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Geometria. — A solution to Beniamino Segre's « Problem 1, ,»
Jor g even. Nota di Lours Revy~NoLps ANTOINE CASSE, presentata
dal Socio B. SEGRE.

SUNTO. — Vengono stabiliti vari risultati concernenti i A-archi di S,,; con 7» > 3,
¢ pari.

§ 1. INTRODUCTION.

We denote, as is usual, a finite linear space of dimension 7 over a Galois

field GF () by S, [5]-

DEFINITION 1. A A~arc ® K, of an S, , is a set of £ points of the S, ,,
no 7 + 1 of which are linearly dependent, £2>7 4+ 1. K, is complete if it
is not a proper subset of any (£ + 1),—arc of the S,,. A subspace S,, of
the S,,,1 <s <r—1, is external, unisccant, bisecant, ---, wu—secant - - -
to K, depending on whether it has o, 1,2, ---,2, -+ points in common
with K, . A bisecant line is also referred to as a ckord. In the case of Ay—arcs,
a unisecant line in the ambient Sp, is also called a tamgent [1].

DEFINITION 2. A fangent line ¢ at a point P of a Ag—arc K3 of an S;,
is a unisecant line through P such that any plane containing # has at most
one further point in common with K3. A plane 7 containing a tangent line ¢
at a point P of K3, but containing no further point of Kj, is called an
osculating plane of Ky at P.

DEFINITION 3. A Ay-arc K, of an Sy, for which £ attains its maximum
value for the S, , is called an ova/ [1]. A Ag—arc K3 of an Sz, for which 4
attains its maximum value for the given Sy, is called a cubal.

Numerous papers have appeared on the subject of Ay—arcs, mainly by
B. Segre and his school.. One problem proposed by B. Segre was [1]:

ProBLEM I, ,: For given » and ¢, what is the maximum value, denoted
by | |, of £ for which £,~arcs exist in S,,. And what, precisely, are the
k,~arcs corresponding to such a value of 4?

(*) Nella seduta del 19 novembre 1968.

(1) The term ‘ £-arc’ is used instead of ‘/4,—arc’ in the various papers to which refe-
rence is made.

The results contained in this paper are from the author’s doctoral thesis approved by
the University of London for the award of the Ph. D. degree. In this connection, the
author wishes to thank his supervisor, Dr. E. Stein, for her encouragement and valuable
advice.
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He produced the following answers [5]

(1) If ¢ is odd, every (¢ + I)s—arc is a conic.

(2) If ¢ is odd, every (g + 1)g—arc is a twisted cubic.
(3) If g is odd, » =2,3 or 4, then | 2| =¢ + 1.

(4) Ifgisodd, » >4,9 =7+ 2 then |£| <g+r—3.
(5) If g is even, » = 2, then | 2| = ¢ + 2.

(6) If ¢ is even, » > 2, then k] <g 47

In the present paper, we shall prdve:
(1) If gis even, » =3 or 4, ¢ =7+ 1, then | 2| =¢ + 1.
(2) The tangent lines to a (¢ + I)s-arc of an S;,,9 = 2* are the

generators of an hyperbolic quadric. If g=4 or 8, a (g -+ 1)g-arc
is a twisted cubic.

We now quote three theorems which we shall require later.

THEOREM 1.1. If g =2, 4 or 8, every oval of an Sy, is made up of
g + 1 points of a conic C and of the nucleus N of C [4].

THEOREM 1.2. If g is even, any two (g + 2)2—arcs of an Sy, coincide if
they have more than half their number of points in common [10].

THEOREM 1.3. If g s even, and if k>q— Vg + 1, then every ks—arc is
contained in a (g + 2)g-arc; this (g + 2)g—arc is unique but for one exception
g=2,k=2 [7]

§ 2. /£3—ARCS OF S3,.

It follows from definitions 1 and 2 that through a point Q not belonging
to a fg—arc K3 there cannot pass
(&) two chords.

