ATTI ACCADEMIA NAZIONALE DEI LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Elio Cannillo, Giuseppe Rossi, Luciano Ungaretti

The crystal structure of macdonaldite

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **45** (1968), n.5, p. 399–414. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1968_8_45_5_399_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1968.

Mineralogia. — *The crystal structure of macdonaldite* ^(*). Nota di Elio Cannillo, Giuseppe Rossi e Luciano Ungaretti, presentata ^(**) dal Socio G. Carobbi.

RIASSUNTO. — La macdonaldite è un silicato la cui formula chimica, tratta dalla letteratura, è: BaCa₄Si₁₅O₃₅ II H₂O; quattro di queste unità stechiometriche sono contenute nella cella elementare. Il gruppo spaziale è Cmcm; le costanti reticolari, rideterminate per il presente lavoro, sono le seguenti: a = 14,081, b = 13,109, $c = 23,560 \pm 0,001$ Å.

La struttura è stata determinata attraverso l'esame della sintesi di Patterson tridimensionale e di successive sintesi di Fourier tridimensionali. Il raffinamento è stato eseguito col metodo dei minimi quadrati. Il fattore di discordanza finale per i riflessi osservati è 0.083. I poliedri di coordinazione del calcio sono ottaedri formati da atomi di ossigeno e da molecole d'acqua; questi ottaedri, mettendo in comune uno spigolo, formano catene parallele ad *a*. Tali catene sono collegate fra loro attraverso legami idrogeno e formano strati paralleli a (001). Tra due strati ottaedrici è posto un doppio strato tetraedrico costituito da anelli di quattro e otto tetraedri SiO₄. Gli strati tetraedrici sono del tipo apophyllite «idealizzato». L'impalcatura tetraedrica è attraversata da un doppio sistema di canali: uno parallelo a *b* con diametro utile di 2,1 Å, l'altro parallelo ad *a* con diametro utile di circa 3,4 Å. All'interno dei canali si trovano gli atomi di bario coordinati da sei ossigeni dei tetraedri e da quattro molecole d'acqua. Sono pure presenti nei canali molecole d'acqua non legate ai cationi.

Viene discussa l'analogia strutturale della macdonaldite e con le zeoliti fibrose e con i minerali rhodesite e delhayelite.

La formula chimica è modificata, sulla base dell'analisi strutturale, nel modo seguente: BaCa₄H₂Si₁₆O₃₈ (8 + x) H₂O dove x è uguale a 2,4 per il cristallo usato nella presente ricerca.

INTRODUCTION.

Macdolnaldite is one of the seven barium minerals recently found in Eastern Fresno County, California, and described by Alfors *et al.* [1]. The following data are quoted from the Authors cited above:

lattice parameters	$a=$ 14.06 \pm 0.01 Å
	$b = 13.08 \pm 0.01 \text{ Å}$
	$c = 23.52 \pm 0.02 \text{ Å}$
space group	Cmcm
cell content	4 [BaCa4Si15O35 · 1 1 H2O]

The mineral occurs in crystals elongated following [100].

These cleavages are present: $\{001\}$ perfect, $\{010\}$ good, $\{100\}$ poor or a fracture.

In respect to the paper of Alfors *et al.* [1], who choose the axes setting corresponding to the convention used in Crystal Data, the reference axes have been interchanged in order to obtain an orientation consistent with the standard setting of the International Tables of X-rays Crystallography.

(*) This work was performed in the Sezione di Pavia del Centro Nazionale di Cristallografia del C.N.R., Istituto di Mineralogia dell'Università, Via Bassi 4, 27100 Pavia.

(**) Nella seduta del 19 novembre 1968.

29. -- RENDICONTI 1908, Vol. XLV, face. 5.

EXPERIMENTAL.

The sample used for the crystal structure analysis was a prismatic fragment elongated following a. The side dimensions of the rectangular section of the sample were: 0.0200 cm (side parallel to b), 0.0096 cm (side parallel to c).

The lattice parameters were re-determinated and the values obtained are:

 $a = 14.081 \pm 0.001 \text{ Å}$ $b = 13.109 \pm 0.001 \text{ Å}$ $c = 23.560 \pm 0.001 \text{ Å}.$

Integrated equi-inclination Weissenberg photographs of the *hkl* reflexions (h from 0 to 10) were taken with nickel filtered CuK α radiation, using the multiple film technique. A total of 1948 reflexions, out of the 2626 present in the CuK α limiting sphere (about 75%) were inspected; 1428 of them were measured photometrically, 520 were too faint to be suitably measured or did not give any blackening on the films.

The intensities were corrected for the Lorentz-polarization and absorption factors and for the incipient but incomplete $\alpha_1 - \alpha_2$ spot doubling. The absorption factors were obtained through an exact integration over the whole diffracting volume – considered as continuous – of the crystal; the formulas given by Cannillo and Mazzi [2] were used. The linear absorption coefficient is $\mu = 161.8 \text{ cm}^{-1}$ and the transmission factor ranges from 1 to 4 on a relative scale.

The correction for the $\alpha_1 - \alpha_2$ splitting effect was applied taking into account the integration technique which complicates the splitting effect for its diagonal direction with respect to the sides of the film.

CRYSTAL STRUCTURE ANALYSIS.

A first inspection of the Weissenberg pictures permitted to observe that the average intensity of the reflexions with h = 2 n + 1 was noticeably lower than that of the reflexions with h = 2 n. Furthermore, among the reflexions of the latter set, those with h = 4 n have the strongest intensities. The pseudo-symmetry inferred from these observations was taken into account in the course of the structure analysis.

From a three-dimensional Patterson synthesis it was possible to locate all the atoms of Ba, Ca and Si. A three-dimensional Fourier synthesis, computed giving to the Fo's the phases of the heavy atoms contributions, permitted to find the positions of the remaining atoms.

The structural model obtained in this way is self consistent only with the assumption that there are 16 Si atoms for each Ba atom in the chemical formula and no alternative structure is possible with the number of Si and O atoms of the chemical formula given by Alfors *et al*. The chemical formula will be fully discussed later.

The arrangement of the atoms in the crystal structure of macdonaldite gives a full account of the intensity differences in the sets of reflexions mentioned above. All the atoms but barium are arranged in such a way that the glide plane at x = 1/4 in the Cmcm space group becomes a mirror plane. Thus the contributions of these atoms to the structure factors of the reflexions with h = 2n + 1 are near to zero. The strong average intensity of the reflexions with h = 4n is explained by the fact that many atoms are crowded on planes at x = 0, x = 1/4, x = 1/2 etc.

The discrepancy factor at this stage was 0.28 for all the observed reflexions.

REFINEMENT.

Five cycles of least-squares calculation carried out on the observed reflexions, using the ORFLS program by Busing, Martin and Levy, with isotropic temperature factors for all the atoms, lowered the R factor to 0.11.

At this stage it was observed that two oxygen atoms, O(11) and O(17), considered as water molecules, had temperature factors exceedingly high. This fact, together with the difficulties encountered in their location, suggested the following procedure. The multipliers of all the oxygen atoms were allowed to vary in the course of a cycle of the least-squares refinement. The result was a strong diminution of the multipliers of O(11) and O(17) while the remaining oxygens showed only slight variations in both directions. Thus some doubt on the presence of those atoms arose.

In order to solve the question a structure factors calculation, without O(11) and O(17) was carried out and the relative Fo Fourier synthesis was examined. This one appeared very disturbed by series termination effects and gave no conclusive information. In order to eliminate such perturbations a further Fourier synthesis was computed using $Fo \exp B \frac{\sin^2 \vartheta}{\lambda^2}$ as coefficient (B = 3.0) instead of Fo's. Most of the disturbances disappeared while the maxima corresponding to O(11) and O(17) remained and their heights were those expected on the basis of the multipliers obtained from the least-squares refinement. An usual ΔF synthesis confirmed these observations. All these data were interpreted in terms of an incomplete occupation of the positions the two water molecules involved.

In the difference synthesis there was also a sure evidence that Ba and Ca had anisotropic thermal factors. The three successive least-squares cycles were computed varying the multipliers of O(11) and O(17) and using anisotropic temperature factors for Ba and Ca atoms. It has not been thought worth-while to extend the anisotropic treatment to all the atoms because of the uncertainity on the number of water molecules and because the scale factor was not unique.

TABLE I.

Final atomic parameters and their standard deviations (in parentheses).

The letter w labels those oxygen atoms which are considered as belonging to water molecules. The asterisk (*) is used to distinguish the equivalent isotropic temperature factors, after Hamilton [18], of those atoms which were treated anisotropically in the refinement.

