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Topologia. — Proximities and Abstract Spaces. Nota di GEORGE
C. GasrL, presentata® dal Socio B. SEGRE.

RIASSUNTO. — Si studiano le connessioni che intercedono fra varie relazioni di prossi-
mita in un insieme M e varie topologie generalizzate od estese inerenti ad M.

INTRODUCTION.

This paper is concerned with various proximity relations and their
associated set-functions.

A proximity space consists of a set M and a binary relation P on subsets
of M such that the following conditions are satisfied.

For all ACM,(A,N) ¢P.

If (A,B)€P, then (B,A)€P.
If (AU B,C)€eP, then (A,C)eP or (B,C)€P.
4. (2, P eP iff x =y
If in addition P also satisfies

P. 5. If (A, B) €P, then there exist C,D CM such that CUD = M
and (A,C)¢P,(B,D)eP

veTT
@ N

then P is a separated proximity.

In regard to abstract spaces, suppose £ is a function from 2M into 2M.
Then (M, £) will be called a Fréchet space if g is expansive, an A ppert space
if ¢ is a closure function, and a Cect space if g is enlarging and additive.

SPACES FROM PROXIMITY RELATIONS.

A topology on M corresponding to a proximity P on M can be obtained
by deﬁnmg the set-valued set-function £: 2M— 2M by 2A = {7 [ ({g} , A) € P};
and'if P satisfies all five given conditions, then it is well-known that £ is a
Kuratowski closure function on M and (M, £) is a completely regular Ti—space.
The ‘relationships between the conditions on P and the properties of £ will
be studied. First the term ancestral, as applied to binary relations among
sets,. is defined.

DEFINITION 1. Let R be a binary relatiori on subsets of M. If (A, B) € R
and A CC imply (C, B) €R, then R is left ancestral. 1f (A, B)€R and
B CC imply (A,C) €R, then R is 7ight ancestral. If R has both of these
properties it is ancestral.

(*) Nella seduta del 19 aprile 1969.
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THEOREM 1. Let P be a binary relation on subsets of M and define the
Sunction k:2M—2M by A = {g| ({g},A) € P}.

(@) If P is right ancestral then k is isotonic.

(b) If P has property P.1 then AN = N.

(c) If P is right ancestral and ({q} , {¢}) € P for each q¢ €M, then k is enlarg-
ing.

(d) If P is right ancestral and satisfies: (C, A U B) € P tmplies (C,A) € P
or (C, B) €P, then £ is additive.

(e) If P is ancestral and satisfies: (A, B) € P implies there exist C,D
disjoint for which (A, cC) €P and (cD,B) e P, and ({g},{q}) €P
Sor each q €M, then k is idempotent.

Proof: (a) Suppose A CB and g € 2A. Then ({g},A) €P, and if P is
right ancestral ({g}, B) € P, hence ¢ € £B.

(b) If ¢ € AN, then ({¢}, N) € P, so property P. 1 requires that AN = N,

(c) Let ACM and g € A. If ({g}, {¢}) € P for each ¢ €M, and P is right
ancestral, then ({g}, A) € P and hence ¢ € 2A. This is true for each g € A,
so A C ZA. :

(d) If P'is right ancestral then £ is isotonic, so £2(A UB) D £A U £B.
Then it must be shown #A U 2B DA2(A U B). Let ¢g€£2(AUB). Then
({g} , A UB) €P, and if this implies either ({g},A) € P or ({g}, B) € P then
g € £A or ¢ € kB whence ¢ € ZAUZB. ‘

() If P is right ancestral and contains ({g}, {¢}) for all g €M, then
from (c) % is enlarging; i.e., £2(£A) D £A for each A CM. Then only £ C £
is needed. Let g€ A = k(kA). Then ({9}, £2A) € P. Suppose ¢ ¢ £A.
Then ({g},A) ¢ P. By assumption there are sets C and D such that
CND=N,{g},cC)€P, and ((D,A)e P. If AncD==N, then there is
some s € ANcD and ({s}, {s}) € P, hence (¢D, A) € P which is a contradic-
tion. Thus A CD. Alsoif s € 2AN¢D, then ({s} , A) € P and then (cD,A)€P
which is not true. Hence 2A CD. Since g € 22A , ({g}, £A) € P, and because
£A CD CcC the right ancestral property yields ({g},cC) € P which is a
contradiction. Therefore £2 C £, and £ is idempotent.

