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Teoria dell’integrale. — Characterization of the integral of
set—valued functions. Nota di Francesco S. DE Brasi e ANDRzEJ
L asoTa, presentata @ dal Socio G. SANSONE.

RIASSUNTO. — Si dimostra che esiste una sola possibilitd di definire un integrale per
funzioni multivoche soddisfacente alcune naturali condizioni (cfr. Th. 1).

The present paper is devoted to the study of the Aumann integral of
set-valued functions. We shall show that there is only one possibility of
defining an integral for set-valued functions which satisfies some natural
conditions (see Theorem 1). By this way we shall obtain a new proof of the
statement that the Hukuhara integral, if it exists, coincides with the integral
of Aumann.

Let D be a measurable set of R’ with finite Lebesgue measure,
(D)< + oco. The family of all non empty subsets of R” will be denoted
by s (R™). By ¢([R"™), (£#(R™) will be denoted the metric space of all non
empty compact, (compact convex) subsets of R”™ with Hausdorff metric .

A map F:D — s (R™) will be called measurable if it is measurable in
the sense of Pli§, ie., for every A€c(R") the set {x€D:F (x)nNA &= g}
is Lebesgue measurable.

By X we denote the space of all functions F:D — s (R™); by X, the
subspace of X of all measurable functions F:D — ¢ (R™) such that

f] F)|dr <4 oo,(|A|=7(A,0). The subspace of X, which con-

D
tains all functions F:D — £ (R") will be denoted by X,. The subspace

of X,, (X, of all step functions, i.e., of functions F of the form:
F:EXD.AZ' ® s CJDz’:D,DinDj:Q for Z=|[=]
v Rt i=1

where y, is the characteristic function of D, and A; € ¢ (R™), (£#(R™) will
be denoted by X, ,(X,). For F,Ge€X,, we set

Dist (F,G) = f‘r (F (x),G (x)) du.
b
PROPOSITION 1.—7he spaces (X, , Dist), (X, , Dist) are complete metric
Spaces.

The fact that Dist is a metric function is quite easy. The proof of the
completeness may be carried out by standard arguments (see [2]).

(*) Nella seduta dell’8 febbraio 1969.
n

”

(1) ¥ % B; denotes the set
i=1

E ;s x € By
i=1
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PROPOSITION 2.—7Ve space X, is dense in X,. Moreover, for every
Junction F € X, there is a sequence of ¥, € X, such that

|F,(x)| < m(x), mintegrable , lim = (F,(x), F(x)) =0 abnost everywhere.

Proof—Let X,, be the closure of X,. Since X, ,C X, we need only
to prove that X,CX,,. Let us consider F € X,. By Pli§ theorem [3], for
each integer 7z > o there exists a closed (and bounded) set D, C D such that

(1) wO\D,) <1/n

and such that the restriction Fp of F to D, is continuous. We can also sup-
pose that D, ;1 DD, for each #. For each 7 there exists a finite partition
{D,},i=1,2,---,7(%n) of D, such that

(2) t(Fx),F@) <1/z , for each xe€Dj,
where x; is a fixed point of D. The map F, defined for each x by
_VF(x) if xeDZ,z’=1,2,~-,z'(n)
B @ =1, if xeD\D,
belongs to X,. Hence, we have |F,(x)|<|F()|+ 1 and
a i(m [
(3) Dist (F,, F) = / (F(x),0)dr + Y / T(F(x),F(x))dx.
J =1
D\Dn D*

From (3) by inequalities (1), (2) and the absolute continuity of the
integral follows that Dist (F,, F) 0. Thus to complete the proof it is
sufficient to put 7 = |F| +1 and to replace {F,} by a suitably chosen
subsequence.

It FeX,, then the map G from D into %2(R”™) given for each x by
G (x) =c0F (x), is a measurable function and |F (x)|= |G (x)|. So o
can be considered as a map from X, into X,.

PROPOSITION 3.—7he map ¢o:X, > X, is a continuous surjection.
Moreover,

(4) Dist (¢o F , 7o G) < Dist (F, G).

