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Geometrie finite. —  On rotations and Lorentz transformations 
in a Galois space-time. N ota di E n r i c o  G. B e l t r a m e t t i  e A l b e r t o  

B l a s i , presentata (*} dal Socio B . S e g r e .

R iassunto. — U n precedente studio delle proprietà del gruppo delle rotazioni e del 
gruppo di Lorentz (proprio ed improprio) operanti in uno spazio-tempo di Galois d ’ordine fi 
primo e =  3 (mod 4), vengono qui generalizzate al caso di una geometria d ’ordine f in, dove 
n  è dispari e fi è soggetto alla sopraddetta condizione. Si discutono e si dim ostrano esplicita
mente, in quest’ultimo caso più generale, le condizioni di irriducibilità delle rappresentazioni 
m odulari dei gruppi in questione.

i .— I n t r o d u c t i o n .

In  previous papers [1, 2, 3] we exam ined the relativistic transform ation 
groups in a finite space-time thought of as a Galois geom etry over a prim i
tive field G F (p) with p  =  3 (mod 4). This condition on p  allowed a distinc
tion of the elements of GF (p) into “ positive ” and “ negative ” ones, in 
analogy to the real numbers; m oreover it allowed the construction of a comple
tely ordered subset of G F (fi), which satisfies some elem entary physical 
requirem ents. In  the above context we studied the properties of the ro ta
tion and Lorentz groups, we found explicitly their m odular representations 
defined on G F (p2) and gave criteria to single out the irreducible ones.

In this note we first extend the results to the case of a finite space-time 
built on a Galois field GF (fin) with p  == 3 (mod 4), n odd (1); in the last 
Section we exhibit rigorous proofs of the result concerning the classification 
of the irreducible m odular representations.

2.— E x t e n s i o n  t o  G F (p n).

To extend the result given in references [1, 2, 3] to the more general 
case of a basic field G F (pn), we m ust impose two requirem ents on the field 
itself. First, if x  is a square element of G F (fin), the opposite — x  should 
be a not-square, i.e. the element — 1 should be not-square, in analogy with 
the real num bers. Secondly, it should be possible to consider GF (p2n) as 
the “ complexification ” of G F (fin) with some definition of complex conjugate.

Now, let w  be a prim itive root in GF(/>); since w, w2* • • wp~l and zero span 
the whole field and wp~x =  1, [4], we shall have =  — 1. The condi-

sfa __ j
tion for (— 1) to be a not-square becomes —  =  2 k — T or p =  3 (mod 4).

(*) Nella seduta del 19 aprile 1969.
(1) We deeply thank Professor Beniamino Segre for suggesting this generalization.
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Passing to G F (pn) we know, [4], tha t the not-squares of G F (p) rem ain such 
in G F (pn) if and only if n is odd, while for n even they become squares. 
Then p  — 3 (mod 4) and n odd insure the first requirem ent is met. M oreover, 
by the above rem ark, there is an element i e G F (p2n) such th a t i2 =  — 1. 
We are now able to prove tha t any z € GF (p2n) can be written as x  -j- iy9 
with x , y  E G F (p n) and its complex conjugate is =  zpn =  x  —  iy.

In fact, G F (p2n) =  G F (pn) (8) GF (pn) by a dim ensionality argum ent; 
m oreover ipn — —  i according to simple calculations with primitive roots 
in GF (p2n)y so that

pn
(x +  iy)pn — 2  ^  j  x pn~k (iy)k — x pn +  (iy)pn +

l L P nk=i
( fin--- l) (pn — 2)- • '{pn — k +  I)___ %Pn-k (jyY

and, by F erm at’s theorem  [4], x pn =  x  , (iy)pn =  — iy while the rem aining 
sum contains a p  as a factor and hence is congruent to zero. For different 
proofs of these results cfr. B. Segre [9], n. 5.

We only mention tha t the length of the Euclidean chain, defined as the 
set of consecutive elements which are transitively ordered [1], contains at 
least as m any elements as the Euclidean chain in G F (p).

