Atti Accademia Nazionale dei Lincei
 Classe Scienze Fisiche Matematiche Naturali Rendiconti

Louis Reynolds Antoine Casse

A solution to Beniamino Segre's «Problem $I_{r, q}$ » for q even

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 46 (1969), n.1, p. 13-20.
Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1969_8_46_1_13_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Geometria. - A solution to Beniamino Segre's «Problem $\mathrm{I}_{r, q}$ " for q even. Nota di Louis Reynolds Antoine Casse, presentata ${ }^{(*)}$ dal Socio B. Segre.

> Sunto. - Vengono stabiliti vari risultati concernenti i k-archi di $\mathrm{S}_{r, q}$ con $r \geq 3$, q pari.

§ i. Introduction.

We denote, as is usual, a finite linear space of dimension r over a Galois field $\mathrm{GF}(q)$ by $\mathrm{S}_{r, q}$ [5].

Definition i. A $k_{r}-\operatorname{arc}{ }^{(1)} \mathrm{K}_{r}$ of an $\mathrm{S}_{r, q}$ is a set of k points of the $\mathrm{S}_{r, q}$, no $r+\mathrm{I}$ of which are linearly dependent, $k \geq r+\mathrm{I} . \mathrm{K}_{r}$ is complete if it is not a proper subset of any $(k+\mathrm{I})_{r}$-arc of the $\mathrm{S}_{r, q}$. A subspace $\mathrm{S}_{s, q}$ of the $\mathrm{S}_{r, q}, \mathrm{I} \leq s \leq r-\mathrm{I}$, is external, unisecant, bisecant, \cdots, u-secant \cdots to K_{r} depending on whether it has $\mathrm{O}, \mathrm{I}, 2, \cdots, u, \cdots$ points in common with K_{r}. A bisecant line is also referred to as a chord. In the case of k_{2}-arcs, a unisecant line in the ambient $\mathrm{S}_{2, q}$ is also called a tangent [I].

Definition 2. A tangent line t at a point P of a $k_{3}-\operatorname{arc} \mathrm{K}_{3}$ of an $\mathrm{S}_{3, q}$ is a unisecant line through P such that any plane containing t has at most one further point in common with K_{3}. A plane π containing a tangent line t at a point P of K_{3}, but containing no further point of K_{3}, is called an osculating plane of K_{3} at P .

Definition 3. A k_{2}-arc K_{2} of an $\mathrm{S}_{2, q}$ for which k attains its maximum value for the $\mathrm{S}_{2, q}$ is called an oval [I]. A $k_{3}-\operatorname{arc} \mathrm{K}_{3}$ of an $\mathrm{S}_{3, q}$ for which k attains its maximum value for the given $S_{3, q}$ is called a cubal.

Numerous papers have appeared on the subject of k_{2}-arcs, mainly by B. Segre and his school. One problem proposed by B. Segre was [r]:

Problem $\mathrm{I}_{r, q}$: For given r and q, what is the maximum value, denoted by $|k|$, of k for which k_{r}-arcs exist in $\mathrm{S}_{r, q}$. And what, precisely, are the k_{r}-arcs corresponding to such a value of k ?
(*) Nella seduta del 19 novembre 1968.
(I) The term ' k-arc' is used instead of ' k_{r}-arc' in the various papers to which reference is made.

The results contained in this paper are from the author's doctoral thesis approved by the University of London for the award of the Ph. D. degree. In this connection, the author wishes to thank his supervisor, Dr. E. Stein, for her encouragement and valuable advice.

He produced the following answers [5]
If q is odd, every $(q+1)_{2}$-arc is a conic.
If q is odd, every $(q+\mathrm{I})_{3}$-arc is a twisted cubic.
If q is odd, $r=2,3$ or 4 , then $|k|=q+\mathrm{I}$.
If q is odd, $r>4, q \geq r+2$ then $|k| \leq q+r-3$.
If q is even, $r=2$, then $|k|=q+2$.
If q is even, $r>2$, then $|k| \leq q+r$.
In the present paper, we shall prove:
If q is even, $r=3$ or $4, q \geq r+\mathrm{I}$, then $|k|=q+\mathrm{I}$.
The tangent lines to a $(q+\mathrm{I})_{3}$-arc of an $\mathrm{S}_{3, q}, q=2^{h}$ are the generators of an hyperbolic quadric. If $q=4$ or 8 , a $(q+1)_{3}$-arc is a twisted cubic.