Proof —It is easy to see that 7o is onto. Inequality (4) follows from
the inequality 7 (co A, 20 B) < v (A, B) which is valid for all A, B € ¢ (R™).

PROPOSITION 4.—X,, is dense in X,. Moreover, for every ¥ €X,, there
is a sequence of ¥, € X, such that

| F,(®) | <m(x),m integrable, ~ (F,(x),F (x)) -0 almost everywhere.

Proof —By Proposition 1, X, D X,, where X, denotes the closure of X,,.
Furthermore Propositions 2 and 3 imply X, C X,, and so the first part of the
assertion. To prove the second one it is sufficient to observe that the condi-
tions © (F, (), F(x)) —o,F,€X,,|F,| <m implyt(¢0 F, (x), % F (x)) —
—~0,c0F,€X, ,|coF,| <m.
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Let us recall the definition of the Aumann integral. For F € X we set

JEF) = ; ff(x) dx : f(x) € F (x), f integrable }-

We shall use the following known properties of J, (see [1], [3]).

PROPOSITION 5.—For every FeX,, J (F) is a closed convex set in R™.

PROPOSITION 6.—7he Aumann integral is an additive function, i.e., for
F € X and for each finite partition {D;} of D, we have

J® = X7 G, B
PROPOSITION 7.—] s a continuous map from X, onto k (R™).
PROPOSITION 8.—For every F € X,, we have
J (&) = J (0 F).

From Propositions 8, 7 and 3 we have the following

PROPOSITION 9.—] s a continuous map from X, onto k(R™).
From Propositions 9 and 6 we obtain the following

PROPOSITION 10.—T7%e Aumann integral is a complete additive function,
ie., for every F € X

T = X1 G, P

where {D,} is a countable partition of D.
From the definition and Proposition 8 we have the following

PROPOSITION 11.—For every F constant, F (x) = A, A € c (R™), we have
J(A) = u (D) @A.

We shall show that properties 6, 9 and 11 determine uniquely the inte-
gral of set-valued functions. Namely we shall prove the following

THEOREM 1.—Let 1 be a map from X, into ¢ (R™) such that
(1) 1 s an additive function, i.e.,
I(F)= Y1 Otp, F) for every finite partition {D,;} of D
i=1 4 '

(i) I 4s a continuous function from X, into ¢ (R)”

(iii) For every Do C D, Dy measurable, and every constant F (x) =
= A ,A €cR") the inequality

(s) (Do) A CT (4, A) C . (Dg) 20 A
holds.  Then 1 (F) = J (F) for every FeX,.
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Proof —We want to prove first that (i) and (ii) imply

©) I Gtp, &) = 1 (Do) 20 A

for each A €¢(R™) and each measurable Dy CD. Since by inequality (3),
I (xp, A)Cuw (D) co A, we need only to prove the opposite inequality. To
this end let x be a point of w (Dy) co A. From the compactness of A it follows
that x can be expressed by

(7) x:E7\kXé,XkEA , E)\k:I,)\kZO.
k=1 k=1

Let us consider a partition {D,} of Dy by measurable sets D, such that
®) w Dz) = u (Do) X

Using (i) and (iii) we obtain I (y, A)D Y . (DyYA and, by (8),
‘ k=1

I(XDDA)DH(DQ);MA.

Conditions (7) and the last inequality yield x €1 (Ap, ). So the proof
of (6) is finished. From (6), Propositions 11, 6 and (i) it follows that the
restrictions of I and ] to X, are equal. Proposition 7, (ii) and Proposition 2
imply that I and ] coincide on X,.

Hypothesis (ii) of the previous theorem can be weakened and replaced
by the following one:

(ii") For each FeX,, if {F,} is a sequence of functions F,€X,, such
that |F,(x)| <m(x), (m integrable) and = (F,(x),F (x)) —>o
almost everywhere then 1 (F,) —1 (F).

By the Lebesgue theorem and Proposition 2 we have then the following

THEOREM 2.—1If a map 1 from X, into ¢ (R™) satisfies (i) and (iii) of
Theorem 1 and (ii") then 1 (F) = J (F) for each F € X,.
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