Atoms	x a	у/b	z/c	В
Ba	О	0.2054(1)	0.2500	0.70*(4)
Ca(I)	Ο	0.2522(3)		0.55*(8)
Ca(2)	0.2500	0.2500	о	0.40*(8)
Si(I)	0.1098(3)	0.1473(2)	0.1153(1)	0.17 (4)
Si(2)	0.3895(3)	0.1406(2)	0.1170(1)	0.24 (4)
Si(3)	0.2524(3)	0.2695(2)	0.1835(1)	0.08 (4)
Si(4)	0.2522(3)	0.4642(2)	0.1025(1)	0.10 (4)
O(1)	0.1212(6)	0.2073(6)	0.0582(3)	1.14 (12)
O(2)	0.1542(6)	0.2098(6)	0.1701(3)	I.28 (12)
O(3)	0.2536(7)	0.4234(5)	0.0386(3)	I.I2 (I2)
O(4)	0.1568(8)	0.0352(6)	0.1149(3)	1.76 (15)
O(5)	0.2571(7)	0.3699(5)	0.1476(3)	I.2I (I2)
O(6)	0.3751(6)	0.1998(6)	0.0599(3)	I.17 (12)
O(7)	o.3464(8)	0.0251(7)	0.1159(4)	2.37 (17)
O(8)	0 3419(6)	0.1974(6)	0.1714(3)	I.20 (I2)
O(9)w	О	0.4217(15)	0.0404(8)	5.36 (43)
O(10) <i>w</i>	Ο	0.3830(15)	0.1825(8)	5.52 (45)
O(11) ^w	0.5000	0.3823(23)	0.1682(12)	4.63 (98)
O(12)w	0.5000	0.4188(17)	0.0407(9)	6.43 (51)
O(13)w	0.1051(12)	0.0227(10)	0.2500	2.74 (24)
O(14)	0	0.1319(7)	0.1348(4)	0.64 (16)
O(15)	0.2491(9)	0.3002(8)	0.2500	I.22 (17)
O(16)	0.5000	0.1239(8)	0.1339(4)	1.07 (18)
O(17)w	0.3574(26)	0.0112(26)	0.2500	6.30 (1.21)

The final R factor is 0.083 for the observed reflexions and 0.116 for all the reflexions.

The anomalous dispersion correction for barium was carried out with the method proposed by Patterson [3]; $\Delta f'$ and $\Delta f''$ are given by Cromer [4].

The secondary extinction effect appeared to be nearly negligible and no correction was applied.

TABLE II.

Analysis of the anisotropic thermal parameters.

(Root mean square thermal vibration along the ellipsoid axes (Å), magnitudes of the principal axes (Å²) and angles (°) between the crystallographic axes and the principal axes of the vibration ellipsoid).

Атом	r.m.s.	В	α	β	Υ
				-	1
Ba	0.00	0.72	0	00	00
	0.12	1.15	90	0	90
	0.05	0.22	90	90	0
Ca(I)	0.06	0.30	00	118	28
	0.12	1.16	90	28	62
	0.05	0.21	0	90	90
a(2)	0.05	0.23	TT	00	70
	0.11	0.07	03	16	74
	0.01	0.01	100	106	10
					- ,

Final atomic coordinates and thermal parameters with their standard deviations are given in Table I. The analysis of the anisotropic thermal parameters of Ba, Ca(I) and Ca(2) is reported in Table II; of course their significance is lessened by the fact that not all the atoms were treated anisotropically and that the structure factors were scaled level by level. In Table III the final observed and calculated structure factors are compared.

DISCUSSION.

The interatomic distances and bond angles are presented in Table IV as well as their standard deviations.

Calcium. Both calcium atoms in the asymmetric unit have a six-fold coordination. Ca(1) is linked to four oxygens belonging to the Si-tetrahedra and to two water molecules. Ca(2) which lies on an inversion center, is surrounded by six oxygens of the Si-tetrahedra. The coordination polyhedra of both Ca atoms could be considered as squares bipyramids rather than octahedra because there are four oxygens forming a square around Ca at distances ranging from 2.29 to 2.35 Å, and two oxygens, at opposite sides of the square, with longer Ca—O distances (from 2.42 to 2.45 Å).

TABLE III.

Structure factors of macdonaldite.

Reflexions marked with an asterisk were unobservably weak; in this case Fo derives from $0.5\,I_{min}$.

