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SEZIONE 1II

(Fisica, chimica, geologia, paleontologia e mineralogia)

Fisica. — Numerical determination of the transition matrix.
Nota di MaureLio Boarr e Paoro Toru @, presentata ™ dal
Socio G. EVANGELISTI.

R1ASSUNTO. — Vengono esaminati alcuni metodi per la soluzione numerica dell’equa-
zione differenziale matriciale
dX (z)
—L=P@)X (¢
= *) X ()

con condizioni iniziali note, associate al sistema di equazioni differenziali lineari con coeffi-
cienti variabili

dX (¢ - =
axXo _ P(5)X () + F ().
dz
Si dimostra dapprima come i metodi di integrazione numerica passo passo normalmente usati,
risultino in alcuni casi poco convenienti sia riguardo la precisione conseguibile sia rispetto
al tempo di calcolo; in tali casi risulta particolarmente vantaggioso avere a disposizione per

X (#) una espressione analitica, ottenuta ad esempio mediante opportuno sviluppo in serie
di potenze.

Vengono quindi messi in evidenza gli aspetti computazionali di un algoritmo che,
determinati mediante formule di tipo ricorrente i coefficienti dello sviluppo in serie di X (2),
consente la determinazione della matrice di transizione con una maggiore precisione e un
minore tempo di calcolo.

Si eseguono infine confronti numerici tra il metodo proposto € il metodo di integra-
zione di Runge-Kutta a 4 punti onde mettere in evidenza i vantaggi conseguibili.

INTRODUCTION.

A typical problem in the analysis of linear systems is met with in
determining the solution of the matrix differential equation with given initial
conditions

ax (2)

B — Py X @);
this solution may be obtained numerically by adopting one of the classical
step-by-step integration methods. However, their application is often com-
plicated and cumbersome; this inconvenience is particularly felt when, as
often happens, the transition matrix must be calculated only in relation to

(*) Centro calcoli ¢ servomeccanismi ~ Faculty of Engineering —~ University of Bologna
Italia.

(¥¥) Nella seduta dell’r1 gennaio 1969.
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some values of the independent variable. The above-mentioned inconveni-
ences can, of course, be avoided but there should be an analytical expression
available for X(#). For this purpose, when it exists, a suitable power series
expansion may, be utilized such as is already known in the field of pure
mathematics.

Since, indeed, the expansion coefficients are known, it is possible to
determine within the desired precision, the transition matrix corresponding
to each value of the independent variable.

The purpose of this paper is to bring out the computational aspects of
an algorithm which, based on this concept, has not been proposed until now.

In the first part, the algorithm for determining the coefficients of the
series expansion is developed and the analytical expressions are deduced
from it. In the second part, a comparison is made with traditional numerical
integration methods thus emphasizing the advantages obtainable both as
precision and as regards duration of the calculation. The above-mentioned
characteristics are shown by means of an example of numerical elaboration.

TRANSITION MATRIX OF LINEAR SYSTEMS.

Let us consider a system of N differential linear equations of the first
order of the following type:

dr, ()
0 =20, 0O FAE
with: 2 =1, , N and: a <2< é

Writing equation (1) in vectorial form, we get:

dx(t)

@) —PHEO+EQ

where:
x <t> = [xl @) » X2 (t) RN, \‘L)]

is the vector column of the unknown functlons, P (¢) is the square matrix
of order N, whose elements P, (#), (=1, ,Ni;s=1,2,--,N) are
continuous functions in the interval deﬁned above,

FO=[AW®.L®,  /x®]

is the vector column of the force functions supposed continuous in the inter-
val (a, b).

As is well known, the solution of the system (2) can be expressed by
formula v

3) x@=X@C+jX@wqmeﬁﬂw
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where C represents the vector column x (2) of the initial conditions, and X &
is the solution of the matrix linear homogeneous differential equation:

@ XD —p» X

The integral matrix X (#) is uniquely determined if we assign the value
X (%) = Xo (where X, is a non singular square matrix of order N) in
correspondence to a value #=/¢,, in the interval of definition. In the parti-
cular case, where X, = I, with I a unitary matrix of order N, the integral
matrix X (7) is normalized and is often called the matrizant of the system (4).

