, A) \in P$ and then $(cD, A) \in P$ which is not true. Hence $kA \subseteq D$. Since $q \in k^2 A$, $(\{q\}, kA) \in P$, and because $kA \subseteq D \subseteq cC$ the right ancestral property yields $(\{q\}, cC) \in P$ which is a contradiction. Therefore $k^2 \subseteq k$, and k is idempotent.

Therefore k is a Kuratowski closure function when P satisfies the properties:

- (i) For all $A \subseteq M$, $(A, N) \notin P$
- (ii) P is ancestral
- (iii) For each $q \in M$, $(\{q\}, \{q\}) \in P$
- (iv) When $(C, A \cup B) \in P$, then $(C, A) \in P$ or $(C, B) \in P$
- (v) When (A, B) ∉ P, then there exist C and D disjoint such that
 (A, cC) ∉ P and (cD, B) ∉ P.

The symmetry property P. 2 is not necessary, and P. 3 is replaced by the same property on the right. Also it may be true that $(\{x\}, \{y\}) \in P$ even when $x \neq y$.

Relations on subsets of M which are weaker than a proximity have been studied by Mattson and Pervin. Pervin [5] has defined what he calls a *quasi-proximity* as a relation between subsets of M which has the four properties

- I) For all $A \subseteq M$, $(A, N) \notin P$
- 2) For each $q \in M$, $(\{q\}, \{q\}) \in P$
- 3) (C , $A \cup B$) $\in P$ iff (C , A) $\in P$ or (C , B) $\in P$
- 4) If (A, B) ∉ P then there exist two disjoint sets U and V such that (A, cU) ∉ P and (cV, B) ∉ P.

Clearly a quasi-proximity plus the symmetry condition is a proximity, not necessarily separated. These conditions used by Pervin are equivalent to (i), (iii), (iv), (v), plus the right ancestral property for P. If the set-valued set-function k is defined as it has been above, then it is not a Kuratowski closure function when P is only a quasi-proximity. E. F. Steiner [6] has given an example showing this.

In order to assure that k is a Kuratowski closure it is necessary to include the one condition which appears in (i)—(v) above and is not required of a quasi-proximity, and that is that P is left ancestral. Steiner has added the following condition: $(A \cup B, C) \in P$ iff $(A, C) \in P$ or $(B, C) \in P$. Certainly this is sufficient when added to the quasi-proximity requirements to make k a Kuratowski closure, but it is not necessary because it includes the "right hereditary" property $(A \cup B, C) \in P \Rightarrow (A, C) \in P$ or $(B, C) \in P$, which is not used.

The above results on obtaining the set-function k by using a relation P can be summarized in terms of abstract spaces as follows:

THEOREM 2. Let P be a relation on the subsets of M and $k: 2^{M} \rightarrow 2^{M}$ be given by $kA = \{q \mid (\{q\}, A) \in P\}$.

- (a) (M, k) is an isotonic space if P is right ancestral.
- (b) (M, k) is a Fréchet space if P is right ancestral and if $(\{q\}, \{q\}) \in P$ for each $q \in M$; i.e., if P is Mattson's generalized quasi-proximity.
- (c) (M, k) is an Appert space if P has conditions (ii), (iii), and (v).
- (d) (M, k) is a Čech space if P has conditions (iii) and (iv) and is right ancestral.

Mattson [4] has studied a weaker form of proximity, called a generalized quasi-proximity. He required that P have property (iii) and the right ancestral property, hence k for this case is expansive and (M, k) is a Fréchet space. By adding the symmetry requirement to the two given for a generalized quasi-proximity, Mattson obtained a generalized proximity for M and proved that this type of proximity is the complement in $2^{M} \times 2^{M}$ of a Wallace separation [7]. Other similar forms of weaker proximity relations have been considered by Leader [2] and Lodato [3], and these are complements in $2^{M} \times 2^{M}$ of weak topological separations [4].