(6) a tangent line and a chord.

THEOREM 2.1. If Q is a point not belonging to a ks—arc Ky, then the
necessary and sufficient condition for Kg+Q to be a (b + 1)g—arc is that the
lines joining Q to the points of Ky are tangent lines to Ks.

Proof: Let P, (=1,2, -, k) be the ‘points of K3. Suppose that QP;
is a tangent line at P, for all 7. Then, by definition 2, Q does not belong to
~any of the (’j) planes spanned by the points of Kg. Thus Kg+ Q is a
&+ 1)3—arc.\

Suppose next that K3 + Q is a (&£ + 1)g-arc. If, for some z, QP; is not
a tangent line to Kj, then there exists at least one plane containing QP,

and two points (other than P;) of Ks; in which case, Kg 4+ Q is not a (£ + 1)3-
arc. Hence QP; is a tangent line to Kg.
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THEOREM 2.2. A ks—arc K3 has at most g + 3 points.

Proof:  Each of the ¢ 4 1 planes containing a chord of K3 contains at
most one further point of K.

Project a /As-arc K3 from a point P of itself onto a plane = (not
through P) and consider the (£— 1),—arc K, so obtained. Suppose that K
has a tangent line /7 at P, and let / intersect = in O. K, is incomplete since O
can be added to it so as to form a &y-arc C of m. At O, C has exactly
¢ — /% + 2 tangents in 7. If #is a tangent to C at O, then the plane /-# has
only the point P in common with Kj. Therefore the ¢ — % -+ 2 planes of
type /-¢ are the osculating planes of K3 at P containing the tangent line /.
Let O; be any point in = not belonging to the projection Ka. If Kp 4 O,
is a ky-arc, then O, P is a tangent line of K3 at P. Thus the number of
such points O, in 7 is equal to the number of tangent lines of Kz at P.

In particular, if Ks is complete, there are no tangent lines of K3 at P,
and it then follows by theorem 2.1 that K is complete.

Nothing so far suggests that if a 4g-arc K3 has a certain number of
tangent lines at one of its points P, then K3 needs to have the same number
(or any) tangent lines at some or all of its remaining points.

THEOREM 2.3. If g is even and if k> q— Vg + 2 (with the only excep-
tion g = 2,k =23), then

(1) at every point of a ky-arc K3 of S, there pass the same number n
of tangent lines, where

n=g—*~k+3

(2) at every point of Ks there pass the same number m of osculating
Planes, where

m:(g——k—i—@n——(j) ifn >1
or. m=(@q—k+2)n ifn < 1.

Proof:  Project Ks from any point P of itself onto some plane m not
through P.  Under the condition %2>g¢—yg + 2, every (£— 1),-arc is
incomplete and can be uniquely completed to an oval (see Theorem 1.3).
This holds for any point P of Ks taken as vertex of projection. Thus, at each
point of Ks there pass

9+2—GFk—1)=9g—%+3
tangent lines. :

As was noted earlier, there are ¢ — £ 4 2 osculating planes contain-
ing each tangent line of a As3—arc K3. Also, every pair of tangent lines of Ks
at one of its points P forms an osculating plane. Hence the number » of
osculating planes is

mz(g——é—l—2)7z—-<f) ifn>2
or m=(q—k+2)n ifre < 1.
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COROLLARY 2.1. A(g + 3)3—arc possesses no tangent line; a (g + 2)s—arc
possesses no osculating planes but has exactly one tangent line at each of its
points; a (g + 1)g—arc has exactly two tangent lines at eack of its points, and
the plane containing the pair of tangent lines at each of its points is the osculat-
ing plane there.

THEOREM 2.4. A (¢ + 3)3—arc Ks kas no bisecant planes.

Proof: About any chord of a (¢ 4 3)s—arc K3 there pass exactly ¢ + 1
planes: these planes are necessarily trisecant planes of Ks.