The solution of the system of differential equations (1) is, in this manner,
related to the solution of the matrix differential equation (4) with initial
conditions X (@) = 1.

NUMERICAL SOLUTION OF THE TRANSITION MATRIX
AND ITS POWER SERIES EXPANSION.:

The solution of the matrix differential equation (4) can be obtained
numerically with a step-by-step integration method. .

In fact, we can substitute for equation (4) the equivalent system of linear
differential equations of the first order:

aX; (1)
) = e Y OP M0
withz=1,2,--,N;7=1,2, -+, N; where X, ;(#) is the generic compon-

ent of the integral matrix X (#) and where the initial conditions are express-
ed by:
Xij(@=1 for i=j;

X;(a)=o0 for ¢==j

There are some cases for which, in order to determine the integral matrix
X (#), we have to adopt very.laborious formulas of numerical integration, or,
at least, to assume a sufficiently small integration step. In both cases the
resulting calculation time is particularly high. This disadvantage becomes
particularly manifest, when the knowledge of the integral matrix X (¢) is not
required in the whole interval of definition, but only for some values of

It is possible to avoid these disadvantages if the integral matrix X (¢)
is expressed in a proper analytical form, for example by means of a suitable
power series expansion.

To make this possible it is necessary for the matrix of the coefficients
P (#) in its turn to be expandable in power series. This condition is almost
always true in the study of problems of practical interest.

That is:

©  P@O=Po+P(t—a)+P(t—aP+ +P(t—a)+ =

for: a <z <bé.

L

P, (¢ — a)

3

il
=)
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Expanding the integral matrix X (#) in a power series, we obtain:

D) XO=AtA (—atAslt—apt A, ()= 3 A, (1)

with: Ag =1 for: a <¢ < é.
The convergence of the series (7) is assured by the existence of a dominat-
ing series converging in the interval considered @.

DESCRIPTION AND DISCUSSION OF THE CALCULUS ALGORITHM SUGGESTED.

Differentiating equation (7), we obtain:
®  BO_pten o)t A )y = YA, (— )
=1

The matrix differential equation:

dX (2) _
L =POX@
dX (#)

upon substituting for P (), X (#) and i

(7) and (8), becomes:

respectively from equations (6),

) A +2A¢F—a)+ - +HIA(E—a) 1+ =
=®+Pt—a)+ + P t—af+ )
Bo+M(t—a) + A (t—aPt -+ A(F—a)+- )
from which, we obtain:

(10) A+ 2AGF—a)+- + 1A, t—a) 14 -=PyAy +
+ (PyA; + Py Ag) (¢ —a) + (Po Ay + PLA, + Py Ay (—a)? +
4ok (oA, + PiA, + - PAY) (F—a) - - -

From equation (10) we have:
I A; = Py A

AZZ%(P0A1+P1A0>

(11) { A3:%<POA2+P1A1+P2AO)

(1) A demonstration of the existence and convergence of the dominating series is given,
for instance, in F. R. GANTMACHER, A pplications of the theory of matrices.
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Writing this in summation notation we have:

/-1
(12) Ar=7 X P Ag-nn

for: /> 1 and with: Ay = L.

The formula (12) of recurrent type allows one to obtain the coefficients
of the series expansion (7), which represents an analytical solution of the
matrix differential equation for each value of the independent variable in
the interval (@, 4).

From a computational point of view, the application of the above-
mentioned method obliges one to define a criterion according to which the
series expansions (6) and (7) can be terminated.

This criterion is determined according to the desired precision during
the calculation.

If we denote as M and L, respectively, the number of terms of the series
so obtained (equations (6) and (7)), we have:

13) P®) = X Pyt —a)

L
(14) X (0= XA e—af.
Consequently, the formula (12) becomes:
Ag=1
e _
A, = T’nE:O P, Au_1y—m forr 1</ <M 41
LM
A=~ EO P, Au_1)—m for: 7 >M + 1

because:
P,=o0 for: m >M

The advantages of this method of solution are manifest either concern-
ing the attainable precision in the determination of X (#), or concerning the
calculation time. k

With regard to the precision we must say that it is higher with the
proposed method of solution, because it lacks the inherent error involved
in the numerical integration methods and because, in the series expansion
of the integral matrix X (¢), it is possible, as already said, to determine
the number of terms, according to the desired accuracy.