k 1 10Fo 10Fc k 1 10Fo 10Fc	k 1 10Fo 10Fc	k 1 10Fo 10Fc	k 1 10Fo	10Fc k 1 10F	o 10Fc	k 1 10Fo	10Fc	k 1 10Fe	10Fc	k 1 10Fo	10Fc	k 1	10Fe	10Fc
0 k 1 10 1* 373 -287	3 29 358 327 5 0 2052 2064	15 5* 240 -320	8 16 951	-874 3 19 99	5 -943 1	13 14 350	494	8 9 1904	1719	3 19 1197	-1236	15 6	608	-650
0 4 3267 - 3602 10 3 960 - 839	5 1 612 -582	15 7* 335 369	8 18 1087 8 19 887	911 3 21 67	6 •645 1 1 878 1	13 16 498	-519	8 11 2801	2302	3 21 729	731	,	- 304	69
0 8 5589 5989 10 5 1435 -1201 0 10* 566 3 10 6 1457 -1501	5 3 485 355	15 9 437 -491 15 10 643 -710	8 20 727	-705 3 23 88	9 -912	13 18* 152	-5	8 13 1532	1257	3 23 892	-913	• •		1 120
0 12 1768 1457 10 7 1758 1649 0 14 5634 -6101 10 8 3344 -3317	5 5 427 -363 5 6 1630 -1765	15 11* 275 309 15 12 732 885	8 22* 316 8 23 745	104 3 25 40	3 452 1	15 1* 269	-180	8 15 1950	-1494	3 25 478	481	0 6	589	338
0 16 5978 6500 10 9 2738 -2608 0 18 3373 3470 10 10 4784 -5178	5 7* 285 306 5 8 1546 1651	15 13* 214 -456 15 14 374 -206	8 24 302	123 3 27 88	2 -893	15 3* 263	362	8 17 1073	-750	3 27 895	-976	0 10	3112	-3051
0 20 2423 2299 10 11* 623 -292 0 22 1186 -1120 10 12 1872 1796	5 9* 321 -385 5 10 1451 -1480	2 k 1	8 26* 194	95 3 29 36 1609 5 0 188	0 493	15 5* 255	-404	8 19* 393	28	5 1* 229	-2	0 14	844	737
0 24 1603 1411 10 13 1313 1290 0 26* 429 819 10 14* 644 -412	5 11 719 750 5 12 1186 1191	0 4 3279 3334	10 1 2203	-2298 5 1* 17	0 274	15 7 646	521	8 21 2595	2645	5 3* 246	110	0 18	1173	-1203
0 28 3275 3589 10 15 1237 1045 2 0 4392 -5882 10 16* 599 -610	5 13* 403 -113 5 14 1804 -1652	0 6 2267 -2145 0 8 2505 2582	10 3* 383	-288 5 3 55	3 425 1	15 9 613	-548	8 23 1974	-2103	5 5+ 269	183	0 22	977	-1123
2 1 2988 -3444 10 17* 552 -227 2 3 2174 -2393 10 18 2787 -2864	5 15 644 499 5 16 1464 1481	0 10 2917 -3068 0 12* 245 -74	10 5 1029 10 6 1187	969 5 5 59	1 -522	15 11* 136 15 12 489	75	8 25 387	-418	5 7* 293	379	0 26	1985	-2048
2 5 1863 1685 10 19* 483 -587 2 6 4129 -4709 10 20* 453 87	5 17* 401 -84 5 18 1251 -1268	0 14 1346 1277 0 16 1278 1900	10 7 599	620 5 7 52 619 5 8 130	3 494 3 1314			10 1 2438	2278	5 9* 327 5 10 1102	-91	2 0	867	-632
2 7 5051 5399 10 21* 406 -227 2 8 1786 1331 10 22 879 -802	5 19* 388 255 5 20 1028 1024	0 18 1583 -1623 0 20* 371 81	10 9* 430	323 5 9* 24	4 -39	4 k 1			1332	5 11* 365	214	2 2	720	668
2 9 1537 -1381 10 23 2320 2516 2 10 1234 1045 10 24 478 407	5 21* 368 5 5 22 1172 -1185	0 22 1938 -2027 0 24 2410 2653	10 11* 443	-44 5 11* 27	2 168	0 4 5728	6440	10 5 2116	-1900	5 13* 405	-120	2 4	1485	-1389
2 11 1171 -1074 12 0 2628 -2917 2 12 5290 -5204 12 1* 583 -205	5 23 542 530 5 24 1004 1063	0 26 842 -961 0 28 668 -647	10 13 1344	-1082 5 13* 30 -1286 5 14 151	6 -144 4 -1321	0 8 2386	1880	10 7 788	-590	5 15* 399	126	2 6	1603	1641
2 13 854 773 12 2 2205 2268 2 14 1225 -1177 12 3 1910 1945	5 25* 292 -225 5 26 835 -936	2 0 1391 -1264 2 1 2454 -3178	10 15 1103 10 16 696	991 5 15* 30 542 5 16 142	9 240 2 1307	0 12 4636	4801 98	10 9 1983	-1621	5 17* 378	301	2 8	1181	-1156
2 15 3619 3601 12 4 2442 2430 2 16 5277 -5450 12 5 915 -785	5 27* 239 268 5 28 615 820	2 2 1015 -1215 2 3 713 -751	10 17 713 10 18 891	-670 5 17* 29 -816 5 18 142	6 67 6 -1363	0 16 858	356 -3742	10 11 1518	1323	5 19* 355 5 20 1032	249	2 10	1751	1547
2 17 1333 -1240 12 6 2420 2634 2 18 941 -684 12 7 2950 -3093	7 0 1466 -1497 7 1 736 -785	2 4 440 515 2 5* 200 118	10 19 659 10 20 1409	635 5 19 62 1500 5 20 101	8 533 7 1016	0 20 3960 0 22 3375	4433 3851	10 13 1700 10 14 2898	1280	5 21* 337 5 22 810	-197	2 12 2 13	2416 1286	-2286
2 19 3179 -3171 12 8* 602 -543 2 20* 529 -675 12 9* 602 671	7 2 1312 1425 7 3* 290 387	2 6 3765 4575 2 7 2688 2915	10 21* 279 10 22* 246	-312 5 21* 26 -204 5 22 103	6 -55 8 -998	O 24 639 O 26 1Q66	411	10 15 1708 10 16 792	-1442 612	5 23 476 5 24 667	434 699	2 14 2 15	1078	965 -111
2 21 1339 -1327 12 10 1484 1716 2 22 1006 -1015 12 11 1989 2094	7 4 1052 -1135 7 5 477 -541	2 8 3868 -4183 2 9 2831 -2690	10 23 1161 - 12 0* 413	-1307 5 23* 24 -50 5 24 84	4 269 4 891	0 28 3142 2 0 1957	.3671	10 17* 380 10 18 1541	-477 -1468	5 25* 256 5 26 951	255 -1050	2 16 2 17	1490 867	1457 -592
2 23 2497 2673 12 12* 589 -102 2 24 2002 -2006 12 13* 596 -614	7 6 1184 1309 7 7 1120 1155	2 10* 346 96 2 11* 344 249	12 1 1087 12 2 944	998 5 25* 21 898 5 26 104	1 166 7 -1050	2 1 3923 2 2 2825	4796 3031	10 19 1407 10 20 986	1220 -1059	5 27* 194 7 0 1152	282 -1119	2 18 2 19	* 440 1955	423 1993
2 25 657 -478 12 14 2533 2449 2 26* 412 101 12 16* 464 -188	7 8 1037 -1065 7 9 1069 -1101	2 12 448 248 2 13* 349 -255	12 3* 418 12 4 1694 -	152 5 27 37 -1800 5 28 78	0 345 3 926	2 3 4242 2 4 4223	5496 -5152	10 21 808 10 22 3004	583 -3289	7 1* 285 7 2 1395	-186 1477	2 20 2 21	1865 390	-1992
2 27 639 -722 12 17 1364 -1223 2 28 1471 -1633 12 18 625 575 2 26 642 781 12 18 625 575	7 10 1312 1271 7 11* 396 88	2 14 1253 1155 2 15 1048 887	12 5 1058 - 12 6* 423	-1208 7 0 72 205 7 1 52	9 -687 9 -607	2 5 1125 2 6 1681	-1188 -1813	10 23 1165 12 0* 430	1099 353	7 3* 295 7 4 1274	406 -1414	2 22 2 23	1320 762	1195 -676
4 0 3237 3158 12 20* 317 -434	7 12 1019 -968 7 13 649 -615	2 16 820 723 2 17 1049 -914	12 7 1597 12 8* 432	1531 7 2 134 -446 7 3 43	9 1435 1 443	2 7 774	644 -4912	12 1 1586 12 2 2559	-1526 2621	7 5 539 7 6 1375	-555 1496	2 24 2 25	1028 1034	-1009 -906
4 2 287 329 14 1 1206 1270 4 3 3391 3391 14 2 1251 1470	7 15 716 530	2 19 1605 1554	12 10 1622	-5/4 / 4 136 1615 7 5 57	0 -1508 4 -561	2 9* 347 2 10 1611	-67 -1249	12 3* 423 12 4 1117	-466 1020	7 7* 343 7 8 1009	-72 -1067	2 26 2 27	1715 1624	2017 1756
4 5 039 5733 14 3* 566 -420 4 5 2760 2750 14 4* 561 -1025	7 17 644 -601	2 20 2174 -2313 2 21 1009 -862 2 23 1957 2105	12 12* 420	-243 7 7* 25	7 1454	2 11 2831 2 12 3971	-3876	12 5 1249 12 6 1296	1104 2420	7 9 577 7 10 981	-533 930	2 28 4 C	618 568	-716 530
4 6* 358 394 14 5* 557 374 4 7 1378 614 14 6 965 -1011	7 19* 392 202	2 23* 347 100	12 14* 396	106 7 9 80	1 -551	2 13* 367	-434	12 8 1204	-1175	7 11 739	-1205	4 1	1849	1899 240
4 8* 412 -275 14 7 1459 1320 4 9 1349 1314 14 8* 532 4	7 21 707 -691	2 25* 321 -52	12 16 1531 -	-1559 7 11 84	2 815	2 16 4152	-4435	12 10 1163	1078	7 14 1710	-253	4 4	738	-693
4 10 2577 2296 14 9* 524 -332 4 11 1286 -1174 14 10 2174 -2204	7 23 532 480	2 27 943 941 2 28 640 -670	12 18 1252	1383 7 13 63	3 -624	2 18 2117	1849 1	2 12* 422	-1466	7 16 967	-929	4 6	1150	-1079
4 12 5834 5469 14 11* 503 -758 4 13 1486 1214 14 12 1838 -1591	7 25* 258 -429 7 26 934 896	2 29 970 -1008 4 0 3518 -3875	12 20* 324 14 0 1402	123 7 15* 34	D 123	2 20 1623	-1334 1	2 14 1825	1696	7 18 1020	1027	4 8	2550	2637
4 14* 565 -493 14 13* 432 774 4 15 2749 -2455 14 14 1529 -1752	7 27* 188 -11 9 0* 338 385	4 1 2192 2174 4 2 418 294	14 1* 389 14 2* 389	50 7 17 69	2 -467	2 22 1216	-1100 1	2 16 978	1019	7 20 871	-955	4 11	3919	-3994
4 16 2570 2331 14 15 1304 -1355 4 17 1955 -1410 14 16 1012 1086	9 1 839 846 9 2 814 -838	4 3 2452 -2787 4 4 2646 3040	14 3* 385 14 4 739	-173 7 19* 29 -665 7 20 97	2 177	2 25 1791 - 2 26 822	-1893 1	2 18 2155	2347	7 22 1063	1063	4 12	1969	1745
4 18* 552 648 16 0 888 -752 4 19* 548 -4 16 1 2406 -2871	9 3 842 -871 9 4 1119 1119	4 5 1439 1482 4 6 1035 -1134	14 5 788 14 6 1545 -	756 7 21 51	3 -443 9 1018	2 27 1056 2 28 1882 -	1171 1	4 0 2226 4 1 1405	-2493	7 24 583	-637	4 15	940	-824
4 20 2741 2629 16 2* 432 818 4 21 1961 1883 16 3 740 -794	9 5 908 901 9 6 590 -574	4 7 1281 -1217 4 8 974 887	14 7 1775 - 14 8 1622	1841 7 23* 22 1573 7 24 53	5 97 6 -617	2 29 830 4 0 2525	959 1 2653 1	4 2 1795 4 3* 392	-1950	9 0 815 9 1 989	786 1068	4 17	2431 862	2489
