ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GHEORGHE CONSTANTIN

On a class of operators

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **46** (1969), n.3, p. 241–244. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1969_8_46_3_241_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta dell'8 marzo 1969 Presiede il Presidente Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Analisi funzionale. — On a class of operators. Nota di Gheorghe Constantin, presentata (*) dal Socio G. Sansone.

RIASSUNTO. — In questa nota si considerano degli operatori lineari e limitati per i quali $H^m J - J H^m = i C_m$, $C_m \ge 0$, $m \in \mathbb{N}$. Si dimostra che s'esiste un operatore lineare S con $o \notin cl$ (W (S)) e se 1) $ST^p = T^*pS$, 2) se $I + \frac{\lambda}{\overline{\mu}} + \cdots + \left(\frac{\lambda}{\overline{\mu}}\right)^{p-1} \neq 0$ per λ , $\mu \in \sigma$ (T), allora T è autoaggiunto.

I. A bounded linear operator T defined on a Hilbert space $\mathcal X$ is said to be hyponormal if for every $x \in \mathcal X$, $\|T^*x\| \leq \|Tx\|$, or equivalently if $T^*T - TT^* \geq 0$. The notion of hyponormality was introduced in [2] through under another name. In [6], [3] was introduced a new class of operators generalizing hyponormal operators.

In this Note we give some properties for a new class of operators which was introduced in [5] by following

DEFINITION.—An operator T is said to be hyponormal of order m if

$$H^m I - IH^m = iC_m$$
, $T = H + iI$

where C_m is a positive operator for some non-negative integer m.

2. The numerical range of an operator T is the set

$$W(T) = \{\langle Tx, x \rangle : x \in \mathcal{H}, ||x|| = 1\}.$$

It is well-known that $W\left(T\right)$ is convex and its closure $(\mathcal{cl}\left(W\left(T\right)\right))$ contains the spectrum $\sigma\left(T\right)$ of T.

(*) Nella seduta dell'8 febbraio 1969.

18. — RENDICONTI 1969, Vol. XLVI, fasc. 3.

Lemma 1.—If T is a hyponormal operator of order m such that $\sigma(T)$ is a set of real numbers, then T is self-adjoint.

Proof.—It is known that [5, Theorem 5.1]: if T = H + iJ is hyponormal of order m then

$$\sigma\left(H\right)\subseteq Pr^{x}\left(\sigma\left(T\right)\right)$$

$$\sigma(J) \subseteq Pr^{y}(\sigma(T)).$$

Hence $\sigma(J) = \{o\}$ and it follows that J = O.

Theorem 1.—Let T be a hyponormal operator of order m. If for arbitrary operator S for which $o \notin cl(W(S))$, $ST = T^*S$ then T is self-adjoint.

Proof.—From Theorem I [8] we conclude that the spectrum of T is real and Lemma I implies that T is a self-adjoint operator.

We recall that a unitary operator U is cramped if $\sigma(U)$ is contained on an arc of the unit circle with central angle less than π .

COROLLARY.—If T is a hyponormal operator of order m which is unitarily equivalent to its adjoint by a cramped unitary operator U, then T is self-adjoint.

The proof follows from the fact that cl(W(U)) is the convex hull of the spectrum of U and $o \notin cl(W(U))$.

Theorem 2.—If T is a hyponormal operator of order m, S is an arbitrary operator for which $o \notin cl(W(S))$ and

$$I) ST^{p} = T^{*p}S$$

2) if λ , $\mu \in \sigma(T)$, $I + \frac{\lambda}{\overline{\mu}} + \left(\frac{\lambda}{\overline{\mu}}\right)^2 + \cdots + \left(\frac{\lambda}{\overline{\mu}}\right)^{p-1} \neq 0$ then T is self-adjoint.

Proof.—Since T = H + iJ is hyponormal of order m it follows that $T_m = H^m - iJ$ is hyponormal. We prove that $\sigma(T_m)$ is real.

Suppose the contrary and let $a+ib=\lambda_0\in\sigma(T_m)$ with $b\neq 0$. Since $\sigma(J)=\Pr^y(\sigma(T_m))$ [6, Theorem I] we have that $b\in\sigma(J)$ and since $\sigma(J)\subseteq\Pr^y(\sigma(T))$, $\sigma(H)\subseteq\Pr^x(\sigma(T))$, [5, Theorem 5.1] then there exists $a_1\in\sigma(H)$ such that

$$\left(\mathbf{H}-a_1\,\mathbf{I}\right)x_{\mathbf{n}}\to\mathbf{0} \quad , \quad \left(\mathbf{J}-b\mathbf{I}\right)x_{\mathbf{n}}\to\mathbf{0} \quad , \quad \|x_{\mathbf{n}}\|=\mathbf{I}$$