With regard to the calculation time the advantages of the proposed
method are particularly evident, if the integral matrix X (¢) has to be calculat-
ed Zonly in correspondence with specific values of the independent variable.

In fact, if a value of ¢ is defined in the interval (@, 4), the corresponding
value of the integral matrix X (#) can be directly obtained from equation (14)
as soon as the coefficients of the series expansion are known.
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The advantages of the suggested algorithm are still more evident if the
matrix elements of the coefficients P (#) are of the polynomial type.

If the type of the matrix differential equation (4) and the size of the
interval of integration (a, 4) need the calculation of a high number of terms
of the series (14), the convergence of this series can be accelerated, dividing
the interval of integration into K subintervals and calculating the integral
matrix X (¢) for each of them.

In fact, for-a well-known property of the matrizant, we obtain:

X, (@) = X, (0 X, (o)

where X, () and X, (#) represent the integral matrices calculated in # with
respectively initial conditions:

X (@)=1 and X, () = 1.

NUMERICAL EXAMPLE.

Let us consider the matrix differential equation:

dx (2)

(16) O —PHX @
with: o <z <2 and X (0) =1
where:
272 sin 3 # —cos 2¢
(17) Pl =|—2s 2+ #4 —sin 324 cos 2¢]-
I 2¢ 322

Using a numerical integration method the equation (16) is transformed,
as already seen into the system:

9 I MCR

with: i=1,2,3;7=1,2,3
08X, + sin 3 X, (6) — cos 22K, (8

(19) 5 EX—;& = —8Xy,,; O+ 2+ Xyg,;()— (sin 32— cos 2#) X3, ()
( d_%,;_@‘l = X1,; (&) + 2t X, (t) + 32 X5, (2)

with: j=1,2, 3.

Equs. (19) represent a system of 9 differential equations, which was
solved with the Runge-Kutta 4 point method and with -integration step
A¢ = 0.005.
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The values of the components of the integral matrix X (#) in correspond-
ence with #=o0.5; 1.0; 1.5 and 2.0 are shown in Table I.

Using the proposed method of solution, we first have to expand the ma-
trix of coefficients P (#) according to:

(20) P()=Po+P, (t—2)+Py(t—202+ - - - + P (t—to)t 4 - - = ;O P, (£ —2tp)*.

The calculation was executed dividing the interval of integration (o0, 2)
into two sub-intervals (o, 1) and (1, 2).

Denoting generically as o the initial value of each of the two sub-intervals,
we obtain:

_zz‘g sin 3 Z, —cCcos 2 4 i
Py = ——z‘g 2—|—z‘§ —sin 3%y + cos 2 %,
| I 2t 313
[ 4 ¢, 3 cos 34, 2sin 2 ¢, i
P, = _3;3 4;3 — 3c08 3% —2sin24,
K 2 6 %o i
2 —4.5sin32,  2cos 24 ]
Po=|—34 67 4.5sin 34— 2 cos 2 %,
| O o 3 i
4 . ]
o — 4.5 Cos 3 4 — —simn 2/
3
P; = —1 41 4.5cos3z‘0—l—%sin2t0
Ko o o _
o) %zsin3l‘0 ——%coszz‘b
Pa=1, 1 —%sin’j,z‘o—}—%coszto
K o] o}

For /> 35, we get:

/
Pyi,j = 0 except: Piyp= %— sin 3 £y (— 1)12
7 for / even
2
P13 = — S cos 2 fo(— 1)"2
3 iz |
Pr1,2 = 5y cos 349 (— 1) (
7 for 7/ odd
2 .
Pr,3= 7 sin 2ty (— 1)(1—1)/2 S

Pros = —Pn,e—Pns.
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Imposing that, for the values # =1 and # = 2, the series expansion of
P (#) is calculated correct to seven decimal places we obtain: M = 13.
Then, we calculate the coefficients A; with the:

Ag=1
-1

Al == % Pm A-(l—l)—m for 1 < / < 16
m=0

(1)
. 15
A= mgo P, Au_1)—m for 7>16

The coefficients A, are calculated respectively in the intervals (o, 1)
and (1, 2), so that the integral matrix X (¢#) can be obtained correct to six
decimal places.