4 22 2147 2196 16 4 1534 1706 4 23 1225 -1218 16 5 516 533	9 7 949 -942 9 8* 394 -13	4 9 1977 1883 4 10 2790 -2837	14 9 1818 14 10 788	1760 7 25 73 728 7 26 73	4 -764 D 862	4 1* 284 4 2 1508	-13 1 1249 1	4 4 1773 4 5* 385	1786	9 2 775. 9 3 1020	-844	4 19	961 • 427	-995
4 24 457 204 16 6 1609 1736 4 25 952 901 16 7 1236 1230	9 9 1045 10RR 9 10 1199 -1239	4 11 1770 -1723 4 12 934 772	14 11 941 14 12 434	-777 7 27* 11 326 9. 0 66	6 374 8 574	4 3 882 4 4 1773	-805 1 1460 1	4 6* 379 4 7* 371	-252 -254	9 4* 356 9 5 1207	207 1264	4 21 4 22	405 2443	-247
4 27 1230 1332 4 27 1230 1332	9 13 920 964	4 14 2134 1917	14 14 1102 -	-373 9 1 91 1162 9 2 59	7 1039 9 -592	4 5 2261 4 6* 275	2430 1	4 8 1553 4 9* 364	-1600 174	9 6 692 9 7 981	-673 -1004	4 23 4 24	763 1567	-667 1608
4 29* 270 256 6 0 554 - 363 1 2 772 - 688	9 15 807 -699 9 16 440 309	4 16 1276 -1037	16 0 840	846 9 4* 26	5 -1037 3 410	4 7 2964 - 4 8 3405	2913 1 3396 1	4 10 2876 4 11 792	-2976 508	9 8 889 9 9 957	847 922	425 426	1681 746	1778 925
6 1 1959 -1505 1 3 1648 2113 6 2 2834 -2741 1 4 775 802	9 17 1041 933	4 18 1151 -1121	16 2* 297	151 9 6 125	0 -1272	4 9 2102	2202 1 5323 1	4 12* 312 4 13 1078	281 1059	9 10* 405 9 11 1051	-454 -1022	427 60	976 · 516	-1036 442
6 3 2500 2515 1 5 1717 -1914 6 4 4354 -4869 1 6 957 -910	9 19 563 -579	4 20 1030 1049	16 4 865	-938 9 8 125	0 1233	4 11 818	1704 1	4 14* 265 6 0 683	752	9 12* 419 9 13 1246	422 1227	6 1 6 2	4200 730	-4633 -625
6 5 2166 -2210 1 7 1942 1920 6 6 4291 -4411 1 8 948 860	9 21 799 792 9 22 427 -380	4 22 1290 -1282	16 6* 270	-163 9 10* 31	2 -422	4 14 2375 .	-1877 1	6 2 832	923	9 15 724	-640	64	633 824	-214
6 7 2168 -2180 1 9 1429 -1455 6 8 2290 2093 1 10 815 -799	9 23 619 -669 9 24* 392 457	4 24 1228 1205 4 25 874 805	3 k 1	9 12* 32	7 196	4 16 3399	3207 1	.6 4* 279	421	9 17 958	836	6 6	1242	1220
6 9 1683 -1489 1 11 1587 1627 6 10 984 -965 1 12 729 737 1	9 25 767 A89 L O* 392 -342	4 26* 278 -200 4 27* 252 -231	1 1 1543 -	2179 9 14 104	5 -874	4 18 2496	2258	5 k 1		9 19 859	-822	68	1553	-1522
6 11 5490 5544 1 13 1342 -1457 1 6 12 2206 -2105 1 14 557 -549 1	L 1 799 -895 L 2* 393 184	4 28 302 -389 4 29 1142 1466	1 3 1616	2011 9 16 65 539 9 17 82	5 525	4 20 1275 4 21 1085	1147	$1 1 1174 \\ 1 2* 133$	-1404	9 21 1109	1196	6 10	473 768	-201
6 13* 594 -193 1 15 1667 1782 1 6 14 2148 -1898 1 16* 351 208 1	L 3 1402 1539 L 4* 401 99	6 0 715 840 6 1 1974 -1961	1 5 1479 -	1640 9 18 60 -550 9 19 58	L -498	4 22* 368 4 23 882	-7 -680	1 3 1674	1937	9 23* 222 1 0* 378	-390	6 12	* 512 4173	547
6 15* 630 -295 1 17 920 -1036 1 6 16* 611 -456 1 18* 361 -337 1	5 1290 -1437 6* 410 74	6 2 660 -539 6 3 2239 2283	1 7 1500 1 8 544	1548 9 20* 24 554 9 21 99	8 509 978	4 24 876 4 25 668	764 713	1 5 1469 1 6* 272	-1635 1	1 1 1034 1 2 378	-1071 346	6 14	* 550 4195	-445
6 17 1358 -1060 1 19 1449 1516 1 6 18* 582 407 1 20 705 611 1 6 10 10*	7* 418 630 8* 420 275	6 4 507 346 6 5 2967 - 3287	1 9 1239 - 1 10 736	1337 9 22 93 -687 9 23 52	-905 -620	4 26 1972 4 27 1266 -	1963 1352	1 7 1908 1 8 530	1831 1	L1 3* 382 L1 4* 385	666 511	6 16 6 17	* 501 * 479	502 220
6 20 1054 -1083 1 22 432 -492 1 6 21 121 122 432 -492 1	9 913 -1009 10* 427 318	6 6 804 731 6 7 1254 1379	1 11 1656 1 12 515	1691 9 24 37 509 11 0 59	L 419 3 595	4 28 1683 6 0 5333 -	1984 6173	1 9 1334 1 10 441	-1313 : -363 :	L1 5 774 L1 6* 388	-857	6 18 6 19	868 636	-779 -467
6 22 3473 3584 1 24* 331 247 11 6 23 1174 1227 1 24* 331 247 11	11 1272 1321 12* 432 -167	6 8 726 -732 6 9 1122 834	1 13 1157 - 1 14* 253	1216 11 1 117 -216 11 2* 29	-1185 3 44	6 1 1192 6 2 2458 -	989 2415	1 11 1479 1 12* 324	1454 79	L1 7 1089 L1 8* 395	1154 -323	6 20 6 21	* 424	-329 -1486
6 24 698 -559 1 26* 297 -346 1 6 25 2281 -2099 1 27 1107 1223	14* 436 182	6 11 947 839	1 15 1555	1618 11 3 76 432 11 4* 29	2 822 9 -122	6 3 2417 6 4 921	2492 -760	1 13 982 1 14* 330	-1019	11 9 860 11 10* 395	-899 16	6 22 6 23	1199 1084	1256 1063
6 26 R43 -607 1 28 416 422 1 6 27 109 1035 1 29 677 460 1	16* 388 68	6 12* 405 -132 6 13 3798 -3672	1 17 1352 -	-314 11 5 90 -314 11 6* 30	3 -968 5 284	6 5* 312 6 6 2167 -	97 -2244	1 15 1347 1 16* 341	1362 : 117 :	L1 11* 409 L1 12* 405	343 180	624 625	* 315 415	-70 -221
6 28 1059 -1207 3 0 1311 -1225 11 8 0 2143 1965 3 1 1209 1260 1	17 1111 -1127	6 15 2699 2431	1 19 1361	1454 11 7 113	-282	6 7 2537 6 8 1596 -	2484	1 17 1252 1 18* 347	-1343	11 13 1113 11 14* 386	-1019 288	626 80	* 228 1685	-150 -1776
R 1 144R -90R 3 2 1220 1165 11 R 2 980 1024 3 3 857 -906 11	20* 268 -62	6 17 828 -659	1 22* 261	-336 11 10* 31	131	6 10 2285	2154	1 19 1224	207	11 15 1101 11 16* 320	-113	8 1 8 2	1697 1438	1887 1478
8 3 1592 -1401 3 4 939 -964 11 8 4 1889 -1739 3 5 858 913 1	22* 215 77	6 19 1976 1830	1 24 484	444 11 12* 33	320	6 12* 428	135	1 21 685	-262	1 17 812	-845	83	2322 * 427	-2400 90
8 5 2003 2047 3 6 1352 1293 13 8 6 3209 3354 3 7 1278 -1254 13	1 696 767	6 21 1540 -1432	1 26* 216	-373 11 14* 31	7 -148	6 14 1381	897	1 23 1259	261	11 19* 249 11 20* 224	355	85	* 440 * 454	436 -419
8 7* 519 284 3 8 1380 1407 13 8 8 2932 3029 3 9 1350 1248 1	3 739 -751	6 23* 329 -277 6 24* 303 21	1 28* 183	111 11 16* 27	3 48 0 040	6 16 3127	-2882	1 26* 256	-213	13 0* 369 13 1 1034	-816	8 7	* 484	-140
8 9* 561 -472 3 10 1226 1200 13 8 10 3587 3505 3 11 1349 -1294 13	5 771 845 6* 412 362	6 25 574 -526 6 26 577 500	3 0 1343 -	1389 11 18 52 1003 11 19 41	2 - 747 2 454 2 514	6 18 2469 - 6 19 532	-2265	3 0 1378	-1375	13 3* 366	-608	8 10	876 * 514	250
8 11 3681 -3737 3 12 1000 -908 13 8 12* 617 -403 3 13 746 640 13	7* 409 -389 8* 406 -499	6 27 1571 1909 8 0* 318 12	3 2 1343 3 3 1207 -	1283 11 20* 19 1283 11 21 92	39	6 20* 382 6 21 1110	23	3 2 1616	1631	13 5* 371	590	8 12	1078	-1079
8 13 1118 987 3 14 1164 1046 13 8 14 2214 1927 3 15 1070 -1046 13	9 720 712 10* 394 400	8 1 1050 899 8 2 1129 1112	3 4 1283 - 3 5 1126	1276 11 22* 14 1167 13 0 63	51	6 22 1139 6 23 3169	-884	3 4 1388	-1492	13 7 1059	-1109	8 14	1452	1260
8 15 2480 2001 3 16 754 -690 13 8 16 2169 1855 3 17 523 547 13	11 941 -880 12 631 -624	8 3 2630 -2659 8 4 1337 -1194	3 6 1330 3 7 1558 -	1363 13 1 73 1617 13 2* 29	2 771	6 24 1142 - 6 25* 270	1083	3 6 1293	1316	13 9 1000	1004	8 16	1445	-1287
8 17 824 -665 3 18 893 802 13 8 18 1681 1477 3 19 863 -830 13	13 872 794 14* 335 133	8 5 1323 1376 8 6* 357 64	3 8 1075 - 3 9 .961	1094 13 3 72 971 13 4* 30	-738	6 26 2204 - 6 27 1232	2408	3 8 1384	-1420	13 11* 347	-323	8 18	* 443	-105
8 19 2081 -2122 3 20 1020 -975 13 8 20* 519 -346 3 21 611 595 13	15* 311 -449 16* 278 -256	8 7 765 874 8 8* 546 245	3 10 1386 3 11 1288 -	1375 13 5 75 1152 13 6* 30	768	8 0 1465 8 1 1704	1409	3 10 1784	1786	13 13 860	797	8 20	* 386	34
8 21 1770 1647 3 22 914 915 13 8 22 1483 1486 3 23 1042 -1047 13	17 544 692 18 471 541	8 9 970 830 8 10 725 613	3 12 1286 - 3 13 912	1202 13 7 81 838 13 8* 28	-945	8 2 1651 8 3 1761	1464 1409	3 12 1270	-1201	13 15 862	-863	8 22	702	684 -1366
8 23 992 959 3 24 640 -647 15 8 24* 370 116 3 25 680 646 15	0* 354 311 1 591 -718	8 11 1716 -1506 8 12 1305 -1195	3 14 1100 3 15 1169 -	1073 13 9 938 1050 13 10 50	985 391	8 4 544 8 5 586	475	3 14 798 3 15 731	738	15 1* 314 15 2 548	-157	8 24	* 246 2982	-344
8 25 1569 1777 3 26 661 684 15 8 26 2327 2744 3 27 714 -729 15	2* 351 -580 3* 351 109	8 13 770 558 8 14* 466 213	3 16 1055 3 17 806	-994 13 11 51 766 13 12 65	-496	8 6 4166 8 7 5793 -	4514	3 16 1106 3 17 601	-1096	15 3 546	574	10 1	2070	-2250
10 0 2005 -1884 3 28 731 -778 15	4 882 1043	R 15 1838 -1568	3 18 1015	926 13 13 71	631	8 8 1836	1750	3 18 1359	1237	15 5* 302	-283	10 3	* 471	-439