PROXIMITY RELATIONS FROM SPACES.

Consider the converse problem of obtaining a binary relation on subsets of M from a given set-valued set-function. In the case of a topological space when k is a Kuratowski closure, the separation $(A \cap kB) \cup (kA \cap B) \neq N$ is a familiar one, and it suggests the "closeness" relation $(A, B) \in P$ iff $(A \cap kB) \cup (kA \cap B) \neq N$. This relation would certainly be symmetric regardless of the properties of k. Similarly if $(A, B) \in P$ provided $kA \cup kB \neq N$, this would be symmetric by the manner of definition. A definition which does not require symmetry will be used, so the resulting relation P will not have all properties of a proximity.

THEOREM 3. Assume $k: 2^{M} \rightarrow 2^{M}$ and $(A, B) \in P$ iff $A \cap kB \neq N$.

- (a) P is left ancestral by definition.
- (b) If k is isotonic, then P is right ancestral.
- (c) If kN = N, then $(A, N) \notin P$ for each $A \subseteq M$.
- (d) If k is enlarging, then $(\{q\}, \{q\}) \in P$ for each $q \in M$.
- (e) If k is additive, then P has the property: (C, A ∪ B) ∈ P implies either (C, A) ∈ P or (C, B) ∈ P.
- (f) If k is idempotent, then P has the property: if (A, B) ∉ P then there exist C, D disjoint such that (A, cC) ∉ P and (cD, B) ∉ P.

Proof: (a) By the definition of P, if (A, B) \in P then $A \cap kB \neq N$, hence if $C \supseteq A$, $C \cap kB \neq N$ and (C, B) \in P.

(b) If k is isotonic, then $B \subseteq C$ implies $kB \subseteq kC$; hence $(A, B) \in P$ and $B \subseteq C$ imply $A \cap kB \neq N$ and $A \cap kC \neq N$ which means $(A, C) \in P$.

(c) If kN = N, then $A \cap kN = N$ for each $A \subseteq M$ and $(A, N) \notin P$.

(d) Suppose k is enlarging. Then $q \in A$ implies $q \in kA$ which means $(\{q\}, A) \in P$. Thus $(\{q\}, \{q\}) \in P$ for each $q \in M$.

(e) When $k(A \cup B) = kA \cup kB$, k is isotonic, hence P is right ancestral by (a). Also $k(A \cup B) \subseteq kA \cup kB$, whence $(C, B \cup A) \in P$ implies $C \cap k$ $(B \cup A) \neq N$ and consequently either $C \cap kB \neq N$ or $C \cap kA \neq N$. This means $(C, B) \in P$ or else $(C, A) \in P$.

(f) Suppose k is idempotent and (A, B) \notin P. Then $A \cap kB = N$. Choose C = ckB and D = kB. Then (A, kB) \notin P because $A \cap k (kB) = A \cap kB = N$. Also $(ckB, B) \notin$ P because $ckB \cap kB = N$. Thus C and D are disjoint and $(A, cC) = (A, kB) \notin$ P and $(cD, B) = (ckB, B) \notin$ P. Also in this case $C \cup D = M$.

Defining P in the given way from a function k means that an isotonic space (M, k) determines an ancestral relation P. A Fréchet space determines a generalized quasi-proximity (Mattson) with the additional left ancestral property. Mattson has proved the function $k' A = \{q \mid (\{q\}, A) \in P\}$ corresponding to this constructed generalized quasi-promixity is equal to the k of he Fréchet space. If (M, k) is an Appert space then the resulting P has properties (ii), (iii), and (v) given above after Theorem I. If (M, k) is a topological

a all proportion (i) through (ii) and is a quasi more

space, then P has all properties (i) through (v) and is a quasi-proximity on M, but is not necessarily symmetric.