Therefore %£ is a Kuratowski closure function when P satisfies the pro-
perties:
(i) Foral ACM,(A,N)e¢P
(i) P is ancestral
(iii) For each ¢ €M, ({¢},{¢}) €P
(iv) When (C,AUB)€P, then (C,A)eP or (C,B)€eP
(v) When (A, B) € P, then there exist C and D disjoint such that
(A,C)e¢P and (cD, B) ¢ P.

The symmetry property P. 2 is not necessary, and P. 3 is replaced by the
same property on the right. Also it may be true that ({x}, {y}) € P even

when x ==y.
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Relations on subsets of M which are weaker than a proximity have
been studied by Mattson and Pervin. Pervin [5] has defined what he calls
a guasi-proximity as a relation between subsets of M which has the four
properties

1) For al ACM,(A,N)¢P

2) For each ¢ €M, ({¢}, {g}) € P

3) (C,AuB)eP iff (C,A)eP or (C,B)€eP

4) If (A, B) € P then there exist two disjoint sets U and V such that
(A,cU)eP and (¢V, B) ¢ P.

Clearly a quasi-proximity plus the symmetry condition is a proximity,
not necessarily separated. These conditions used by Pervin are equivalent
to (i), (iii), (iv), (v), plus the right ancestral property for P. If the set-valued
set-function £ is defined as it has been above, then it is not a Kuratowski
closure function when P is only a quasi-proximity. E. F. Steiner [6] has
given an example showing this.

In order to assure that £ is a Kuratowski closure it is necessary to
include the one condition which appears in (i)—(v) above and is not required
of a quasi-proximity, and that is that P is left ancestral. Steiner has added
the following condition: (AUB,C)€P iff (A,C)€P or (B,C)eP. Cer-
tainly this is sufficient when added to the quasi-proximity requirements to
make £ a Kuratowski closure, but it is not necessary because it includes the
‘“right hereditary ” property (AUB,C)eP=(A,C)eP or (B,C)eP,
which is not used.

The above results on obtaining the set-function £ by using a relation P
can be summarized in terms of abstract spaces as follows:

THEOREM 2. Let P be a relation on the subsets of M and £ : 2M— 2M e
given by RA = {q| ({g},A) € P}.

(@) (M, &) is an isotonic space if P is right ancestral.

(b) (M, &) is a Fréchet space if P is right ancestral and if ({¢},{q}) € P
Jor each q € M; i.e., if P is Mattson’s generalized quasi-proximity.

() (M, &) is an Appert space if P has conditions (ii), (iii), and (v).

(d) (M, &) is a Cech space if P has conditions (iii) and (iv) and is right
ancestral.

Mattson [4] has studied a weaker form of proximity, called a generalized
quasi-proximety. He required that P have property (iii) and the right ancestral
property, hence 4 for this case is expansive and (M, £) is a Fréchet space.
By adding the symmetry requirement to the two given for a generalized
quasi-proximity, Mattson obtained a gemeralized proximity for M and proved
that this type of proximity is the complement in 2™ x 2™ of a Wallace separa-
lz'o;; [7]. Other similar forms of weaker proximity relations have been consider-
ed by Leader [2] and Lodato [3], and these are complements in 2M X 2™ of
weak topological separations [4].
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PROXIMITY RELATIONS FROM SPACES.

Consider the converse problem of obtaining a binary relation on subsets
of M from a given set-valued set-function. In the case of a topological space
when % is a Kuratowski closure, the separation (ANZB)U (AANB)==N
is a familiar one, and it suggests the “ closeness’ relation (A, B) € P iff
(AN 4B)U(2AN B) &= N. This relation would certainly be symmetric regard-
less of the properties of 4. Similarly if (A, B) € P provided £ZA U 4B == N,
this would be symmetric by the manner of definition. A definition which
does not require symmetry will be used, so the resulting relation P will not
have all properties of a proximity.

THEOREM 3. Assume k:2M—2M and (A, B)€P iff AnkB==N.

(@) P is left ancestral by definition.

(b) If % is isotonic, then P is right ancestral.

(¢) If AN =N, then (A ,N) €P for cach A CM.