TABLE III (continued).

k 1 10Fo	10Fc	k 1 10Fo	10Fc	k 1 10F	10Fc	k 1 10Fe	10Fc	k 1 10Fo	107c)	1 10Fo	10Fc	k 1 10Fo	lore	k i 1070	107c	k 1 10Fo	10Fc	k 1 1	0Fo 10Fc
10 4 R36	-867	1 15 1392	1428	7 1* 3R	-234	13 2* 440	324	4 11* 468	81 10	5 1024	-1155	1 21 926	-992	7 13 731	-625	0 10 2006	-1849	6 11 1	796 1604
10 5 1033	1192	1 16* 440	268	7 2 131	3 1408	13 3* 436	-618	4 12 4203	8939 10	6 1824	-2001	1 22 403	-290	7 14 1186	1045	0 12 1053	-1018	6 12	744 -643
10 6* 490	-586	1 17 955	-973	7 3* 40	241	13 4* 434	-03/	4 13* 4//	12 10	8 1737	-1826	1 24+ 292	89	7 16 1028	-1043	0 16 1905	2104	6 14 1	264 -1215
10 8 1025	1124	1 19 1351	1420	7 5* 42	-506	13 6* 424	304	4 15 2059	-1918 10	9 1790	-1954	1 25 648	-754	7 17 678	-617	0 18 754	- 740	6 15	721 741
10 9* 509	489	1 20* 417	191	7 6 119	7 1195	13 7* 440	-529	4 16 1827	1804 10	0 10 3592	-3889	1 26 313	-372	7 18 945	947	0 20* 310	-2605	6 16 1	.339 .1306
10 10* 512	-134	1 21 809	- 345	7 8 122	-1288	13 9 832	860	4 18* 404	331 10	12* 449	582	3 1 1051	988	7 20 509	-543	0 24 1840	2200	6 18*	326 147
10 12 904	912	1 23 959	991	7 9* 49	-626	13 10* 417	211	4 19* 384	-477 10	13 1289	1237	3 2 973	940	7 21* 259	-362	2 0 1454	-1370	6 19 2	624 2608
10 13 1244	-1184	1 24* 348	348	7 10 129	3 1190	13 11 711	-741	4 20 2349	2340 10) 14* 421	-329	3 3 399	-299	7 22 533	608	2 1 2360	-2648	6 20	661 -602 002 -1008
10 15 1022	-2410	1 26+ 298	-274	7 12 111	2 -1049	13 13 640	728	4 22 1898	1996 10	16* 360	-294	3 5 684	733	9 C* 373	324	2 3 1368	-1462	6 22*	215 -2
10 16 1131	1036	1 27 876	1092	7 13* 55	-505	13 14* 291	356	4 23 904	-960 10	17* 334	-316	3 6 652	561	9 1 992	1092	2 4 780	742	8 0	861 731
10 17 547	-432	3 0 1156	-1076	7 14 124	1088 191	13 15 494	-551	4 24* 295	390 10) 18 2308	-2503	3 7 1205	-1221	9 2 698	-568	2 5* 293	3588	8 1*	372 1 832 911
10 19 607	495	3 2 1140	1196	7 16 97	-897			4 26 584	-659 10	20* 211	134	3 9 1085	1071	9 4 799	857	2 7 2895	2905	8 3 2	329 -2555
10 20 548	574	3 3 1143	-1289	7 17* 46	-355	8 k 1		6 0 1177	-1203 12	0 1487	-1569	3 10 1091	948	9 5* 389	421	2 8 3673	-3555	8 4 1	675 -1675
10 21 243	-210	3 4 1028	-1186	7 19* 40	5 274	0 2 1024	992	6 2 1348	-1557 12	2 1600	1680	3 12 -897	-798	9 7 688	-690	2 10* 403	-213	8 6*	398 -43
12 0 484	-790	3 6 1287	1443	7 20 79	8 -859	0 4 582	147	6 3 2413	2463 12	3 1428	1569	3 13* 389	391	9 8* 400	147	2 11 1591	~1213	8 7 1	371 1487
12 1* 484	-373	3 7 882	-919	7 21 65	-623	0 6 651	-376	6 4 2769	-2935 12	4 1389	1522	3 14 897	845	9 9 829	773	2 12 905	836	8 8	769 786
12 3 1298	-1326	3 9 704	746	7 23* 31	260	0 10 813	519	6 6 3020	-3209 12	6 2410	2644	3 16 635	-644	9 11 509	-551	2 14 1054	1049	8 10	769 739
12 4 1031	-1212	3 10 1061	1032	7 24 69	-835	0 12 1548	1302	6 7 1352	-1080 12	7 2210	-2448	3 17* 348	317	9 12 643	607	2 15 1955	2012	8 11 1	823 -1812
12 5* 492	-31	3 11 1274	-1193	9 0* 44	9 437	0 14 2761	-2976	6 8 1156	985 12	2 8* 426	-455	3 18 679	-766	9 13 946	914	2 16* 350 2 17 642	-524	8 12 1	449 -1306
12 7 2468	2654	3 13 877	826	9 2* 45	5 -600	0 18 1532	1436	6 10 1275	-1062 12	10 1509	1506	3 20 750	-718	9 15 730	-713	2 18* 340	-277	8 14*	390 -282
12 8# 490	-217	3 14 1206	1137	9 3 94	5 -1011	0 20 2624	2719	6 11 3973	3993 12	2 11 1406	1508	3 21 671	645	9 16 529	474	2 19* 334	243	8 15	528 -482
12 10 1487	1505	3 15 1039	-1054	9 4* 46	7 1135	0 22* 351	-84	6 12 2182	-1/04 1/	2 12* 38/ 2 13* 354	-351	3 22 8/6	-934	9 17 741	-820	2 20 1806	-1883	8 10*	334 -450
12 11 1025	-987	3 17 655	726	9 6* 48	-625	0 26* 101	492	6 14 1482	-1119 13	14 1787	1795	3 24 466	-454	9 19 348	-343	2 22 1933	2069	8 18 1	175 1286
12 12* 462	-631	3 18 874	864	9 7 85	2 -882	2 0 3977	-4165	6 15 780	-780 12	2 15* 283	-211	3 25 343	419	9 20 555	540	2 23 845	840	8 19 1	324 -1347
12 14* 397	559	3 20 859	-890	9 9 98	7 1059	2 2 286	303	6 17 1289	-1293 14	0 662	639	5 1* 279	23	11 1 667	-702	4 0 3509	-3808	10 0*	380 85
12 15 599	540	3 21* 395	420	9 10 93	-855	2. 3 1001	- 708	6 18* 392	-121 14	1 1009	1184	5 2 1400	-1507	11 2* 373	101	4 1 1632	1541	10 1 1	648 -1957
12 16 1414	-1372	3 22 809	830	9 11* 52	5 -610	2 4 3036	-3324	6 19 1474	1322 14	2 1268	-1278	5 3 492	505	11 3 1219	1331	4 2* 281	-2	10 2	606 -654
12 18 689	861	3 24 713	-795	9 13 82	3 874	2 6 1671	-1678	6 21 1132	-1063 14	4 674	731	5 5* 324	-407	11 5 1203	-1293	4 4 3198	3655	10 4 1	481 1555
14 0* 433	134	3 25 600	612	9 14* 52	5 -623	2 7 2818	3054	6 22 2588	-2720 14	5 607	468	5 6 1377	-1431	11 6* 389	187	4 5 748	738	10 5*	403 716
14 2* 431	-554	3 27 577	-724	9 15* 48	235	2 9 1632	-1180	6 24 683	-959 14	7 740	-10//	5 8 1275	1283	11 /* 386	300	4 6* 340	-470	10 6	917 -872 769 748
14 3* 427	- 306	5 0 1318	1246	9 17 80	7 854	2 10* 435	228	8 0 2007	1860 .14	8* 323	-17	5 9 569	-511	11 9 864	-863	4 8 677	-584	10 8*	406 -234
14 4 809	746	5 1 540	-444	9 18* 38	9 -415	2 11 679	-439	8 1* 401	-305 14	9* 278	-150	5 10 957	-968	11 10* 373	220	4 9 1589	1453	10 9*	400 285
14 6 853	-775	5 3* 339	10	9 20* 33	9 469	2 13 1115	971	8 3* 412	-238	10 1418	-1934	5 12 912	961	11 12* 353	-111	4 10 2954	-2822	10 10*	398 - 320
14 7 1374	-1379	5 4 1283	1266	9 21 67	B 747	2 14 668	-669	8 4 1268	-1157			5 13* 433	358	11 13 928	-925	4 12 1670	1468	10 12 1	574 1466
14 9 1609	1558	5 5* 367	-205	9 22 50	5 -562	2 15 2052	1969	8 5 1801	1805	9 k 1		5 14 1650	-1565	11 14* 295	-87	4 13* 411	2271	10 13	774 -926
14 10* 389	-149	5 7* 405	127	11 1 86	3 -879	2 17 1217	-1248	8 7 1337	-1490	L O 778	924	5 16 1419	1424	11 16* 234	148	4 15 2189	-2104	10 15 1	104 1153
14 11 1080	-1007	5 8 1258	1223	11 2* 48	1 84	2 18* 398	-245	8 8 1600	1601	L 1 928	-1184	5 17* 348	-330	11 17 876	-1063	4 16 1374	-1344	10 16*	256 -7
14 11 1412	1010	5 10 1450	-1410	11 4* 48	4 58	2 19 1460	-1570	8 9* 4/4	217	L 2 531	-568	5 18 856	-872	13 0* 353 13 1* 353	-44	4 17 2277	2256	10 17	611 -584
		5 11* 493	199	11 5 99	5 -921	2 21 1019	-978	8 11 1931	-1804	4 423	466	5 21* 282	15	13 2* 351	399	4 19* 324	-56	12 1 1	448- 1541
7 K I		5 12 1179	- 361	11 6* 48	7 109	2 22 662	-604	8 12* 498	202	1 5 1509	-1567	5 22 946	-997	13 3 759	-758	4 20 1258	1303	12 2	579 6.9
1 1 1582	-1900	5 14 1318	-1108	11 8* 48	7 96	2 24 1627	-1594	8 14 1688	1454	1 7 1547	1479	5 23 444	446	13 4 /55	1011	4 21 838	-129	12 3 1	259 1011
1 2 527	-327	5 15 719	667	11 9 88	7 -852	2 25 460	-437	8 15 1093	932	1 8 550	520	7 0 825	-856	13 6* 334	89	4 23 1158	-1312	12 5 1	509 -1549
1 4 607	474	5 17* 468	181	11 10* 48	1 324 9 856	2 26 292	-475	8 16 1505	1408	1 9 1094	-1049	7 1 987	949	13 7* 330	-336	4 24 687	782	12 6*	364 362
1 5 1145	-1075	5 18 1208	-1197	11 12* 46	8 10	4 1 2170	2094	8 18 1661	1486	1 11 1280	1304	7 3* 345	482	13 9 495	498	6 1 555	-517	12 /*	601 -507
1 6* 380	-343	5 20 957	94	11 13 109	2 -1050	4 2 718	600	8 19 1536	-1614	1 12 706	626	7 4 1123	-1185	13 10 489	469	6 2* 334	-350	12 9*	350 242
1 8* 415	303	5 21* 380	1009	11 15 61	1 610	4 4 3722	4216	8 20 655	-428 1850	1 13 1024 1 14 597	-1068	7 6 1017	-152			6 3 2234	2301	12 10 1	380 1364
1 9 1288	-1265	5 22 903	-972	11 16* 35	7 -35	4 5 2092	2361	8 22, 1361	1590	1 15 1276	1357	7 7* 393	325	10 k 1		6 5 2714	-3003	12 12*	235 -5
1 11 1407	1401	5 24 919	342	11 17 79	8 -813	4 6 812	-1029	10 0 1612	-1835	1 16* 351	89	7 8 602	-521	0 24 57	205	6 6* 388	284		
1 12* 427	406	5 25* 298	-6	11 19 62	6 721	4 8 738	-438	10 2 1830	-1891	1 18* 334	-363	7 10 1049	- /96	0 4 1396	1276	6 8* 408	305		
1 13 1224	-1266	5 26 644	-826	13 0* 44	2 -274	4 9 1491	1395	10 3* 442	-92	1 19 1013	1130	7 11* 431	368	0 6 2452	-2466	6 9 736	678		
450			-1304	-) - /6	o 9/1	• 10 1988	1202	10 4 1896	1982	1 20 631	637	/ 12 815	- 720	0 8 3180	3377	6 10* 430	431		