THEOREM 2.5. Grven a (¢ + 3)3—arc K3 of S;,,, 9> 2, there exist points
not belonging to any chord of Ks.

Proof: The number N of points not belonging to any chord of a (g + 3)s—
arc is

N=93+q2+9+1—(g+3

.2
=@+1D@g—0@g—2)
Thus N is positive if ¢ > 2.

)X(q—- 1)—(¢+ 3)

§ 3. CUBALS AND THE PROBLEM I, ,.

LEMMA 3.1. If g is even, a (g + 2)3—arc (if it exists) is incomplete and
can be uniquely completed to a (g + 3)z—arc.

. Proof: Single out any point of a (¢ + 2)s—arc K3 and call it P. Call
the remaining points of Ks,P,G=1,2,---,¢ 4 1), and denote by Kj
the (¢ + 1)s—arc formed by the points P;. Now Ks has exactly one tangent
line at each of its points (see corollary 2.1): denote by /,/; respectively the
tangent lines of K3 at P, P,. By theorem 2.1 the line PP; is a tangent line
at P, to K;. Thus the osculating plane of Kj at P, is the plane determined
by PP, and /;. But the osculating plane of Kg at P; is also the plane
determined by the lines PP; and / (since this plane contains the tangent
line PP, of K3 and contains no further point of K3). Therefore / intersects /Z;.

In other words, any two tangent lines of a (g + 2)s—arc intersect in a
point. Thus the tangent lines of a (g + 2)s—arc are either coplanar or they
are concurrent in a point Q, say. The first possibility is contradictory to the
definition of tangent lines. By theorem 2.1, Q is the unique point which
can be added to Kj to form a (g + 3)s—arc.

THEOREM 3.1. If q is even, g == 2, there do not exist (¢ + 3)s—arcs.
Proof: Let K be a (£; 3)-arc @ of an S;,. Let

s = the number of trisecants of K.
#n; = the number of trisecants of K through a point P; of K.

(2) A (£; 3)-arc K is a set of £ coplanar points, no four of which are collinear, but K
contains at least one set of three collinear points; a trisecant of K is a line which has three
points in common with K [8].
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As proved in [8]
£
(3'1) Zl n; =13$

Suppose there exists a (7 + 3)g-arc Kz. Let A;(¢=0,1,2, --,¢9 + 2)
be the points of K3. Two cases are to be considered.

Case 1: g = 2%, Project K3 from any point O of Ag A; (distinct from A,
and A;) onto some plane 7 not through O. Let O AgA; and OA; (¢ =12,3, -,
“*, ¢ + 2) intersect  in the points Py and P, respectively. In =, the points
P,¢=1,2,-+,9+2) form a (g + 2;3)-arc. Since each of the ¢ + 1
planes containing the line OA¢ A; passes through one point of Ks, it follows
(in the above notation) that 7; = o. Consider the planes containing a line OA,.
Since none of these planes are bisecant of Ks (theorem 2.4), it follows that
the points of Kj distinct from Ao, A; and A; divide themselves into g/2 pairs,
each pair of points being coplanar with A; and O.
Hence, for all 7, we have 7, = ¢g/2. Applying equation (3.1), we have:

3s=o0+(g+1(L).

Hence ¢ + 1 =0 (mod. 3). But 22% 4 1 is not divisible by 2 4+ 1.
Therefore if ¢ = 22, there do not exist (¢ + 3)s-arcs.

Case 2: g = 2?#+1, j4=0. Choose a point V not lying on any chord
of K3 (by Theorem 2.5, if g <=2, there exists such a point). Project K
from V onto some planer = not through V. Let P, be the projection of
A;G=o0,1,---,¢+4+ 2). Since K3 has no bisecant planes, it follows that
the (¢ + 3 ; 3)—arc just obtained is such that 7, = —;— (g + 2). Again, applying
equation (3.1), we have:

3s=@+3) X (g+2)

Hence , 7>+ 59+ 6 = o (mod 6)
ie. g + 5‘ = 0 (mod 3)
ie. g — 1 = 0 (mod 3)

But 22%#+! ~—1 is not divisible by 2 + 1. Therefore if ¢ = 224+1 there do
not exist (g + 3)s-arcs.
The proof is now complete.