We now quote three theorems which we shall require later.
ThEOREM 1.I. If $q=2,4$ or 8 , every oval of an $\mathrm{S}_{2, q}$ is made up of $q+\mathrm{I}$ points of a conic C and of the nucleus N of C [4].

Theorem i.2. If q is even, any two $(q+2)_{2}$-arcs of an $\mathrm{S}_{2, q}$ coincide if they have more than half their number of points in common [10].

ThEOREM 1.3. If q is even, and if $k>q-\sqrt{q}+\mathrm{I}$, then every $k_{2}-\operatorname{arc}$ is contained in a $(q+2)_{2}$-arc; this $(q+2)_{2}$-arc is unique but for one exception $q=2, k=2$ [7].

$$
\text { § 2. } k_{3} \text {-ARCS OF } \mathrm{S}_{3, q} \text {. }
$$

It follows from definitions I and 2 that through a point Q not belonging to a $k_{3}-\operatorname{arc} \mathrm{K}_{3}$ there cannot pass
(a) two chords.
(b) a tangent line and a chord.

Theorem 2.i. If Q is a point not belonging to a k_{3}-arc K_{3}, then the necessary and sufficient condition for $\mathrm{K}_{3}+\mathrm{Q}$ to be a $(k+\mathrm{I})_{3}$-arc is that the lines joining Q to the points of K_{3} are tangent lines to K_{3}.

Proof: Let $\mathrm{P}_{i}(i=\mathrm{I}, 2, \cdots, k)$ be the points of K_{3}. Suppose that QP_{i} is a tangent line at P_{i}, for all i. Then, by definition $2, \mathrm{Q}$ does not belong to any of the $\binom{k}{3}$ planes spanned by the points of K_{3}. Thus $\mathrm{K}_{3}+\mathrm{Q}$ is a $(k+\mathrm{I})_{3}$-arc.

Suppose next that $\mathrm{K}_{\mathbf{3}}+\mathrm{Q}$ is a $(k+\mathrm{I})_{\mathbf{3}}$-arc. If, for some i, QP_{i} is not a tangent line to K_{3}, then there exists at least one plane containing QP_{i} and two points (other than P_{i}) of K_{3}; in which case, $\mathrm{K}_{3}+\mathrm{Q}$ is not a $(k+\mathrm{I})_{3^{-}}$ arc. Hence $Q P_{i}$ is a tangent line to K_{3}.

Theorem 2.2. A k_{3}-arc K_{3} has at most $q+3$ points.
Proof: Each of the $q+$ I planes containing a chord of K_{3} contains at most one further point of K_{3}.

Project a $k_{3}-\operatorname{arc} \mathrm{K}_{3}$ from a point P of itself onto a plane π (not through P) and consider the ($k-\mathrm{I})_{2}-\operatorname{arc} \mathrm{K}_{2}$ so obtained. Suppose that K_{3} has a tangent line l at P , and let l intersect π in O . K_{2} is incomplete since O can be added to it so as to form a k_{2}-arc C of π. At O, C has exactly $q-k+2$ tangents in π. If t is a tangent to C at O , then the plane $l \cdot t$ has only the point P in common with K_{3}. Therefore the $q-k+2$ planes of type $l \cdot t$ are the osculating planes of K_{3} at P containing the tangent line l. Let O_{i} be any point in π not belonging to the projection K_{2}. If $\mathrm{K}_{2}+\mathrm{O}_{i}$ is a k_{2}-arc, then $\mathrm{O}_{i} \mathrm{P}$ is a tangent line of K_{3} at P . Thus the number of such points O_{i} in π is equal to the number of tangent lines of K_{3} at P.

In particular, if K_{2} is complete, there are no tangent lines of K_{3} at P , and it then follows by theorem 2.I that K_{3} is complete.

Nothing so far suggests that if a $k_{3}-$ arc K_{3} has a certain number of tangent lines at one of its points P , then K_{3} needs to have the same number (or any) tangent lines at some or all of its remaining points.

