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Geometrie finite. — On rofations and Lorentz transformations
in a Galois space—time. Nota di ENrico G. BELTRAMETTI e ALBERTO
Brast, presentata @ dal Socio B. SEGRE. '

RiAssUNTO. — Un precedente studio delle proprieta del gruppo delle rotazioni e del
gruppo di Lorentz (proprio ed improprio) operanti in uno spazio-tempo di Galois d’ordine
primo e = 3 (mod 4), vengono qui generalizzate al caso di una geometria d’ordine g7, dove
n & dispari e p & soggetto alla sopraddetta condizione. Si discutono e si dimostrano esplicita-
mente, in quest’ultimo caso pit generale, le condizioni di irriducibilita delle rappresentazioni
modulari dei gruppi in questione.

1.—INTRODUCTION.

In previous papers [1, 2, 3] we examined the relativistic transformation
groups in a finite space-time thought of as a Galois geometry over ‘a primi-
tive field GF (p) with p = 3 (mod 4). This condition on p allowed a distinc-
tion of the elements of GF (p) into ¢ positive”’ and “ negative’ ones, in
analogy to the real numbers; moreover it allowed the construction of a comple-
tely ordered subset of GF (p), which satisfies some elementary physical
requirements. In the above context we studied the properties of the rota-
tion and Lorentz groups, we found explicitly their modular representations
defined on GF (p?) and gave criteria to single out the irreducible ones.

In this note we first extend the results to the case of a finite space-time
built on a Galois field GF (»”) with p = 3 (mod 4), » odd ©; in the last
Section we exhibit rigorous proofs of the result concerning the classification
of the irreducible modular representations.

2—EXTENSION TO GF (p").

To extend the result given in references [1, 2, 3] to the more general
case of a basic field GF (p”), we must impose two requirements on the field
itself. First, if x is a square element of GF (p*), the opposite —x should
be a not-square, i.e. the element — 1 should be not-square, in analogy with
the real numbers. Secondly, it should be possible to consider GF (p?”) as
the ¢ complexification "’ of GF (»*) with some definition of complex conjugate.

Now, let z be a primitive root in GF(p); since w, w?- - - w?~1 and zero span
the whole field .and w?=1=1, [4], we shall have w(?~D/2=-—1. The condi-
p—I1

2

tion for (— 1) to be a not-square becomes =24—1 or p =3 (mod 4).

(*) Nella seduta del 19 aprile 1969.
(1) We deeply thank Professor Beniamino Segre for suggesting this generalization.
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Passing to GF (p”) we know, [4], that the not-squares of GF () remain such
in GF (p”) if and only if # is odd, while for 7 even they become squares.
Then p = 3 (mod 4) and » odd insure the first requirement is met. Moreover,
by the above remark, there is an element 7 € GF (p?%) such that /2 = — 1.
We are now able to prove that any z € GF (p?”) can be written as x + 4y,
with x, y € GF (»”) and its complex conjugate is z* = 22" = x — 7y.

In fact, GF (p?") = GF (»") ® GF (»*) by a dimensionality argument;
moreover 2" = —7 according to simple calculations with primitive roots
in GF (p%7), so that

n

2 Vs .
Gty = B (5 )+ G = a7+ ) +

}5’1—-1 [ — HH —— e 7
+Elz>”[‘f D2 (s é+x>]xﬂmwy>k

and, by Fermat’s theorem [4], x?" = x, (&¥)?” = — iy while the remaining
sum contains a p as a factor and hence is congruent to zero. For different
proofs of these results cfr. B. Segre [9], n. 5.

We only mention that the length of the Euclidean chain, defined as the
set of consecutive elements which are transitively ordered [1], contains at
least as many eclements as the Euclidean chain in GF (p).