We shall now briefly sketch the procedure to generalize the results to 
the case of a Galois geom etry of order p n, p  =  3 (mod 4), n odd: the process 
is carried out for the sole rotation group and, as one m ight expect, the only 
change is the replacem ent of p  by p n, with all the propositions given in [1, 
2, 3] still valid. Construct a 3-dim ensional finite geom etry with vectors 
(x1 , x 2 , x s) where x ± , x 2 , x 3 € GF (pn); the proper rotation group R  (3 , p n) 
is the group of linear homogeneous transform ations r:

x 'i =  X  ri jxj> d e t  r — I ,  
j=1

which leave invariant the quadratic form x\  -f- x\  +  x \ . Its order is 
ß R(3 pfl) =  p n (p2n —  1), [5]. This group is one-to-two hom om orphic to the 
group SU (±) (2 , pt") of 2 X 2  matrices of the form

« =  (_£* J*) - a . ß e G F ^ - ) ,  det u = ± i ,

(rem ark th a t uuP =  uP u =  det (uj). The order of SU (±) (2 , p 2n) is 
^su(±)(2 p2n) ~  2 Pn (P2n— 0  and the explicit formulae of the m apping 
are the same as those given in ref. [1]. The subgroup SU (±) (2 , p 2n) =  
=  ( u \ u e  SU (±) (2 , p 2n) , det (u) =  1 } individuates a subgroup R (+) (3 , p n) 
of k  (3 , p n) whose order is 1/2 0 R(3 .

The explicit construction of the irreducible m odular representations 
is easily carried out for SU (±) (2 , p 2n)] this group has 2 p n equivalence classes 
individuated by the trace and the determ inant of the defining m atrix. Accord-
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ing to a heuristic procedure, justified rigorously in the next section, there 
should be 2 p n inequivalent irreducible representations of the group 
SU (±> (2 , p 2n). Consider the monomials

/ i V L v ] )  =  N ^ y+V “ m, with N Ü U . T j e G F  ( / * )

where j  and m  are both integers or half-integers and — j  <  m  <  j  , j  >  o; 
under a transform ation u - 1 of SU (±> (2 , / 2”) acting on the pair £ , 7],

/ i y) ( 5  , *)) ”>/£y) ((a* Ç - p , ) ,  (ß* I  +  co])) =  2  d£';°£ (*) /£ ?  (Ç , ,,)
m'

where
TVrC/) min — m f)

2  y+;  U x
N ^ ,  Æ — max (0, m — m') \  & / \ k - \~ fy i  7

GLJ~ x*j+m-£ (—  ß-k |0*k — m-\~n

Thus we have individuated a series of representations D <y,0) (u) labeled by 
the integer or half-integer index j .  Since D (y,0) (u) has dim ensionality 
(2 / +  O. these representations are all inequivalent. A nother series of ine
quivalent representations is obtained setting D (u) =  det (u) D ^  (u) ; 
in the next section we shall treat in detail the problem  of the irreducibility 
of these two series, and the outcome will be that both D <y,0) and Du,1) are

irreducible for j  <  ^  — I , while they are reducible for j  >  1 The
2 J  2

extension to the proper and im proper Lorentz group is perform ed exactly 
in the same m anner as in [1, 2, 3]: all the results there discussed rem ain 
valid if p  is changed into p n.

3.— P r o o f  o f  t h e  i r r e d u c i b i l i t y  c o n d i t i o n s .

We shall here provide rigorous proofs of the results stated in [1, 2, 3] 
about the irreducible m odular representations of the relativ ity  groups.

The need for such proofs stems from the fact that the theorem s about 
equivalence classes and irreducible representations no longer hold in their 
classical form. In  particular Schur’s lemma now reads [6]: given an irreduc
ible m odular representation D (g) of a group G, the only m atrix  which 
commutes with D (g) , e G is a m ultiple of the unit m atrix . This is a 
necessary (but not sufficient) condition for a m odular representation to be. 
irreducible.

A bout equivalence classes we have [7]: let G be a finite group and  K 
a field of characteristic p\ if K is a splitting field for G, then the num ber of 
irreducible, inequivalent representations of G over K  is equal to the num ber 
of / - re g u la r  equivalence classes of G. K is a splitting field for G if any irre
ducible m odular representation of G over K  rem ains irreducible for any 
extension of K. A n element r  of G is /- re g u la r  if xk =  1 with k?  (k non 
divisible by / ) ;  a / - re g u la r  class is formed by / - re g u la r  elements. Note
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th a t if an equivalence class contains a /- re g u la r  element, then the whole 
class is / - re g u la r  since (yxy~1)k =  y x ky ~ 1.

Let us rem ark  tha t a sufficient condition for K to be a splitting field 
for G is th a t all the m - th  roots of 1 belong to K, where m  is the least common 
m ultiple of the orders of the elements of G, [8]. We then prove:

PROPOSITION i .  The group SU (±) (2 , p 2n) has all its equivalence classes 
p-regular and  G F  (p2n) is a splitting field  fo r  the group.