(d) If % is enlarging, then ({q},{q}) € P for each g € M.

(e) If k is additive, then P has the property: (C, A U B) € P implies cither
(C,A)eP or (C,B)eP.

(£) If % is idempotent, then P has the property: if (A, B) € P then there
exist C, D disjoint such that (A, cC) € P and (cD,B) ¢ P.

Proof: (a) By the definition of P, if (A, B) € P then AN 4B == N, hence
if COA,CniB==N and (C,B)eP.

(b) If % is isotonic, then B CC implies 2B C4C; hence (A,B)eP
and B CC imply AN%ZB ==N and AN4C==N which means (A,C)eP.
(¢) If AN =N, then ANAN =N for each A CM and (A,N) ¢ P.

(d) Suppose £ is enlarging. Then ¢ € A implies ¢ € ZA which means
({¢},A)€eP. Thus (¢}, {¢g}) € P for each ¢ €M.

(e) When 2(AUB) = 2AU#B, £ is isotonic, hence P is right ancestral
by (a). Also 2(AUB) C 2AUZB, whence (C,BUA)€P implies CnZ
(BUA)==N and consequently either CNnB==N or CNnkA ==N. This
means (C, B)€P or else (C,A)eP.

(f) Suppose £ is idempotent and (A, B) ¢ P. Then AN 4B = N. Choose
C = ¢kB and D = £B. Then (A, #B) ¢ P because An% (4B) = AN#B = N,
Also (¢£B, B) € P because ¢£ABN 4B = N. Thus C and D are disjoint and
(A,C)=(A,£B)¢P and (D,B) = (cAB,B) ¢ P. Also in this case
CuD =M.

Defining P in the given way from a function #Z means that an isotonic space
(M , %) determines an ancestral relation P. A Fréchet space determines a
generalized quasi-proximity (Mattson) with the additional left ancestral pro-
perty. Mattson has proved the function 2 A = {7 | ({¢}, A) € P} correspond-
ing to this constructed generalized quasi-promixity is equal to the £ of he
Fréchet space. If (M, £) is an Appert space then the resulting P has proper-
ties (ii), (iii), and (v) given above after Theorem 1. If (M, £) is a topological
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space, then P has all properties (i) through (v) and is a quasi-proximity on
M, but is not necessarily symmetric.

THEOREM 4. Let (M, k) be a topology and construct a relation P by:
(A, B) € P provided AN kB ==N. Then P has properties (i) through (v) given
above, and the function t obtained from P by: tA = {g| ({g} , A) € P}, is equal
to k.

Proof. From the results of Theorem 3, P has the given five properties
when £ has the properties of a Kuratowski closure, so £ = ¢ must be proved.
Let ACM and g €#A. Then ({7}, A) € P which means {g}nAA ==N; i,
g €kA. Thus z C k. If g € £A, then {g}NAA 5=N, hence ({4} ,A) € P and
g €tA. Therefore z = £.

The proof used only the definition of P in terms of £ and the definition
of ¢ in terms of P, and was independent of the properties of £ and P. Given
any extended topology (M , £) the function # obfained in the given way must be
identical with 4, hence the construction (M, &) - (M, P)> (M, #) always
produces the same extended topology as that given. The same procedures
when beginning with a proximity (M, P) do not always yield the original
(M, P) however.

THEOREM 5. Let P be a relation on subsets of M and define k : 2M— 2M
by kA = {q| ({q},A) € P}. Then the relation P' given by (A, B) € P’ provid-
ed ANEB==N, satisfies P'C P if P is left ancestral.

Proof: Suppose (A, B)€P’. Then ANkB==N, hence there exists
some ¢ € AN £B. For this ¢, ({¢}, B) € P by the definition of £ Therefore
if P is left ancestral, (A, B)€P and P’ CP.

If one considers the original relation P and has (A, B) € P, this does
not imply that there is some. point ¢ € A for which ({¢}, B) € P. If that were
true, then ¢ € 2B and hence (A, B) € P'. The following example is one in
which P =P’

EXAMPLE 1. Let M be the real line E! and ¢ the closure function of
the usual topology. Define the relation P by (A, B)€P iff tANnsB==N.
Then the function £ given by (A = {g| ({7} ,A) € P} = {g| ¢ €A) = ¢A.
The new relation P’ is then (A, B) € P’ provided AN 2B = ANnsB ==N.
Thus P'CP and P'==P.