Barium. Barium lies on a *mm* equipoint and so its coordination polyhedron is rather regular. This cation is surrounded by six oxygens lying at the corners of a slightly folded hexagon and by four water molecules. Two out of them are located above the hexagon, on a mirror plane, and two below, on another mirror plane normal to the former. The barium-oxygen system has a compact structure that is comparable with a close packed arrangement of spheres.

The Ba—O distances range from 2.82 to 2.87 Å; these values are very near to the sum of the ionic radii of the involved atoms (2.86 Å).

Silicon. Four silicon atoms occur in the asymmetric unit of macdonaldite. One silicon shares all the oxygens with other tetrahedra; the remaining three have one oxygen unshared. The bridging Si—O bonds of the latter three silicon atoms are appreciably different from the non-bridging bonds. The mean lengths of the bridging bonds are: Si(1)—O 1.629 Å, Si(2)—O 1.626 Å, Si(4)—O 1.625 Å; the lengths of the non-bridging bonds are: Si(1)—O(1) 1.567 Å, Si(2)—O(6) 1.567 Å, Si(4)—O(3) 1.597 Å. Such differences are consistent with the d-p π -bonding hypothesis suggested by Cruickshank [5].

TABLE IV.

Interatomic distances (Å) and angles (°) and their standard deviations (in parentheses).

An asterisk is used to distinguish equivalent atoms. The distances preceded by the sign ' occur twice; those preceded by " occur four times.