We shall now briefly sketch the procedure to generalize the results to
the case of a Galois geometry of order p”, p = 3 (mod 4), # odd: the process
is carried out for the sole rotation group and, as one might expect, the only
change is the replacement of p by p*, with all the propositions given.in [I,
2, 3] still valid. Construct a 3-dimensional finite geometry with vectors
(21, %, x3) where x;,x,,x3 € GF (p"); the proper rotation group R (3, p*)
is the group of linear homogeneous transformations 7:

x}zzrij-xj, det =1,
J=1

which leave invariant the quadratic form 2+ x% -+ x% Its order is
QR(&P,’) = p" (p?» — 1), [5]. This group is one-to-two homomorphic to the
group SU® (2 , p?7) of 2 X 2 matrices of the form
u:(%g* i*) » o, PEGE (p¥), det 2 =41,

(remark that zuT = 2T u = det (w)).  The order of SU® (2, p2») is
QSU(i)(Z,pz”) =2 p" (p?»—1) and the explicit formulae of the mapping
are the same as those given in ref. [1]. The subgroup SU¥ (2, p2n) =
={u|uc€ SU® (2, p2%) , det (u) = 1} individuates a subgroup R‘" (3, p*)
of R (3, p") whose order is 1/2 QR(&%.

The explicit construction of the irreducible modular representations
is easily carried out for SU® (2, p2»); this group has 2 p” equivalence classes
individuated by the trace and the determinant of the defining matrix, Accord-
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ing to a heuristic procedure, justified rigorously in the next section, there
should be 2" inequivalent irreducible representations of the group
SU® (2, p27). Consider the monomials

D E = NQE T with N E, 7 €GF (5

where 7 and 7 are both integers or half-integers and —; < < ;, Jj=o0;
under a transformation 2~1 of SU® (2, p2») acting on the pair &, 9,
W Eom) > f (@ E—Bn), B E + ) = X DGO, ) £ G )
where
N min (G4m,j—m’)

(7.0 - —m ! — L ¢
D@ =ty X ) L) i ek (— g s,
m k=max (0,m—m

Thus we have individuated a series of representations D“® (u) labeled by
the integer or half-integer index j. Since DY (x) has dimensionality
(27 + 1), these representations are all inequivalent. Another series of ine-
quivalent representations is obtained setting DY1) (x) = det () DG, (1) ;
in the next section we shall treat in detail the problem of the irreducibility
of these two series, and the outcome will be that both DY'” and DY" are

P
2

, while they are reducible for F>2""1  The

irreducible for ;7 < 2

extension to the proper and improper Lorentz group is performed exactly
in the same manner as in [1, 2, 3]: all the results there discussed remain
valid if p is changed into p”.

3.—PROOF OF THE IRREDUCIBILITY CONDITIONS.

We shall here provide rigorous proofs of the results stated in [1, 2, 3]
about the irreducible modular representations of the relativity groups.

The need for such proofs stems from the fact that the theorems about
equivalence classes and irreducible representations no longer hold in their
classical form. In particular Schur’s lemma now reads [6]: given an irreduc-
ible modular representation D (g) of a group G, the only matrix which
commutes with D (¢), ¥ ¢ € G is a multiple of the unit matrix. This is a
necessary (but not sufficient) condition for a modular representation to be.
irreducible.

About equivalence classes we have [7]: let G be a finite group and K
a field of characteristic p; if K is a splitting field for G, then the number of
irreducible, inequivalent representations of G over K is equal to the number
of p-regular equivalence classes of G. K is a splitting field for G if any irre-
ducible modular representation of G over K remains irreducible for any
extension of K. An element v of G is p-regular if x* = 1 with 2P (% non
divisible by p); a p-regular class is formed by p-regular elements. Note
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that if an equivalence class contains a p-regular element, then the whole
class is p-regular since (yxy—1Y = yx* y-1.

Let us remark that a sufficient condition for K to be a splitting field
for G is that all the z—th roots of 1 belong to K, where s is the least common
multiple of the orders of the elements of G, [8]. We then prove:

PROPOSITION 1. The group SUR (2, p27) has all its equivalence classes
pregular and GF (p27) is a splitting field for the group.

