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SEZIONE 1

(Matematica, meccanica, astronomia, geodesia e geofisica)

Matematica. — Zangent flag bundles and generalized Jacobian
varieties. Nota I di Ausrev WiLLiam INGLETON, presentata ) dal
Socio B. SEGrE.

RIASSUNTO. — Esposizione riassuntiva di proprieta relative a certe sottovarieta di una
varieta algebrica V, introdotte quali varietd jacobiane generalizzate inerenti a nidi di sistemi
lineari di ipersuperficie di V, in collegamento alla coomologia delle variety di bandiere (o
nidi di faccette tangenti) della V.

INTRODUCTION.

)

A comprehensive definition of ¢ Jacobian ” subvarieties of an algebraic
variety V will be given, involving a number of nests of linear systems of
primals on V and contact conditions expressed in terms of tangent flags
to V. The definition includes the classical Jacobian in its most general form
([t] p. 22, [2] @) and the ¢ generalized Jacobian of [3] as very special
cases. It will be shown the cohomology class of such a ¢ Jacobian” can
be computed using the structure of the cohomology ring of the tangent
flag bundle V* of V, and an explicit formula for the cohomology class will be
obtained in a comparatively simple case which is still very much wider than
the classical. .

The present Note I is devoted to a description of the cohomology rings
of flag manifolds and tangent flag bundles and in particular to the geome-
trical interpretation of the generators of those rings which appear in the

(*) Nella seduta dell’8 marzo 1969.
(1) References are given at the end of Note II.
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Borel-Hirzebruch theory ([4], [5], [6]). The following Note II is concerned
with subvarieties of V* associated with nests of linear systems on V and
their use in computing Jacobians.

These Notes only contain a summary of the ideas and principal results
involved and all proofs are omitted. A full account will be published later.

NoTATION. For any elements x, , - - -, x, of.a ring with unity, o, (x,,- - -, %,)
will denote the value of the elementary symmetric polynomial of degree %
in xy,---,%, and is to be interpreted as 1 when %= 0 and as zero when
h <0 of h>n-+1;6,(x, -, %, will denote the value of the complete
symmetric polynomial of degree % in xg,- - -, x, and is to be interpreted as 1
when %Z = o and as zero when % <o.

FLAG MANIFOLDS AND TANGENT FLAGS.

1.0. A (complex) flag is a nest of projective subspaces
S:5,C S5, C---CS,_; , dimsizz',

of complex projective space P,(C). The set F = F(z 4 1) of all such flags
(in a given projective space) may be regarded in a natural way as an alge-
braic variety. It may also be identified with the space of cosets of the full
linear group GL (2 + 1, C) modulo the subgroup A (% + 1, C) of triangular
matrices. This structure defines a A (z + 1, C)-bundle & over F.

For j =o0,---,n, the natural homomorphism

i An+1,C) >GL(+1,C)

(restriction to the first 7 + 1 rows and columns) determines a (7 + 1)-dimen-
sional vector bundle p;& over F. Let & be the quotient line-bundle
2;8pj18 (j=1,--,m) and put & = py&. Then the cohomology ring
H*(F) = H* (F, Z) is generated by the first Chern classes v; = ¢; (£;) € H2 (F)
subject to. the relations

G}z(YO"")Yn>:O (k:I,;",%—}'—I),
ie.
(r.0.1) IIO(I +y)=1 ([6] p. 106).
7=
I.1. INCOMPLETE FLAGS. If go,---, ¢, are integers,
0=<¢q <q1 < <gpn=1,
a (go, ", q,,;)aﬁag is a nest of projective subspaces

$:5,CS, C---CS dimS,, = ¢;,

Im~1 ’

of P, (C). The set W=W (g, ,-- -, g,,) of all such flags (for given ¢y, - -, g,

is an algebraic variety; the integers gq,- - -, ¢,, will be called the flag-dimensions
of W.
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There is a natural projection
n:F—W, fibre F(gp+1)XF (g1—¢q0) X -+ - XF (¢ — @m—-1),
which induces a monomorphism
o H* (W)— H* (F).

The image =* H* (W) consists of those elements of H* (F) which are sym-

metrical in all the pairs (y;, v;11) with 7 #ot a flag-dimension of W ([4]
p. 202).