which implies that

$$(T - (a_1 + ib) I) x_n \rightarrow 0$$

and

$$(\mathbf{T}^* - (a_1 - ib) \mathbf{I}) x_n \rightarrow \mathbf{o}.$$

Therefore if $\lambda_1 = a_1 + ib$ we have

$$T^{\flat} x_{n} \longrightarrow \lambda_{1}^{\flat} I x_{n} \to 0$$

$$T^{*\flat} x_{n} \longrightarrow \overline{\lambda_{1}^{\flat}} I x_{n} \to 0$$

and since $o \notin cl(W(S))$, by I) we obtain

$$ST^{p} S^{-1} x_{n} - \overline{\lambda}_{1}^{p} SS^{-1} x_{n} \rightarrow 0$$

or

$$T^{p} S^{-1} x_{n} - \overline{\lambda}_{1}^{p} S^{-1} x_{n} \to 0.$$

If we put

$$S^{-1}x_{n}=v_{n}$$

it follows

$$(T^{p-1}+\cdots+\overline{\lambda}_1^{p-1})(T-\overline{\lambda}_1)y_n\to 0$$

and from 2) we have

$$(T - \overline{\lambda}_1 I) y_n \to 0.$$

From the identity

$$\begin{split} \langle \lambda_1 - \overline{\lambda}_1 \rangle \, \langle x_n \,, \, y_n \rangle &= \langle (\lambda_1 - T) \, x_n \,, \, y_n \rangle + \langle (T - \overline{\lambda}_1) \, x_n \,, \, y_n \rangle = \\ &= \langle (\lambda_1 - T) \, x_n \,, \, y_n \rangle + \langle x_n \,, \, (T^* - \lambda_1) \, y_n \rangle \to 0 \end{split}$$

we obtain

$$\langle x_n, y_n \rangle \to 0$$

or

$$\left\langle S \frac{S^{-1} x_n}{\|S^{-1} x_n\|}, \frac{S^{-1} x_n}{\|S^{-1} x_n\|} \right\rangle \to 0$$

which represents a contradiction. Hence $\sigma(J) = \{o\}$ and thus T is self-adjoint.

We recall that a Riesz operator is an operator T which has the property that its spectrum consists of an at most denumerable sequence (λ_n) of eigenvalues \rightleftharpoons 0, and of zero, which is the limit of (λ_n) , when that sequence is infinite; furthermore, for each n, $\mathcal X$ is the direct sum of a finite dimensional subspace N_n and a closed subspace F_n , such that both are stable under T, $\lambda_n I - T$ is nilpotent in N_n (which contains the eigenspace E_n corresponding to λ_n), and $\lambda_n I - T$ is an automorphism of F_n .

Proposition 1.—If T=H+iJ is a Riesz operator and hyponormal of order m then

$$H^m J = JH^m$$
.

Proof.—Since the operator $T_m = H^m - iJ$ is hyponormal and [5, Theorem 5.1], $\sigma(J) \subseteq Pr^y(\sigma(T))$, it follows that $\sigma(J)$ has at most one limit point and similarly for $\sigma(H^m)$, we conclude that the operator T_m is hyponormal with a single limit point in its spectrum. Therefore we obtain that T_m is normal and the proposition is proved.

3. In this section we give an application of a result which appears in [8].

PROPOSITION 2.—Let A and B a self-adjoint operators; if A is positive and has an inverse, then the product AB is a spectral operator of scalar type, with real spectrum.

Proof.—Since A is an invertible and positive operator, (which is the same as the fact that there is an a > 0 such that $\langle Tx, x \rangle \ge a \langle x, x \rangle$ for any $x \in \mathcal{X}$) we have that $0 \notin cl(W(A))$.

But

$$AB = ABAA^{-1}$$

and therefore AB is similar to their adjoint. By Theorem 2 [8] AB is similar to a self-adjoint operator. Then AB is scalar with real spectrum.

REFERENCES.

- [I] J. DIEUDONNÉ, Quasi-hermitian operators, « Proc. Internat. Symp. Linear Spaces », 115-122, Jerusalem 1960.
- [2] P. R. HALMOS, Normal dilations and extensions of operators, «Summa Bras. Math.», 2, 124–134 (1950).
- [3] V. ISTRĂŢESCU, On some hyponormal operators, « Pacific J. Math. », 22, 413-417 (1967).
- [4] V. ISTRĂŢESCU, A note on hyponormal operators (to appear).
- [5] V. ISTRĂŢESCU, Operatori hyponormali I, II, «St. Cerc. Mat.», 19, 423-448 (1967).
- [6] C. R. Putnam, On the spectra of semi-normal operators, «Trans. Amer. Math. Soc. », 119, 509-523 (1965).
- [7] I. SHETH, On hyponormal operators, « Proc. Amer. Math. Soc. », 17, 998-1001 (1966).
- [8] J. WILLIAMS, Operators similar to their adjoints (to appear).