ThEOREM 2.3. If q is even and if $k>q-\sqrt{q}+2$ (with the only exception $q=2, k=3$), then
(I) at every point of a $k_{3}-\operatorname{arc} \mathrm{K}_{3}$ of $\mathrm{S}_{3,9}$ there pass the same number n of tangent lines, where

$$
n=q-k+3
$$

(2) at every point of K_{3} there pass the same number m of osculating planes, where
or. $\quad m=(q-k+2) n \quad$ if $n \leq \mathrm{I}$.
Proof: Project K_{3} from any point P of itself onto some plane π not through P. Under the condition $k>q-\sqrt{q}+2$, every $(k-\mathrm{I})_{2}-\operatorname{arc}$ is incomplete and can be uniquely completed to an oval (see Theorem 1.3). This holds for any point P of K_{3} taken as vertex of projection. Thus, at each point of K_{3} there pass

$$
q+2-(k-\mathrm{I})=q-k+3
$$

tangent lines.
As was noted earlier, there are $q-k+2$ osculating planes containing each tangent line of a k_{3}-arc K_{3}. Also, every pair of tangent lines of K_{3} at one of its points P forms an osculating plane. Hence the number m of osculating planes is
or $\quad m=(q-k+2) n \quad$ if $n \leq \mathrm{I}$.

Corollary 2.i. $A(q+3)_{3}$-arc possesses no tangent line; $a(q+2)_{3}$-arc possesses no osculating planes but has exactly one tangent line at each of its points; a $(q+1)_{3}$-arc has exactly two tangent lines at each of its points, and the plane containing the pair of tangent lines at each of its points is the osculating plane there.

Theorem 2.4. $A(q+3)_{3}$-arc K_{3} has no bisecant planes.
Proof: About any chord of a $(q+3)_{3}-\operatorname{arc} \mathrm{K}_{3}$ there pass exactly $q+\mathrm{I}$ planes: these planes are necessarily trisecant planes of K_{3}.

ThEOREM 2.5. Given $a(q+3)_{3}$-arc K_{3} of $\mathrm{S}_{3, q}, q>2$, there exist points not belonging to any chord of K_{3}.

Proof: The number N of points not belonging to any chord of a $(q+3)_{3^{-}}$ arc is

$$
\begin{aligned}
\mathrm{N} & =q^{3}+q^{2}+q+\mathrm{I}-\binom{q+3}{2} \times(q-\mathrm{I})-(q+3) \\
& =(q+\mathrm{I})(q-\mathrm{I})(q-2) / 2
\end{aligned}
$$

Thus N is positive if $q>2$.

§ 3. Cubals and the Problem $\mathrm{I}_{r, q}$.

Lemma 3.I. If q is even, $a(q+2)_{3}$-arc (if it exists) is incomplete and can be uniquely completed to a $(q+3)_{3}$-arc.

Proof: Single out any point of a $(q+2)_{3}-\operatorname{arc} \mathrm{K}_{3}$ and call it P. Call the remaining points of $\mathrm{K}_{3}, \mathrm{P}_{i}(i=\mathrm{I}, 2, \cdots, q+\mathrm{I})$, and denote by K_{3}^{\prime} the $(q+1)_{3}-\operatorname{arc}$ formed by the points P_{i}. Now K_{3} has exactly one tangent line at each of its points (see corollary 2.1): denote by l, l_{i} respectively the tangent lines of K_{3} at $\mathrm{P}, \mathrm{P}_{i}$. By theorem 2.I the line PP_{i} is a tangent line at P_{i} to K_{3}^{\prime}. Thus the osculating plane of K_{3}^{\prime} at P_{i} is the plane determined by PP_{i} and l_{i}. But the osculating plane of K_{3}^{\prime} at P_{i} is also the plane determined by the lines PP_{i} and l (since this plane contains the tangent line PP_{i} of K_{3}^{\prime} and contains no further point of K_{3}^{\prime}). Therefore l intersects l_{i}.

In other words, any two tangent lines of a $(q+2)_{3}$-arc intersect in a point. Thus the tangent lines of a $(q+2)_{3}$-arc are either coplanar or they are concurrent in a point Q, say. The first possibility is contradictory to the definition of tangent lines. By theorem 2.1, Q is the unique point which can be added to K_{3} to form a $(q+3)_{3}$-arc.