If 7 and (unless j = 0) j — 1 are flag-dimensions of W then vy; € ©* H2 (W)
and its inverse image in H2 (W) will be denoted by y; (W). If p,¢ are
flag-dimensions of W, p < ¢, the inverse images in H**(W) of 6; (Yp41, - -, )

(— 10" 65 (Yp41,- -, ¥,) will be denoted by o, (p,¢; W), 0;(g, #; W) respec-
tively. In view of (1.0.1) we have

0 (7,25 W) =0 (Yot 5 Yusr Yoo o s Ya)-

(1.0.1) also implies that the relations

p
(1.1.1) c},(p,q;VV)=;)65<P,7’QW)07:—¢'(7>?§W)

hold for amy three flag-dimensions p,¢,7 (irrespective of order).

1.2. THE EHRESMANN BASE. The term index, or more precisely (&, 7)—
index, will mean an (% + 1)-tuple

kz@o;"',é};)

of distinct integers, 0 < & <n(=o0,---,%4). For each j=1,--, 2, let
Q; (k) be the set of integers ¢ such that

(i> je{'éo”él" ‘ ')éq})
(11) ]_ I e{kOJklr' : "'éq};
(ii) 4>,
(V) k1 <j  (or g =A).
Then, for each ¢ € Q; (), let 4; (g ; k) be the number of integers in {o,- - -, j}

which are not in {4y, -, £,}.
Relative to a fixed ﬂag

E:E,CE,C---CE,

in P, (C) the Ehresmann subvariety [k; F] of F=F (z+ 1) is defined for any
(A, n)-index k,0 < & <, as consisting of all the flags satisfying the condi-
tions

(1.2.1) dim (S,NE, ) =d;(g; k) +9—7 (G=1,-,7;9€Q, (k).
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The cohomology class dual to [k; F] will be denoted by [&; F]* and is independ-
ent of E. We observe that conditions are imposed only on the flag-components
with dimensions belonging to the set

Qm =00 ®

The classes [k; F]* form a base for cohomology of F (cfr. [7], [8]-but
the integers in an index represent codimensions whereas Ehresmann’s and
Monk’s symbols use actual dimensions; this modification is essential for the
development of an analogous notation in connection with nests of linear
systems in 2.0 infra). The correspondence between indices and Ehresmann
varieties is not one-one: clearly, when %2 >o0, [k;F] = [& , -, Z4_1; F] if
(and only if) % €Q (k). Each Ehresmann variety can be represented by a
unique (7, #)-index (permutation—as in [8]); alternatively (and more appro-
priately in § 2) by a unique proper index, ie. 2€Q (k) (or & = (0)).

For an incomplete-flag manifold W = W (g, , -, ¢,), it is clear that
[£; F]* € =* H* (W) if and only if Q (&) C {7,," "+ ¢, .} The inverse image
in H* (W) will then be denoted by [&; W]*; the set of all such cohomology
classes forms a base fo H* (W) [7].

If g is a flag-dimension of W and in particular if W = F, we write, for
r=0,+,9g+1and s=o0, -+, 72—y,

(1.2.2)  w,,(g;W)=1Jo,1 g7, g—7 s+ 1,9+ s; W]

This is an element of H27*(W); it is the unit element if # or s is zero, other-
wise it corresponds to the single condition

dim (S,NE,_;1,—s1) =>7r—1.

It will also be necessary sometimes to regard o, (g; W) as defined and equal
to zero for values of 7 or s outside the ranges stated. Finally we write

(1.2.3) o (g; W) = w,1(g; W).

1.3. DUALITY. Let
v:GL(@#+1,C) —-GL(#+ 1,C)
be the automorphism defined by
A = JA-IT],

where ] is the (# 4 1)X (% 4 1) matrix

and T denotes transposition.
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The subgroup A (7 + 1, C) is stable under t and so there is an induced
map

i F@m41)=>F @+ 1),
and 2 = 1. We call v, the duality map. 1f
W=W(, ¢, ,,7 and V_V=W(n——qm_1—1,~-,n—-go—‘1,n),

there is also an induced duality map

Ty W—=W
such that the diagram

7':' ! kd

v S

commutes.
It is readily verified that

-1
T;zj_an_j’
so that
EY = TV
and’
c,(p,9; W) =(— 1) w0, (n—g—1 ,%—~p—"1 s W)

for any two flag-dimensions p,¢ of W.
The effect on Ehresmann classes is

[éO" !’é/z;W]* p— T"‘;][n__.éh,. ’%—'éO;W]*
whenever Q (8)C{g,,---,¢,, ,}. In particular, if ¢ is a flag-dimension of W,
0 (g W) = % 0, (1—g— 15 W)