Атомѕ	Bond lengths	Atoms	Bond angles
Si(1)—O(1)	1.567 (7)	$O(\mathbf{I})$ —Si(\mathbf{I})—O(2)	$112^{\circ}33'$ (28')
—O(2)	1.651 (7)	O(I)— $Si(I)$ — $O(4)$	$114^{\circ} 15' (28')$
—O(4)	1.610 (8)	O(I)— $Si(I)$ — $O(I4)$	$113^{\circ}43'$ (28')
—O(14)	1.625 (8)	O(2)— $Si(I)$ — $O(4)$	$107^{\circ} 34' (28')$
Si(2)O(6)	1.567 (7)	O(2) - Si(1) - O(14)	$101^{\circ} 33' (28')$
—O(7)	1.631 (9)	O(4) - Si(1) - O(14)	$106^{\circ} 13' (28')$
O(8)	I.625 (7)	O(6) - Si(2) - O(7)	$113^{\circ}25'$ (28')
—O(16)	I.620 (8)	O(6)—Si(2)—O(8)	$113^{\circ}22'$ (28')
Si(3)O(2)	I.620 (9)	O(6)— $Si(2)$ — $O(16)$	$113^{\circ}42'$ (28')
—O(5)	1.565 (7)	O(7)—Si(2)—O(8)	106° 32′ (28′)
—O(8)	1.601 (9)	O(7)—Si(2)—O(16)	103° 37′ (28′)
—O(15)	I.617 (6)	O(8)—Si(2)—O(16)	105° 21′ (28′)
Si(4) O (3)	I.597 (6)	O(2)-Si(3)-O(8)	$110^{\circ} 33' (28')$
—O(4)*	I.62I (9)	O(2) - Si(3) - O(5)	$109^{\circ} 41' (28')$
—O(5)	I.633 (7)	O(2)—Si(3)—O(15)	106° 37′ (28′)
—O(7)*	I.622 (II)	O(8)—Si(3)—O(5)	1110 26' (28')
Ca(I) - O(I)	' 2.299 (8)	O(8)—Si(3)—O(15)	110° 3′ (28′)
O(6)*	' 2.308 (8)	O(5)—Si(3)—O(15)	1080 22' (28')
O(9)w	2.437 (20)	O(5)—Si(4)—O(7)*	106° 45′ (28′)
O(12)w	2.417 (22)	O(5)Si(4)O(4)*	106° 4′ (28′)
Ca(2)—O(1)	['] 2.340 (7)	O(5)—Si(4)—O(3)	III ⁰ 4' (28')
O(3)	2 .447 (6)	O(7)*	1110 2' (28')
—O(6)	′ 2.350 (7)	O(7)*O(3)	1110 29' (28')
BaO(2)	2.874 (7)	O(4)*O(3)	110° 15′ (28′)
O(14)	′ 2.880 (9)	Si(1)-O(14)-Si(1)*	144° 4′ (56′)
O(10)w	' 2.820 (20)	Si(1)—O(2)—Si(3)	135° 41′ (36′)
O(13)w	' 2.814 (14)	Si(3)—O(15)—Si(3)*	1510 (56')
O(3)O(3)*	2.71 (2)	Si(3)-O(5)-Si(4)	170° 24′ (36′)
$O(9)w - O(9)w^*$	2.80 (6)	Si(3)-O(8)-Si(2)	137° 24′ (36′)
O(12)w—O(12)w*	2.87 (6)	Si(2)-O(16)-Si(2)*	147° 27′ (56′)
O(11)w—O(13)w	3.05 (3)	Si(4)-O(7)*-Si(2)*	140° 53′ (36′)
O(17)w—O(10)w*	3.06 (3)	Si(4)—O(4)*—Si(1)*	148° 28′ (36′)
O(8)—O(17)w	3.07 (3)		
O(2)—O(10)w	3.16 (2)		
O(2)—O(13)w	3.17 (1)		

The tetrahedron around Si(3) needs a more detailed discussion. Si(3) shares all its oxygens with other tetrahedra and the average Si(3)—O distances is 1.601 Å. It must be pointed out that the Si(3)—O(5) distance is the shortest of all the Si—O distances of macdonaldite. Pant and Cruickshank [6] suggest that large Si—O—Si angles " cause the bridging bonds to gain strength at the expense of peripheral bonds ". Actually the Si(4)—O(5)—Si(3) angle is 170° and this fact could explain the short Si(3)—O(5) distance. On the other hand the second bond distance, Si(4)—O(5), involved in the cited angle, is 1.633 Å. One could expect, on the basis of the cited large angle, a shorter length for the Si(4)—O(5) bridging bond, but one must take into account the different π -orders existing in the Si(4)–tetrahedron. However the average of the two Si—O(5) distance is 1.60 Å that is a value which could be expected for a Si—O—Si angle of 170°. Fig. 1 shows a plot of the Si—O—Si angles of some recently studied silicates versus the average of the two Si—O

Fig. 1. – Plot of the average of the two Si—O distances involved in one Si—O—Si angle versus the Si—O—Si angle for some recently studied silicates.

bridging bonds lengths involved. One can observe a rather regular shortening of the $\overline{\text{Si}-O}$ distances (from a value of about 1.63 Å) with the increasing of the angles (from a value of about 137°).

The O—Si—O angles range from 101° to 114°. By plotting the mean lengths of any pair of bonds forming an angle at Si, against the O···O distances, the results of this work fit the corresponding curve given by McDonald and Cruickshank [7].

Balance of electrostatic valences. The balance of electrostatic valences computed in the usual way, assigning a bond strength of 1.00 to tetrahedral Si—O bonds, 1/3 to Ca—O bonds and 1/5 to Ba—O links, give some unacceptable results: O(2) and O(14) are "overbonded" (2.20) while O(1), O(6) and O(3) are "underbonded" (1.66, 1.66 and 1.33 respectively). The valences get balanced if one accept the suggestion of Zachariasen [9] that "the observed bond lengths uniquely determine the bond strengths". In

this way O(1) and O(6), which form with silicon non-bridging bonds of 1.57 Å, would have a bond strength greater than 1.00; O(2) and O(14) which form with silicon bridging bonds of 1.62-1.63 Å, would have a bond strength less than 1.00. As Pant [8] observes "...the two theories (d-p π -bonding theory and the method of balancing of valences) for the Si—O bonds are not exclusive. π -bonding in Si—O bonds may be part of the mechanism whereby valency balance is achieved".

Fig. 2. – Perspective view of the chains of Ca-octahedra and of a layer of tetrahedra. The rings of four and eight tetrahedra are shown; the layer is doubled by a mirror plane parallel to xy.

For the case of O(3) it is necessary to spend some more words. In fact, for this atom the valences balance is not achieved even with the application of the cited method; O(3) is linked to Si(4) with a non-bridging bond of 1.597 Å and to Ca(2); in such a way the positive charge reaching this oxygen is about 1.4 that is far from 2.0. On the other hand, if this atom is considered to be a hydroxyl group, it would be "overbonded" (1.4 + 1.0). Furthermore, the chemical formula would have an excess of positive charges. The O(3)—O(3') distance of 2.70 Å is the shortest distance between oxygens not belonging to the same coordination polyhedron and surely represents a hydrogen bond,

but it seems too long (Zachariasen [9]) for the hypothesis of a hydrogen atom occurring midway between O(3) and O(3'). Thus the possibility of a statistical distribution of one hydrogen between the two equivalent O(3) seems to be the more convenient one. This assumption permits to get balanced the valences of O(3) and the sum of positive and negative charges in the chemical formula.

Description of the structure. The crystal structure of macdonaldite is characterized by the presence of double layers of Si—tetrahedra connected by layers of Ca—octahedra ⁽¹⁾.

Fig. 3. – Perspective view of the structure following b. The ring of tetrahedra normal to b is shown. The small black circles represent water molecules occurring in the channels and those linked to barium. The number in square parentheses are the y coordinates. The chains of octahedra occur at z = 0 and 1/2.

The Ca—octahedra, sharing two opposite edges, form chains parallel to a. The chains are linked to one another with hydrogen bonds and give rise to sheets parallel to (001) and occurring at z = 0 and z = 1/2.

The tetrahedral framework is located between two of such octahedral sheets. The basic unit of the silicate framework is a ring of four tetrahedra. The rings are linked together to form a corrugated layer of tetrahedra parallel to (001) (See fig. 2). The presence of the mirror plane at z = 1/4

(1) The coordination polyhedra of calcium have been described as square bipyramids, but in the course of this description they will be designated more simply as octahedra.

makes the layer doubled. Each single layer is very similar to the "idealized" apophyllite layer which is derived from the condensation of wollastonite chains through the xonotlite ribbon. The doubling of the layers produces two sets of channels built up by eight-membered rings of tetrahedra: one set is parallel to a with a free diameter of 3.4 Å and the other is parallel to b with a free diameter of 2.1 Å (figs. 3 and 4). The barium atoms and the water molecules not linked to calcium occur in these channels.

Fig. 4. – Perspective view of the structure showing the ring of tetrahedra that forms channels parallel to a.

The fact that the thermogravimetric curve of macdonaldite resembles those of mesolite and scolecite [I] and the presence of such channels, suggested the possibility of some relationship between fibrous zeolites and macdonaldite. In effect some structural arguments give strength to this hypothesis. Fig. 5 (left) shows the structural feature characteristic of natrolite [I0] and of all the fibrous zeolites: it is a ring of four tetrahedra (two Si and two Al) with alternate vertices pointing upwards and downwards; a fifth Si-tetrahedon links the upper vertices and, repeated 6.6 Å below, the lower ones to form a sort of string parallel to c. The vertices labelled I to 4 connect together neighbouring strings thus forming a three-dimensional tetrahedral framework. The openings among neighbouring chains give place to a double system of channels (with free diameter of 2.08 and 2.6 Å) formed by eight-membered rings of tetrahedra. Fig. 5 (right) shows the four Si-tetrahedra and one of the two Ca-octahedra contained in the asymmetric unit of macdonaldite. This group could be derived from that showed in the left part of the figure by substituting in this one the tetrahedron labelled 4 with an octahedron. The figs. 3 and 4 permit to see how this structural feature of macdonaldite (four tetrahedra and one octahedron) is repeated in the structure and the role played by the octahedra of the second Ca atom.