THEOREM 4. Let (M, k) be a topology and construct a relation P by: (A, B) \in P provided A $\cap kB \neq N$. Then P has properties (i) through (v) given above, and the function t obtained from P by: $tA = \{q \mid (\{q\}, A) \in P\}$, is equal to k.

Proof: From the results of Theorem 3, P has the given five properties when k has the properties of a Kuratowski closure, so k = t must be proved. Let $A \subseteq M$ and $q \in tA$. Then $(\{q\}, A) \in P$ which means $\{q\} \cap kA \neq N$; i.e., $q \in kA$. Thus $t \subseteq k$. If $q \in kA$, then $\{q\} \cap kA \neq N$, hence $(\{q\}, A) \in P$ and $q \in tA$. Therefore t = k.

The proof used only the definition of P in terms of k and the definition of t in terms of P, and was independent of the properties of k and P. Given any extended topology (M, k) the function t obtained in the given way must be identical with k, hence the construction $(M, k) \rightarrow (M, P) \rightarrow (M, t)$ always produces the same extended topology as that given. The same procedures when beginning with a proximity (M, P) do not always yield the original (M, P) however.

THEOREM 5. Let P be a relation on subsets of M and define $k : 2^{M} \to 2^{M}$ by $kA = \{q \mid (\{q\}, A) \in P\}$. Then the relation P' given by $(A, B) \in P'$ provided $A \cap kB \neq N$, satisfies P' \subseteq P if P is left ancestral.

Proof: Suppose (A, B) \in P'. Then A $\cap kB \neq N$, hence there exists some $q \in A \cap kB$. For this q, ($\{q\}$, B) \in P by the definition of k. Therefore if P is left ancestral, (A, B) \in P and P' \subseteq P.

If one considers the original relation P and has $(A, B) \in P$, this does not imply that there is some point $q \in A$ for which $(\{q\}, B) \in P$. If that were true, then $q \in kB$ and hence $(A, B) \in P'$. The following example is one in which $P \neq P'$.

EXAMPLE I. Let M be the real line E^1 and t the closure function of the usual topology. Define the relation P by $(A, B) \in P$ iff $tA \cap tB = N$. Then the function k given by $kA = \{q \mid (\{q\}, A) \in P\} = \{q \mid q \in tA\} = tA$. The new relation P' is then $(A, B) \in P'$ provided $A \cap kB = A \cap tB = N$. Thus $P' \subseteq P$ and P' = P.

Steiner [6] has proved that, when the original relation P satisfies the condition: $(A, B) \in P$ iff $(\{a\}, B) \in P$ for some $a \in A$, the construction produce P' = P. The condition he gives is just the condition mentioned prior to Example I in addition to left ancestral. It is stronger than the "left hereditary" condition which was mentioned above as being required for the relation P in order to assure that k is a Kuratowski closure. But it is necessary to assure that the procedure $(M, P) \rightarrow (M, k) \rightarrow (M, P')$ will give P' = P. Clearly, any P' which is defined using k, as $(A, B) \in P'$ iff $A \cap kB \neq N$, has this property. Therefore when P and P' are to be the same, P also has the property. The relation P is called *strongly left hereditary*

provided $(A, B) \in P$ implies $(\{a\}, B) \in P$ for some $a \in A$. For each abstract space then there is the corresponding proximity relation.

THEOREM 6. Let (M, k) be an extended topology and P a relation on subsets of M.

- (a) (M, k) an isotonic space corresponds to an ancestral and strongly left hereditary relation P.
- (b) (M, k) a Fréchet space corresponds to an ancestral and strongly left hereditary relation P which has condition (iii) as given above following Theorem 1.
- (c) An Appert space (M, k) corresponds to an ancestral and strongly left hereditary relation P satisfying conditions (iii) and (v).
- (d) A topology (M, k) is equivalent to a quasi-proximity P which is left ancestral and strongly left hereditary.