1.4. Using Monk’s intersection formula ([8] Theorem 3 and cfr. 2.4
infra) for

o(g;F) [k; F]*
and the relations
0@ F)=—C+-+1)

([8] (13.5), [3] (2.4.2)) it is possible in principle to express any polynomial
in the y; as a linear combination of Ehresmann classes and conversely to
express any Ehresmann class as a polynomial in the y;. No explicit general
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formulae appear to be known. However, it is possible to prove indirectly
that

(1.4.1) 6, (g,n; F)=oi(g; F)
and dually
(1.4.1) o, (n,9;F) = (— 1) on1(g; F),

from which it follows using (1.1.1) that

A
o (2,9 F) = 2:0(— o1 (7; F) oy (25 F).

(Each product on the right is in fact an Ehresmann class if 0 < /4 <g¢g—p
or if p >¢ -+ 1).

If k= (ky, -, %) where by <k <---<k,, then Q (k) = {g} and so
[k; F]* € n* H* () where Q is the Grassmannian W (g, 7). We can then
express [k; F]* as a polynomial in vy, --, vy, using the formula

Wg, Wpy—1° © Wpy—yg

(1.4.2) [B; QP =| O -1 gy

................

where , denotes wy,; (7; Q), ([9] p- 358, with £; replacing #— a,_;). Hence,
using (1.4.1),

o .
Gko e Gko—q
. * —
(I43> [k ; F] = s s
& -5
% g
where &, denotes o; (Yoq1, Yw) = (—1)*5, (Yo, ", Yg)- In particular
> ® >
O Os—1 """ Os—pt1
- - ©
O, (@i F)=| B B B
o > s
Ostr—1 Ostr—2 O

or dually

(— 1) o,.(g; F) :. SRR

where o, denotes o, (Yo, ", Y,)-
We shall be especially interested in the case » = ¢; the last determinant
can then be simplified to give

I I

(1.4.4) (— 1) (¢;F)=Cov1-- 'Yq)sfas( Yo' 7 7;) = %-SQYO P Yg) (say).
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1.5. TANGENT FLAG BUNDLES. Let V be a non-singular algebraic variety
of dimension &, which to begin with we suppose to be imbedded in P, (C).
A tangent flagtoVisa (0, 1,---,d, n)-flagS with Sy € V and S, the tangent [Z]
to V at S,. The set of all such flags is an algebraic variety, the fangent
flag bundle V* of V. There is a natural injection

0: VA W=W(,1, --,d,n),
and a natural projection
0: V2>V, fibre F(d)
which induces a monomorphism
o* : H* (V) — H* (V4.

H* (V*) is generated by p* H* (V) and elements 8y ,---, 3, € H? (VA)‘, subject
to the relations

6B, 8) = (—Dre* (V) h=1,-,d)
where ¢, (V) is the Ath Chern class of V; i.e.

d
(1.5.1) JIJI(I —H ="+ a(V)+ -+, (V] =e*c (V)

(cfr. [6] 4.2, 13.3, but we are using génerafors with the opposite sign to
simplify later calculations). For our purposes the §; may be identified by

8 = 0% (yo (W) —v; (W)
=0 G;W—o(—1;W)—o(©;W)
(cfr. [6] Satz 13.1.1 and [3] 3.5).
The incomplete tangent flag bundle T =T (g1, -+, ¢ ; V), 1 <qq <---
< ¢, =d, is the variety of all tangent (0,¢;,:-, 9, ,7)-flags to V. The
integers g1, - -, ¢,, will be called the flag-dimensions of T. There is a natural
injection
T_>W<Ov‘qiy' : '!gmy%>’

a natural projection

T -V, fibre W(g;—1,--,¢9,— 1),
and a natural projection

n: VA>T, fibre F (91) XF (g2 *"“91) X X F (g — gm-1),

which induces a monomorphism

7*  H* (T) — H* (VY.

The image n* H* (T) consists of those elements of H* (V*) which are symme-
trical in all the pairs (3;, 3;;4) with 7 not a flag dimension on T.