Theorem 3.I. If q is even, $q \neq 2$, there do not exist $(q+3)_{3}$-arcs.
Proof: Let K be a $(k ; 3)$-arc ${ }^{(2)}$ of an $\mathrm{S}_{3, q}$. Let $s=$ the number of trisecants of K . $n_{i}=$ the number of trisecants of K through a point P_{i} of K .
(2) A $(k ; 3)$-arc K is a set of k coplanar points, no four of which are collinear, but K contains at least one set of three collinear points; a trisecant of K is a line which has three points in common with K [8].

As proved in [8]

$$
\begin{equation*}
\sum_{i=1}^{k} n_{i}=3 s \tag{3.I}
\end{equation*}
$$

Suppose there exists a $(q+3)_{3}-\operatorname{arc} \mathrm{K}_{3}$. Let $\mathrm{A}_{i}(i=0, \mathrm{I}, 2, \cdots, q+2)$ be the points of K_{3}. Two cases are to be considered.

Case $I: q=2^{2 h}$. Project K_{3} from any point O of $\mathrm{A}_{0} \mathrm{~A}_{1}$ (distinct from A_{0} and A_{1}) onto some plane π not through O . Let $\mathrm{OA}_{0} \mathrm{~A}_{1}$ and $\mathrm{OA}_{i}(i=2,3, \cdots$, $\cdots, q+2$) intersect π in the points P_{1} and P_{i} respectively. In π, the points $\mathrm{P}_{i}(i=\mathrm{I}, 2, \cdots, q+2)$ form a $(q+2 ; 3)$-arc. Since each of the $q+\mathrm{I}$ planes containing the line $\mathrm{OA}_{0} \mathrm{~A}_{1}$ passes through one point of K_{3}, it follows (in the above notation) that $n_{1}=0$. Consider the planes containing a line OA_{i}. Since none of these planes are bisecant of K_{3} (theorem 2.4), it follows that the points of K_{3} distinct from $\mathrm{A}_{0}, \mathrm{~A}_{1}$ and A_{i} divide themselves into $q / 2$ pairs, each pair of points being coplanar with A_{i} and O.

Hence, for all i, we have $n_{i}=q / 2$. Applying equation (3.1), we have:

$$
3 s=0+(q+1)\left(\frac{q}{2}\right)
$$

Hence $q+\mathrm{I} \equiv \mathrm{o}(\bmod .3)$. But $2^{2 h}+\mathrm{I}$ is not divisible by $2+\mathrm{I}$.
Therefore if $q=2^{2 h}$, there do not exist $(q+3)_{3}$-arcs.
Case 2: $q=2^{2 h+1}, h \neq 0$. Choose a point V not lying on any chord of K_{3} (by Theorem 2.5, if $q \neq 2$, there exists such a point). Project K_{3} from V onto some planer π not through V . Let P_{i} be the projection of $\mathrm{A}_{i}(i=\mathrm{o}, \mathrm{I}, \cdots, q+2)$. Since K_{3} has no bisecant planes, it follows that the $(q+3 ; 3)$-arc just obtained is such that $n_{i}=\frac{1}{2}(q+2)$. Again, applying equation (3.I), we have:

$$
3 s=(q+3) \times \frac{1}{2}(q+2)
$$

Hence

$$
q^{2}+5 q+6 \equiv 0(\bmod 6)
$$

i.e. $\quad q+5 \equiv 0(\bmod 3)$
i.e. $\quad q-1 \quad \equiv 0(\bmod 3)$

But $2^{2 h+1}+\mathrm{I}$ is not divisible by $2+\mathrm{I}$. Therefore if $q=2^{2 h+1}$ there do not exist $(q+3)_{3}$-arcs.

The proof is now complete.
Any set of five points, no four of which are coplanar, can be transformed by a unique homography to the five points ($1,0,0,0$) , $(0,1,0,0)$, $(\mathrm{O}, \mathrm{O}, \mathrm{I}, \mathrm{O}),(\mathrm{O}, \mathrm{O}, \mathrm{O}, \mathrm{I})$ and (I, I, I, I). Therefore if $q=2$, a cubal is a $(q+3)_{3}-a r c$, and any two cubals are projectively equivalent.