We shah consider only the subgroup S U (+) (2 , p 2n), since the extension 
to the whole group is trivial. S U (+) (2 , p 2n) has p n equivalence classes indi
viduated by the p n values of the trace of the general element: then each equival

ence class contains an element of the form v =   ̂ w ith a £ G F (p n),

c £ G F ( / 2w) and a +  cc* — 1. Now, the nonsingular m atrix

T  =  t
I

k Y a 2 —  I

y a2 — i (t g G F (p2f )

is such tha t T v T  1 =  ^  where =  a ±  ^a2—-1 are the eigenvalues

of v. Then, if vk ~  1 it follows (T v T -1)k =  Tvk T -1 =  1 and so ( L ^  =  1, 
but since T ± £ G F (p 2n), k is either equal to p 2n —  1 or to one of its divisors, 
[4], and in any case kp> which implies v is /- re g u la r .

Hence all equivalence classes contain a / - re g u la r  element and are there
fore /- re g u la r . M oreover, the least common multiple of the orders of the 
elements of G is at most p 2n —  1, and we know all (p2n— i)- th  roots of 1 
belong to G F (p2n) [4]. This proves G F (p2n) is a splitting field for
S U (+) (2 / 2").

For w hat concerns the irreducibility we have:

P r o p o s i t i o n  2. The representations Dü,e) (u) , o <  j  <  ^  - , e =  o , 1

are all the irreducible, inequivalent modular representations of SU(±  ̂ (2 , p 2n).
Let us restrict to the subgroup S U (+) (2 , p 2n) and to D (-/) (u) =  D (;’0) (u) 

since the extension to the general case is obvious. The proof of the irreduci
bility is by induction on the index j .  D (0) is irreducible since it is one dim en
sional; suppose the same is true for j  =  /  and assume D (/+1) is reducible. 
The reducibility assum ption ensures the existence of a 2 (/ +  1) +  1 square 
m atrix  V  such that

V D (/+1) (u) V “ 1 == ' A  (u) 0 N
>c («) B (u) ,

Su £ S U (+) (2 , / 2-),

wh^re A (u) and B (u) are irreducible representations according to the induc
tion hypothesis; furtherm ore A (u) is equivalent to (u) and B (u) is equi
valent to dF-j+C1/2)) ^  for some index s < 1  f i  1. It follows:

T r  (D(/+1) («)) =  Tr  (A («)) +  Tr  (B («)) -  T r (D(s) («)) +  Tr  (D(/" '+(1/2)) («)).
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The above relation, applied to the particular element u =  ^  , yields [1]

/+1 ■ S /_ J+(i/2)
^  a / + l - m  a * / + l  +  m _ _  ^  y s - r  g f s + r  _|_ V  a / - i + ( l / 2 ) - /  a * / - i + ( l / 2 ) + / i

m = —l — 1 r =  — s t = —l + s —( 1/2)

Notice tha t the l.h.s. polynomial contains powers of oca* different from 
those of the r.h.s. and the equality cannot be satisfied with OLEGF(p2n) 
unless 2 (/ -T 1) p n, in which case a2(/+fi =  a2 fi-/*+/* — a*2(/+i)-/* anc[ 
a*(2/+i) — a(2/+i)-/* so tha t the role of a and a* is interchanged and the 
degree of the polynom ial in aa* is lowered by p n. We have thus proved 
tha t D (7,0) (u) are irreducible for j  <  ^  ~  1 but we still have to show they

p n  • j
are certainly reducible for j  >  ~ ------ . This is accomplished by applying

Schur’s Lem m a, i.e. by showing that, if j  , there exists a nondiago

nal m atrix  A (7) which commutes with all the representative elements.
Consider again u =  ^  ; the condition [D(j,0) (^) , A 0)] =  o implies [1]

— 1) =  o which gives

A O') __  f t  ì\ I L £
m ’ " m , m — k (p n 1)

where k is any integer.
Now Vu € S U (+) (2 , j>2w) the com m utation condition [A ^ , D (/,0) (u)]m}fnr =  o 

yields, choosing =  o , D (i ; ^  (a) =  ^  («) which can be satisfied
for am am> considering th a t (u) =  o , Y u  e S U (+) (2 , p 2n) if j  >  ^ 1 }
j P > m ' > p n — j , — j  +  p n — I > m f > j  —  p n A  I [ I ].

Thus a non diagonal m atrix  A (7) exists, which commutes with the repre-
/ • > p n  _L J ,

sentation D (u) if j  >  F : this completes the proof of the irreducibility 
conditions.
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