The values of X (#) corresponding to: # = 0.5; 1.0; 1.5 and 2.0 are shown
in Table I.

The necessary calculation time to obtain the coefficients A, with the
imposed precision, and to calculate the matrix X (#) in correspondence with
the above-noted values of ¢, is about a quarter of the time employed to solve
the (19) differential equations system, using the 4 point R.K. method and
an integration step Az = 0.005.

As there is not an analytical expression for the matrix X (#), we assume,
as comparison values for the two methods, the results obtained using the
series expansion method and making the calculation in double precision,
correct to twelve decimal places.

In order to justify the validity of this double-precision solution, we use
the identity of Jacobi, which allows one to obtain an analytical expression
of the determinant- associated with the matrix X (¥).

In fact, we have:
;

£, (P(s)) ds
(22) | X @)= ei

where, as known:

(23) , (P () =Pr1(s) + Poa(s) +- -+ Pux (s

is the trace of the matrix P(s).
In the said example, we have:

t,(P(s) =54+ 552+ 2.
The analytical expression of the determinant is:

I3
(s*+552+2) ds _‘;; + % Sas

(24) | X (@)= eo =e

The determinant values obtained from eqn. (24) correspond, up to the
twelve decimal places, to those ones obtained with the double-precision solution.
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TABLE 1.
T=o0.3
b a ¢ b—c a—c
X1,1 ‘ 0.987212 0.987212 0.987212 o o
Xe o . ... 0.573054 0.573053 0.573054 o 1
X138 . ... —o0.377566 —0.377566 —0.377566 o o
Xg1 . ... — .00995921 — .00995922 — .00995921 o I
Xa,2 2.71327 2.71327 2.71327 o o
X2,3 0.302265 0.302265 0.302265% o o
Xs,1 0.544867 0.544867 0.544867 o o
X322 . .. 0.628920 0.628919 0.628920 o I
Xzs . . ... 1.08096 1.08096 1.08096 o o
T=1.0
b a ¢ ' b—c ‘ a—c
X1,1 1.64553 1.64553 1.64553 o o
X2 oo . 3.28498 3.28497 3.28498 o I
X1z oo —0.559714 —0.559713 —0.559714 o I
Xo1 .. .. —I1.11198 —I.11198 —I1.11198 o o
Xee o ... 6.70245 6.70247 6.70245 o 2
Xo3 . ... 0.278916 0.278916 0.278916 o o
Xs,1 1.89028 1.89028 1.89028 o o
Xs2 . . ... 8.26981 8.26978 8.26981 o 3
X33 . ... 2.50151 2.56150 2.56151 o I
T=1.3
b a c ‘ b—c ; a—c
X1 oo .. 15.8443 15.8443 15.8443 o o
X2 . ... 46.3806 46.3803 46.3806 o 3
X1, .« ... 4.59114 4.59110 4.59114 o 4
Xo1 o oo .. —29.7642 —20.7641 —29.7642 o I
Xo2 . . ... 13.7256 13.7256 13.7256 o o
Xe3 . .. .. — 0.869120 — 0.869077 — 0.869120 o) 43
Xg1 ... 3.25616 3.25614 3.25616 o 2
X3,2 162.333 162.332 162.333 o I
Xs.3 28.6089 28.6088 28.6089 o} 1
T=2.0
b a ¢ ‘ b—c ‘ a—c
X1 ... 608 .326 608 .322 608.326 o 4
X2 o oL 5215.12 5215.08 5215.12 o 4
Xy oo . 809.925 809.919 809.925% o 6
D O —18466.9 —18466.8 —18466.9 o I
Xoa . ... —31205.5 —31205.2 —31205.5 o 3
Xodg . . ... — 5366.64 — 5366.57 — 5366.64 o 7
Xs1 ... . —12431.7 ° —12431.6 —12431.7 o I
Xs2 . .. .. 4332.16 4332.17 4332.16 o I
X33 . .. .. 481.174 481.191 481.174 o 17
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In Table I, we have listed with &, 4, and ¢ respectively, the values
of X (#) obtained with the R.K. method and with the series expansion in
single and double precision.

We have also listed the differences (@ —¢) and (6 —¢) referred to six
significant places.
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