Any set of five points, no four of which are coplanar, can be transformed
by a unique homography to the five points (1,0,0,0),(0, 1,0, 0),
(0,0,1,0),(0,0,0,1) and (1,1,1, 1). Therefore if ¢ =2, a cubal
is a (g + 3)s-arc, and any two cubals are projectively equivalent.
THEOREM 3.2. If g==2, a cubal is a (g + 1)g-arc.

Proof: ~This follows from lemma 3.1 and theorem 3.1.

2. — RENDICONTI 1969, Vol. XLVI, fasc. 1.
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THEOREM 3.3. If g is even, g == 2, the 2 (¢ + 1) tangent lines of a cubal
are the 2 (q + 1) generators of a hyperbolic quadric.

Proof: Let Ay, Ay, -, Aypr be the points of a cubal K3 of Sz, , g even,
¢ ==2. Let/;,m, be the two tangent lines of K3 at the point A, G =1,2,---
<++;¢ + 1). Consider the planes containing the chord A;A;, for some 7, .
Of these, g — 1 are trisecant planes and the remaining two are bisecant
planes. The two bisecant planes can be identified either as (A; A))-»; and
(A;A)L; or as (A;A;)-m; and (A;A))-/;. Hence, one tangent line at A;
intersects one tangent line at A;, and the second tangent line at A, intersects
the second tangent line at A; (by definition, the osculating plane at A,
does not pass through A;, and therefore a tangent line at A, does not
intersect both tangent lines at A)).

By renaming the tangent lines if necessary, let the tangent lines of Kj
which intersect /; , my be m;, [; respectively (j=12,3,---,¢+1). We now
show that the ¢ 4+ 1 lines m,;(/ =1,2,---,9 + 1) are skew to each other.
For suppose #; and mz; intersect, j==/4==1. Two possibilities may occur:
either /4, , m;,m; are coplanar or they are concurrent in a point Q distinct
from Aj (since both =z, , m, intersect /;). The first possibility contradicts the
definition of a tangent line. So, suppose that 4 ,m;, and m, are concurrent
in a point Q. Consider any point A; of K3, (/==1,7,4). Again since no
three tangent lines of K3 are coplanar, and since s, intersects 4 it follows
that #; intersects #e; or m, if and only if »; passes through Q. If #; does
not intersect #z; , m, then /; does. In that case /; passes through Q. This is
impossible since /;, #; do not both intersect /4. Thus the assumption that
h,m;,my are concurrent in a point Q leads to the conclusion that all the
tangent lines m;(/ =1 ,¢ =2 ,---,¢ 4 1) pass through Q. By theorem 2.1,
K3 + Q is a (g 4 2)3—arc. ‘This is impossible: by theorem 3.1 and lemma 3.1,
there do not exist (g + 2)s-arcs.

It follows that each member of the set of tangent lines /; meets every
member of the set of tangent lines #,;, and that no two members of the same
set intersect. Consider any three members of the set /;:/4,7%,7 say. The
(unique) hyperbolic quadric Q3 containing the lines 4,/ ,/ contains the
whole set of tangent lines 7, (since the points #;-/; belong to Qg WJ=1,2,3),
and therefore contains all the tangent lines /;.

THEOREM 3.4. FEwvery cubal K3 of S;,,9 = 4 or 8, is a twisted cubic.