Theorem 3.2. If $q \neq 2$, a cubal is a $(q+1)_{3}$-arc.
Proof: This follows from lemma 3.I and theorem 3.I.
2. - RENDICONTI 1969, Vol. XLVI, fasc. 1.

Theorem 3.3. If q is even, $q \neq 2$, the $2(q+1)$ tangent lines of a cubal are the $2(q+1)$ generators of a hyperbolic quadric.

Proof: Let $\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{q+1}$ be the points of a cubal K_{3} of $\mathrm{S}_{3, q}, q$ even, $q \neq 2$. Let l_{i}, m_{i} be the two tangent lines of K_{3} at the point $\mathrm{A}_{i}(i=1,2, \ldots$ $\cdots, q+\mathrm{I}$). Consider the planes containing the chord $\mathrm{A}_{i} \mathrm{~A}_{j}$, for some i, j. Of these, q - I are trisecant planes and the remaining two are bisecant planes. The two bisecant planes can be identified either as $\left(\mathrm{A}_{i} \mathrm{~A}_{j}\right) \cdot m_{j}$ and $\left(\mathrm{A}_{i} \mathrm{~A}_{j}\right) \cdot l_{j}$ or as $\left(\mathrm{A}_{i} \mathrm{~A}_{j}\right) \cdot m_{i}$ and $\left(\mathrm{A}_{i} \mathrm{~A}_{j}\right) \cdot l_{i}$. Hence, one tangent line at A_{i} intersects one tangent line at A_{j}, and the second tangent line at A_{i} intersects the second tangent line at A_{j} (by definition, the osculating plane at A_{i} does not pass through A_{j}, and therefore a tangent line at A_{j} does not intersect both tangent lines at A_{i}).

By renaming the tangent lines if necessary, let the tangent lines of K_{3} which intersect l_{1}, m_{1} be m_{j}, l_{j} respectively $(j=2,3, \cdots, q+1)$. We now show that the $q+\mathrm{I}$ lines $m_{i}(i=\mathrm{I}, 2, \cdots, q+\mathrm{I})$ are skew to each other. For suppose m_{j} and m_{k} intersect, $j \neq k \neq \mathrm{I}$. Two possibilities may occur: either l_{1}, m_{j}, m_{k} are coplanar or they are concurrent in a point Q distinct from A_{1} (since both m_{j}, m_{k} intersect l_{1}). The first possibility contradicts the definition of a tangent line. So, suppose that l_{1}, m_{j}, and m_{k} are concurrent in a point Q . Consider any point A_{i} of $\mathrm{K}_{3},(i \neq \mathrm{I}, j, k)$. Again since no three tangent lines of K_{3} are coplanar, and since m_{i} intersects l_{1} it follows that m_{i} intersects m_{j} or m_{k} if and only if m_{i} passes through Q. If m_{i} does not intersect m_{j}, m_{k} then l_{i} does. In that case l_{i} passes through Q . This is impossible since l_{i}, m_{i} do not both intersect l_{1}. Thus the assumption that l_{1}, m_{j}, m_{k} are concurrent in a point Q leads to the conclusion that all the tangent lines $m_{i}(i \neq \mathrm{I}, i=2, \cdots, q+\mathrm{I})$ pass through Q . By theorem 2.I, $\mathrm{K}_{3}+\mathrm{Q}$ is a $(q+2)_{3}-\mathrm{arc}$. This is impossible: by theorem 3.I and lemma 3.I, there do not exist $(q+2)_{3}$-arcs.

It follows that each member of the set of tangent lines l_{i} meets every member of the set of tangent lines m_{i}, and that no two members of the same set intersect. Consider any three members of the set $l_{i}: l_{1}, l_{2}, l_{3}$ say. The (unique) hyperbolic quadric Q_{2}^{2} containing the lines l_{1}, l_{2}, l_{3} contains the whole set of tangent lines m_{i} (since the points $m_{i} \cdot l_{j}$ belong to $Q_{2}^{2}, j=1,2,3$), and therefore contains all the tangent lines l_{i}.