EXAMPLE 2. Let P be defined on subsets of M by $(A, B) \in P$ provided $A \cap B \neq N$. Then P is clearly a proximity relation and is separated. The corresponding function k is the identity function kA = A, so the space (M, k) is the discrete topology on M.

EXAMPLE 3. Let (M, k) be a compact Hausdorff space and let $(A, B) \in P$ iff $kA \cap kB \neq N$. Because k is a Kuratowski closure function $(A, N) \notin P$ for each $A \subseteq M$, and $(A \cup B, C) \in P$ implies $(A, C) \in P$ or $(B, C) \in P$. P is symmetric since $kA \cap kB \neq N$ is symmetric in A and B. The Hausdorff property ensures $(\{x\}, \{y\}) \in P$ iff x = y. If $(A, B) \notin P$, then $kA \cap kB = N$. Both kA and kB are compact because they are closed subsets of a compact space. Thus kA and kB are disjoint compact subsets of a Hausdorff space and have disjoint neighborhoods. Say $kA \subseteq U$ open and $kB \subseteq V$ open and $U \cap V = N$. Let C = cU and D = U. Then $(A, C) \notin P$ because $kA \cap kC =$ $= kA \cap cU = N$, and $(B, D) \notin P$ because $kB \cap kD \subseteq kB \cap cV = N$. Thus P. 5 for a proximity is satisfied and (M, P) is a separated proximity space. The function $k'A = \{q \mid (\{q\}, A) \in P\} = \{q \mid q \in kA\} = kA$.

EXAMPLE 4. Let $M = E^2$, the Euclidean plane, and let $k: 2^M \rightarrow 2^M$ be kA = the convex hull of A. Define P by: $(A, B) \in P$ iff $A \cap kB = N$. Clearly k is isotonic, enlarging, idempotent, and kN = N, hence from Theorem 3, P satisfies all of the conditions for a quasi-proximity except the right hereditary property. A set C may intersect the convex hull of $A \cup B$ but not intersect either kA or kB as k is not additive. P satisfies the two conditions for Mattson's generalized quasi-proximity. The function k' obtained from P is again the convex hull function. Notice that the condition given by Pervin for quasi-proximity which states $(A, B) \notin P$ implies there exist U and V disjoint such that $(A, cU) \notin P$ and $(cV, B) \notin P$, is not stronger than condition P. 5 given for a proximity. The P in this example satisfies the former because k is idempotent, but it does not satisfy P. 5. To illustrate this let E^2 be given a Cartesian coordinate system and let $A = \{p_1, p_2\}$ and $B = \{p_3\}$ where p_1 is the point (0, 1) and p_2 is (0, -1) while p_3 is (0, 0). Then clearly kB = B and $A \cap kB = N$, so $(A, B) \notin P$. It is not possible to find C and D which satisfy P. 5. Since B should not intersect the convex hull of D, at least one of the points p_1 and p_2 must lie in cD = C. This would mean $A \cap C \subseteq A \cap kC = N$ contrary to the restriction that $(A, C) \notin P$.

References.

- [1] P. C. HAMMER, Extended topology: set-valued set-functions, «Nieuw Arch. Wisk.», 10, 55-77 (1962).
- [2] S. LEADER, On clusters in proximity spaces, «Fund. Math. », 47, 205-213 (1959).
- [3] M. LODATO, Generalized proximity relations, « Proc. Amer. Math. Soc. », 15, 417-422 (1964).
- [4] D. A. MATTSON, *Extended Topology: On Abstract Spaces*, Doctoral Dissertation. University of Wisconsin, Madison, Wisconsin 1965.
- [5] W. J. PERVIN, Quasi-proximities for topological spaces, «Math. Ann.», 150, 325-326 (1963).
- [6]. E. F. STEINER, The relation between quasi-proximities and topological spaces, «Math. Ann.», 155, 194-195 (1964).
- [7] A. D. WALLACE, Separation spaces, «Ann. of Math. », 42, 686-697 (1941).