Proof: Any set of five points of S; 4, no four of which are coplanar, can
be transformed by a unique homography into (1,0,0,0), (0,0,0, 1),
(1,1,1,1), (1,0, 1)and (1, w2, 1), where ® is a generator of GF (4).
Thus every cubal of S;, is projectively equivalent to the twisted cubic
(03,02,60,1). ' _

Suppose next that ¢ = 8. Let Py, -, Py be the nine points of a cubal K3
of S3,5. Denote by Q, the hyperbolic quadric whose generators are the tangent
lines of K3 (theorem 3.3). Project from P, onto some plane 7 not through P;.
Denote the projection of P; by P;(¢=2,3,--+,¢ -+ 1). Let g7,g, be the
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two generators of Q2 through Py; let g1, gp intersect 7 in Aj, As respectively.
Thus A1, Az, P;, P;,---, Py form a 1o5-arc of n. By theorem 1.1, this
oval is made up of 9 points of a conic C and of the nucleus N of C. Denote
by Py (C) the quadric cone projecting C from P;. If neither Aj nor As coincides
with the nucleus N of C, then P, (C) and Qs intersect in gy, g5 and residually
in a conic; this is impossible since the points of Kg are not coplanar. So,
suppose without loss of generality that A, is the nucleus of C. Hence P; (C)
and Qe intersect in g; and residually in a cubic curve C3 containing Ks.
Since K3 has more than five points, C3 is neither a triad of lines nor a
conic plus a line, and therefore C3 is a twisted cubic. The theorem now
follows since a twisted cubic in Sgg has exactly 9 points (i.e. as many
points as Ks).

THEOREM 3.5. Denoting by | k| the maximum value for which there exist
k—arcs in S, ,,q9 =2",q>r + 1,r> 4 then

(1) || =g+ 1 if r=4
(2) || <g+7r—3 if >4

Proof: Consider a Ay-arc Ky of Sy,,9 = 2%,¢9 > 8. Project K, from
an arbitrarily chosen point P of K4 onto some S;, not through P. The
projection is a (£— I)g—arc of the S;,, and by theorem 3.2, we have
2] <g+ 2

Suppose there exists a (¢ 4 2),—arc K4 of S;,,¢ = 24,4 > 8. Let the
points. of K4 be O1,0z, Py, P2, -, P,. Project successively K4 from O
and Oz onto some Sz, not through O; or Oz. The projections are cubals
K G=r1, 2) of the S;,, and by theorem 3.3 the tangent lines of the
cubal K§ are the generators of a hyperbolic quadric which we denote by
Q;. Denote by O, (Q,) the quadric of the ambient S, having O, as vertex
and Q; as base ( =1, 2). Let O10; intersect the S3, in the point O, and
let O, P, intersect the Sz, in PG =1,2, -, g). If follows that for all
7,0,PP PP are collinear; denote the line joining them by /;. Lastly,
denote the two tangent lines of K§ at the point O by / and ». Now the ¢
planes formed by / and the lines /; are bisecant planes not only of K§’ but
also of K®. Thus 7 is a tangent line of K§ at O. Similarly » is a tangent
line of K§ at O. Thus the quadrics O1(Q1) and O2(Qs) intersect in the plane
formed by / and O; Os and in the plane formed by z and O; Og; therefore
they intersect residually in an algebraic variety V3 of order two and dimension
two. This residual intersection V3 is thus properly contained in a three-
dimensional linear space; but V3 also contains at least g points of K4 (namely
Py, Pz, -, P). This is a contradiction: by definition, not more than four
points of K4 can be contained in a three-dimensional linear space. Hence
there do not exist (g + 2)sarcs in Sy,,. Now the quartic curve (64, 63, 62,0, 1)
has exactly ¢ + 1 points. Therefore

[l =g+ 1 if r=4.

2*
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Lastly, consider a fk—arc K, of an S,,,¢g=2%,g>r+ 1, r > 4.
Choose arbitrarily » — 4 points of K, and project K, from the S, j,, spanned
by these points onto some Sy, skew to the S, ;,. The projection is a
(#—7 + 4)4—arc, which has at most ¢ + 1 points. Hence

|| <g+r—3 « if >4
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