Theorem 3.4. Every cubal K_{3} of $\mathrm{S}_{3, q}, q=4$ or 8, is a twisted cubic.
Proof: Any set of five points of $\mathrm{S}_{3,4}$, no four of which are coplanar, can be transformed by a unique homography into ($\mathrm{I}, \mathrm{o}, \mathrm{o}, \mathrm{o}$), ($\mathrm{O}, \mathrm{o}, \mathrm{O}, \mathrm{I}$), (I , I , I , I), (I $\left.\omega, \omega^{2}, \mathrm{I}\right)$ and (I $\left.\omega^{2}, \omega, \mathrm{I}\right)$, where ω is a generator of GF (4). Thus every cubal of $S_{3,4}$ is projectively equivalent to the twisted cubic ($\theta^{3}, \theta^{2}, \theta$, I).

Suppose next that $q=8$. Let $\mathrm{P}_{1}, \cdots, \mathrm{P}_{9}$ be the nine points of a cubal K_{3} of $S_{3,8}$. Denote by Q_{2} the hyperbolic quadric whose generators are the tangent lines of K_{3} (theorem 3.3). Project from P_{1} onto some plane π not through P_{1}. Denote the projection of P_{i} by $\mathrm{P}_{i}^{\prime}(i=2,3, \cdots, q+\mathrm{I})$. Let g_{1}, g_{2} be the
two generators of Q_{2} through P_{1}; let g_{1}, g_{2} intersect π in $\mathrm{A}_{1}, \mathrm{~A}_{2}$ respectively. Thus $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{P}_{2}^{\prime}, \mathrm{P}_{3}^{\prime}, \cdots, \mathrm{P}_{9}^{\prime}$ form a IO_{2}-arc of π. By theorem I.I, this oval is made up of 9 points of a conic C and of the nucleus N of C . Denote by $\mathrm{P}_{1}(\mathrm{C})$ the quadric cone projecting C from P_{1}. If neither A_{1} nor A_{2} coincides with the nucleus N of C , then $\mathrm{P}_{1}(\mathrm{C})$ and Q_{2} intersect in g_{1}, g_{2} and residually in a conic; this is impossible since the points of K_{3} are not coplanar. So, suppose without loss of generality that A_{2} is the nucleus of C. Hence $P_{1}(C)$ and Q_{2} intersect in g_{1} and residually in a cubic curve C^{3} containing K_{3}. Since K_{3} has more than five points, C^{3} is neither a triad of lines nor a conic plus a line, and therefore C^{3} is a twisted cubic. The theorem now follows since a twisted cubic in $\mathrm{S}_{3,8}$ has exactly 9 points (i.e. as many points as K_{3}).

Theorem 3.5. Denoting by $|k|$ the maximum value for which there exist k_{r}-arcs in $\mathrm{S}_{r, q}, q=2^{h}, q \geq r+1, r \geq 4$ then

$$
\begin{array}{ll}
|k|=q+\mathrm{I} & \text { if } r=4 \\
|k| \leq q+r-3 & \text { if } r>4 \tag{2}
\end{array}
$$

Proof: Consider a k_{4}-arc K_{4} of $\mathrm{S}_{4, q}, q=2^{h}, q \geq 8$. Project K_{4} from an arbitrarily chosen point P of K_{4} onto some $\mathrm{S}_{3, q}$ not through P . The projection is a $(k-\mathrm{I})_{3}$-arc of the $\mathrm{S}_{3, q}$, and by theorem 3.2 , we have $|k| \leq q+2$.