We shall consider only the subgroup SU'™ (2, p2), since the extension
to the whole group is trivial. SU™ (2, p27) has p” equivalence classes indi-
viduated by the p” values of the trace of the general element: then each equival-
ence class contains an element of the form v = <__ f* ;) with a € GF (p*),
c € GF (p**) and a + cc* = 1. Now, the nonsingular matrix

c

T=¢ L T, (t € GF (p2)

+ o —— .
is such that ToT™! = (i‘ L‘) where L*¥ = 4 4 J/a®?—1 are the eigenvalues

of ». Then, if 22 =1 it follows (ToT 5 =TeAT ' =1 and so (LE}F=1,
but since L* € GF (p27), £ is either equal to p?” — 1 or to one of its divisors,
[4], and in any case %£p, which implies v is p-regular.

Hence all equivalence classes contain a p-regular element and are there-
fore p-regular.  Moreover, the least common multiple of the orders of the
elements of G is at most p?” — 1, and we know all (p?” — 1)-th roots of 1
belong to GF (p?7) [4]. This proves GF (p?#) is a splitting field for
SU® (2 p20). |

For what concerns the irreducibility we have:

PROPOSITION 2. The representations DV (u) 0 <j < ‘ﬁn: Le=o0,1
are all the irreducible, inequivalent modular representations of SU® (2, p27).

Let us restrict to the subgroup SU™ (2, p?7) and to DY (u) = DV 0 ()
since the extension to the general case is obvious. The proof of the irreduci-
bility is by induction on the index j. D is irreducible since it is one dimen-
sional; suppose the same is true for 7=/ and assume DY s reducible.
The reducibility assumption ensures the existence of a 2 (/ 4 1) + I square
matrix V such that

- (38
/

o () 2%
W‘)’ V%ESU (2’P >’

where A (2) and B () are irreducible representations according to the induc-
tioh hypothesis; furthermore A (%) is equivalent to D® () and B () is equi-
valent to DY (4) for some index s <7+ 1. It follows:

Tr DY (W) — T (A () + Tr (B () = Tr O () 4+ Tr DI (1)),
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The above relation, applied to the particular element 2 = (Z z*>, yields [1]

/41, — I—s+(1/2)
ot l—m g ¥t 1tm — E a7 o str b E ol —sHAR)—t ¥ I—s+ 1242,
m=—/—1 re=-—s t=—1+s—(1/2)

Notice that the Lh.s. polynomial contains powers of aa* different from
those of the r.h.s. and the equality cannot be satisfied with o € GF (p27)
unless 2 (/4 1) > p”, in which case o2(+D = g2U+D)—#"+4" — o*20+D~4" znd
a¥ @D = @4 D-#" 50 that the role of « and of is interchanged and the
degree of the polynomial in aa* is lowered by p”. We have thus proved

that DY? () are irreducible for jgpﬂ—:l—— but we still have to show they
pr—1
—-

are certainly reducible for ; > This is accomplished by applying

pn___
2

Schur’s Lemma, i.e. by showing that, if 7 > L there exists a nondiago-

nal matrix AY) which commutes with all the representative elements.
Consider again z% = (Z z*>; the condition [DY” (2), A”) = o implies [1]

. N . .
A(rﬁ?m' (m(’”"” A I)=o0 which gives
.LA.%’)m' = a, Sm,m’ + b Sm’,m—/@(?n+1)

where £ is any integer.

Now Vu € SU™ (2, p2%) the commutation condition [AY, DY (4)],, v =0
yields, choosing &,, = 0, 2, DSW (4) = @ D(mj:?,f/ (%) which can be satisfied
for @, = a, considering that D{J.)) () = 0, ¥u e SU™ (2, p2) if j = 2"11
JEmz=pt—j,—jFpr—1>m =7 —p"+ 1 [1].

Thus a non diagonal matrix A exists, which commutes with the repre-
sentation DY? (2) if ; 2@: this completes the proof of the irreducibility

conditions.
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