Steiner [6] has proved that, when the original relation P satisfies the
condition: (A, B) € P iff ({a}, B) € P for some a €A, the construction pro-
duce P’ = P. The condition he gives is just the condition mentioned prior
to Example 1 in addition to left ancestral. It is stronger than the * left
hereditary ’ condition which was mentioned above as being required for
the relation P in order to assure that £ is a Kuratowski closure. But it is
negessary to assure that the procedure (M, P) - (M, %) — (M, P") will
give P’=P. Clearly, any P’ which is defined using #, as (A, B)€eP’
iff AnZB ==N, has this property. Therefore when P and P’ are to be the
same, P also has the property. The relation P is called strongly left hereditary
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provided (A, B) € P implies ({a}, B) € P for some « € A. For each abstract
space then there is the corresponding proximity relation.

THEOREM 6. Let (M, k) be an extended topology and P a relation on
subsets of M.

(@) (M, &) an isotonic space corresponds to an ancestral and strongly left
hereditary rvelation P.

(b) (M, &) @ Fréchet space corresponds to an ancestral and stromgly left
hereditary relation P which has condition (iii) as given above following
Theorem 1.

(c) An Appert space (M , k) corvesponds to an ancestral and strongly left
hereditary relation P satisfying conditions (iii) and (v).

(d) A topology (M, k) is equivalent to a quasi-proximity P which is left
ancestral and strongly left hereditary.

EXAMPLE 2. Let P be defined on subsets of M by (A, B) € P provided
ANB==N. Then P is clearly a proximity relation and is separated. The
corresponding function £ is the identity function ZA = A, so the space (M , &)
is the discrete topology on M.

EXAMPLE 3. Let (M, £) be a compact Hausdorff space and let (A, B) € P
ifft ZAN/%B==N. Because £ is a Kuratowski closure function (A, N) ¢ P
for each A CM, and (AUB,C) €P implies (A,C)eP or (B,C)eP. P is
symmetric since £ZAN 4B ==N is symmetric in A and B. The Hausdorff
property ensures ({x}, {y}) €P iff x =y. If (A, B) € P, then 2AN 4B = N.
Both £A and #B are compact because they are closed subsets of a compact
space. Thus #A and £B are disjoint compact subsets of a Hausdorff space
and have disjoint neighborhoods. Say 2A CU open and 4B CV open and
UNV =N. LetC=¢U and D =U. Then (A,C) ¢ P because ZANAC =
=kA N cU=N, and (B,D) €P because £BNiD C A BNV = N. Thus
P. 5 for a proximity is satisfied and (M, P) is a separated proximity space.

The function £2'A = {7 | ({¢} , A) € P} = {g | g € 2A} = EA.

EXAMPLE 4. Let M = E2?, the Euclidean plane, and let £:2M— 2M he
%A = the convex hull of A. Define P by: (A,B)eP iff AniB == N.
Clearly £ is isotonic, enlarging, idempotent, and AN = N, hence from Theo-
rem 3, P satisfies all of the conditions for a quasi-proximity except the right
hereditary property. A set C may intersect the convex hull of AUB but
not intersect either ZA or #B as £ is not additive. P satisfies the two condi-
tions for Mattson’s generalized quasi-proximity. The function 2 obtained
from P is again the convex hull function. Notice that the condition given
by Pervin for quasi-proximity which states (A, B) ¢ P implies there exist U
and V disjoint such that (A, cU) ¢ P and (cV, B) € P, is not stronger than
condition P. 5 given for a proximity. The P in this example satisfies the
former because 4 is idempotent, but it does not satisfy P. 5. To illustrate
this let E? be given a Cartesian coordinate system and let A = {p;, po}
and B = {p3} where p; is the point (0, 1) and g is (0 ,— 1) while p3 is (0, o).
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Then clearly 2B = B and AN4B =N, so (A,B)e P. It is not possible
to find C and D which satisfy P. 5. Since B should not intersect the convex
hull of D, at least one of the points p; and p; must lie in ¢D = C. This
would mean ANC CANAC == N centrary to the restriction that (A, C) € P.
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