Suppose there exists a $(q+2)_{4}$-arc K_{4} of $\mathrm{S}_{4, q}, q=2^{h}, q \geq 8$. Let the points of K_{4} be $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{q}$. Project successively K_{4} from O_{1} and O_{2} onto some $\mathrm{S}_{3, q}$ not through O_{1} or O_{2}. The projections are cubals $\mathrm{K}_{3}^{(i)}(i=\mathrm{I}, 2)$ of the $\mathrm{S}_{3, q}$, and by theorem 3.3 the tangent lines of the cubal $\mathrm{K}_{3}^{(i)}$ are the generators of a hyperbolic quadric which we denote by Q_{i}. Denote by $\mathrm{O}_{i}\left(\mathrm{Q}_{i}\right)$ the quadric of the ambient $\mathrm{S}_{4, q}$ having O_{i} as vertex and Q_{i} as base $(i=1,2)$. Let $\mathrm{O}_{1} \mathrm{O}_{2}$ intersect the $\mathrm{S}_{3, q}$ in the point O , and let $\mathrm{O}_{i} \mathrm{P}_{j}$ intersect the $\mathrm{S}_{3, q}$ in $\mathrm{P}_{j}^{(i)}(i=\mathrm{I}, 2, \cdots, q)$. If follows that for all $j, \mathrm{O}, \mathrm{P}_{j}^{(1)}, \mathrm{P}_{j}^{(2)}$ are collinear; denote the line joining them by l_{j}. Lastly, denote the two tangent lines of $\mathrm{K}_{3}^{(1)}$ at the point O by l and m. Now the q planes formed by l and the lines l_{j} are bisecant planes not only of $\mathrm{K}_{3}^{(1)}$ but also of $\mathrm{K}_{3}^{(2)}$. Thus l is a tangent line of $\mathrm{K}_{3}^{(i)}$ at O . Similarly m is a tangent line of $\mathrm{K}_{3}^{(2)}$ at O . Thus the quadrics $\mathrm{O}_{1}\left(\mathrm{Q}_{1}\right)$ and $\mathrm{O}_{2}\left(\mathrm{Q}_{2}\right)$ intersect in the plane formed by l^{\prime} and $\mathrm{O}_{1} \mathrm{O}_{2}$ and in the plane formed by m and $\mathrm{O}_{1} \mathrm{O}_{2}$; therefore they intersect residually in an algebraic variety V_{2}^{2} of order two and dimension two. This residual intersection V_{2}^{2} is thus properly contained in a threedimensional linear space; but V_{2}^{2} also contains at least q points of K_{4} (namely $\mathrm{P}_{1}, \mathrm{P}_{2}, \cdots, \mathrm{P}_{q}$). This is a contradiction: by definition, not more than four points of K_{4} can be contained in a three-dimensional linear space. Hence there do not exist $(q+2)_{4}$-arcs in $\mathrm{S}_{4, q}$. Now the quartic curve ($\left.\theta^{4}, \theta^{3}, \theta^{2}, \theta, \mathrm{I}\right)$ has exactly $q+$ I points. Therefore

$$
|k|=q+\mathrm{I} \quad \text { if } \quad r=4
$$

Lastly, consider a k_{r}-arc K_{r} of an $\mathrm{S}_{r, q}, q=2^{h}, q \geq r+\mathrm{I}, r>4$. Choose arbitrarily $r-4$ points of K_{r} and project K_{r} from the $\mathrm{S}_{r-5, q}$ spanned by these points onto some $\mathrm{S}_{4, q}$ skew to the $\mathrm{S}_{r-5, q}$. The projection is a $(k-r+4)_{4}$ arc, which has at most $q+\mathrm{I}$ points. Hence

$$
|k| \leq q+r-3 \quad . \quad \text { if } \quad r>4
$$

References.

[1] Segre B., Sulle ovali nei piani lineari finiti, «Rend. Accad. Naz. Lincei» (8), 17, 141142 (1954).
[2] SEGRE B., Curve razionali normali e k-archi negli spazi finiti, «Ann. Mat. pura appl.» (4) 39, 357-379 (1955).
[3] SEGRE B., Intorno alla geometria sopra un campo di caratteristica due, «Rev. Fac. Sci. Univ.», Istanbul Ser. A 2I, 97-123 (1956).
[4] Segre B., Sui k-archi nei piani finiti di caratteristica, «Revue de Maths. pures et appl.», 2, 289-300 (1957).
[5] Segre B., Le Geometrie di Galois, "Ann. di Mat.», (4), 48, 1-97 (1959).
[6] Segre B., Lectures on Modern Geometry, Ed. Cremonese, Roma 1961.
[7] Segre B., Introduction to Galois Geometries, «Mem. Accad. Naz. Lincei», Serie VIII, Vol. VIII, (5), I35-236, Roma 1967.
[8] Cossu A., Su alcune proprietà dei $\{k: n\}$-archi di un piano proiettivo sopra un corpo finito, «Rend. di Mat.», (5), 20, 271-277 (1961).
[9] Primerose F. J., Quadrics in finite geometries, "Proc. Camb. Phil. Soc.», 47, 299-304 (1951).
[10] Qvist B., Some Remarks concerning curves of the second degree in a finite plane, "Ann. Accad. Sci. Fenn.», Ser. A I, I34 (1952).