The water molecules. Water is present in the coordination polyhedra of barium and calcium and, as "free" or zeolitic water, in the channels of the tetrahedral framework. Ca(1) is linked to two water molecules, O(9) and O(12) lying on a mirror plane. Each of these water molecules form a hydrogen bond which together with that occurring between O(3) and O(3') contributes to hold together the chains of Ca-octahedra.

Fig. 5. – Left: the structural feature characteristic of fibrous zeolites; dark tetrahedra are AlO_4 groups. Right: the structural feature of macdonaldite built up by four Si-tetrahedra and by one Ca-octahedra; the Ca atom involved is that labelled Ca(1).

The water molecules occurring in the channels and not linked to the cations are labelled O(11) and O(17). They occupy two positions, on mirror planes, related by a pseudo-mirror plane to those of O(10) and O(13). The occupancy is 64 % for O(11) and 56 % for O(17); the unit cell contains 9.6 of such water molecules. They are linked very weakly to the water molecules belonging to the coordination polyhedron of barium and to some oxygens of the Si-tetrahedra.

It must be pointed out that there is room in the channels for other atoms (cations or water) and the number of free water molecules could vary without disturbing the structure.

Chemical formula. On the basis of all the considerations made in the preceding discussions and of the fact that the number of H_2O linked to calcium and barium could not be varied without important changes in the

[144]

structure, the chemical formula of macdonaldite can be written as follows: $4 [BaCa_4H_2Si_{16}O_{38} \cdot (8 + x)H_2O]$

where x is the number of free water molecules; in the case of the present work x = 2.4.

This formula is somewhat different from that given by Alfors *et al.* [1]. However the chemical analysis calculated from it does not diverge from the experimental analyses more than that calculated from the formula published by the mentioned Authors (Table V).

Oxides in wt. $\%$	I	2	3	4	5
				· · · · ·	
SiO_2	61.1	62.1	61.00	61.00	62.23
Al_2O_3	0.06				
TiO_2	0.01	0.03			
FeO	<0.01	O. I	0.96		
MgO	<0.05	0.10			
СаО	14.8	14.95	15.3	15.19	14.53
BaO	10.2	9.0	9.3	10.38	9.93
H_2O	13.7	13.7	13.7	13.42	13.30
Total	100.0	100.0	100.3	100.00	100.00

TABLE V.

Analyses I, 2 and 3 are published by ALFORS et al. [I].

1, 2: analyses made by G. W. Putman by d-c arc emission spectrograph methods;
3: wet chemical analysis made by M. Tavela;

4: chemical analysis calculated from the chemical formula given by ALFORS *et al.* [1], 4 [BaCa₄Si₁₅O₃₅·11 H₂O];

5: chemical analysis calculated from the chemical formula given in this work, $4~[{\rm BaCa_4H_2Si_{16}O_{38}}\cdot 10.4~{\rm H_2O}].$

CONCLUSION.

The description of the crystal structure made previously in terms of double layers of tetrahedra appears to be more suitable than that emerging from the comparison with the fibrous zeolites for a convenient introduction of macdonaldite in the Zoltai classification of silicates [11]. The crystal structure of this silicate, characterized by double layers of the apophyllite type, fills a gap in the series of structure families having as common feature the wollastonite chain. Table VI shows the two series of structure families that can be derived respectively from the pyroxene chain and from the wollastonite chain: in the second series, the place corresponding to the "double sheets" subtype, the same as the hexagonal celsian family, was empty.

TAB	LE	VI.
TAD		V I .

	Pyroxene c	CHAIN	WOLLASTONITE CHAIN			
	Structure family	Repeat unit or loop of tetrahedra	Structure family	Repeat unit or loop of tetrahedra		
Single chain	Pyroxenes	2	Wollastonite	3		
Double chain	Amphiboles	6	Xonotlite	8		
Single sheet	Micas	6	Apophyllite	4-8		
Double sheet	Hexagonal celsian	46	Macdonaldite	4-8		

TABLE	VII.

MINERAL	Cell dimensions	CHEMICAL FORMULA
Macdonaldite	$a = 14.08 \ b = 13.11 \ c = 23.56 \ \text{\AA}$	4[BaCa4H2Si16O38 · 10 · 4 H2O]
Rhodesite	c = 14.10 $b = 13.08$ $a = 23.8$ Å	4[K2Na2Ca4Si16O38 · 12 H2O]
Delhayelite	$b = 7.04 \ a = 13.05 \ c = 24.65 \text{ Å}$	
		and the second

Probably macdonaldite is not the sole member of this structure family. Two minerals have crystallographic, physical and chemical properties similar to those of macdonaldite. They are rhodesite [12] and delhayelite [13] which can be compared also with fibrous zeolites. In Table VII are reported the crystallographic and chemical properties of these two silicates and of macdonaldite. The chemical formula of delhayelite is not so immediately comparable with that of macdonaldite as is that of rhodesite. The number of cations in this one is greater than that of macdonaldite, but it must be observed that the number of Ca, Si and O, the atoms which build up the foundamental part of the structure, is the same and that in the structure of macdonaldite there is room for other cations or water molecules. However only the structural analysis could confirm or discard the hypothesis.

Acknowledgements. We are much indebted to Prof. A. Pabst and Dr. J. Alfors, who made possible this investigation by kindly suggesting it and sending fine specimens.

References.

- ALFORS J. T., STINSON M. C., MATTHEWS R. A. and PABST A., Seven new barium minerals from Eastern Fresno County, California, «Am. Miner.», 50, 314 (1965).
- [2] CANNILLO E. and MAZZI F., Absorption correction for some elongated prismatic crystals, « Rend. Acc. Naz. dei Lincei, Classe Sc. Mat. Fis. Nat. », ser. VIII, 42, 888 (1967).
- [3] PATTERSON A. L., Treatment of anomalous dispersion in X-ray diffraction data, «Acta Cryst. », 16, 1255 (1963).
- [4] CROMER D. T., Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions, «Acta Cryst.», 18, 17 (1965).
- [5] CRUICKSHANK D. W. J., The role of 3d-orbitals in π-bonds between (a) silicon, phosphor, sulphur or chlorine and (b) oxygen or nitrogen, « J. Chem. Soc. », 5486–5504, London 1961.
- [6] PANT A. K. and CRUICKSHANK D. W. J., The crystal structure of α -Na₂Si₂O₅, «Acta Cryst. », *B* 24, 13 (1968).
- [7] MACDONALD W. S. and CRUICKSHANK D. W. J., A reinvestigation on the structure of Sodium Metasilicate, Na₂SiO₃, «Acta Cryst.», 22, 37 (1967).
- [8] PANT A. K., A reconsideration of the crystal structure of β-Na₂Si₂O₅, «Acta Cryst. », B 24, 1077 (1968).
- [9] ZACHARIASEN W. H., The crystal structure of monoclinic metaboric acid, «Acta Cryst.», 16, 385 (1963).
- [10] MEIER W. M., The crystal structure of natrolite, «Zeitsch. für Krist.», 113, 430 (1960).
- [11] ZOLTAI T., Classification of silicates and other minerals with tetrahedral structures, «Am. Miner.», 45, 960 (1960).
- [12] GARD J. A. and TAYLOR H. F. W., An investigation of two new minerals: rhodesite and mountainite, «Min. Mag.», 31, 611 (1957).
- [13] SAHAMA TH. G. and HYTONEN K., Delhayelite, a new silicate from Belgian Congo, «Min. Mag. », 32, 6 (1959).
- [14] CODA A., DAL NEGRO A. and ROSSI G., The crystal structure of krauskopfite, «Rend. Acc. Naz. dei Lincei, Classe Sc. Mat. Fis. Nat. », ser. VIII, 42, 859 (1967).
- [15] PEACOR D. R. and NIIZEKI N., The re-determination and refinement of the crystal structure of rhodonite, (Mn, Ca) SiO₃, «Zeitsch. für Krist.», 119, 98 (1963).
- [16] PEACOR D. R. and PREWITT C. T., Comparison of the crystal structures of bustamite and wollastonite, «Am. Miner. », 48, 588 (1963).
- [17] PREWITT C. T., Refinement of the structure of pectolite, Ca₂NaHSi₃O₉, «Zeitsch. für Krist.», 125, 298 (1967).
- [18] HAMILTON W. C., On the isotropic temperature factor equivalent to a given anisotropic temperature factor, «Acta Cryst.», 12, 609 (1959).