Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Elio Cannillo, Giuseppe Rossi, Luciano Ungaretti The crystal structure of macdonaldite

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 45 (1968), n.5, p. 399-414. Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1968_8_45_5_399_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Mineralogia. - The crystal structure of macdonaldite ${ }^{(*)}$. Nota di Elio Cannillo, Giuseppe Rossi e Luciano Ungaretti, presentata ${ }^{\text {**) }}$ dal Socio G. Carobbi.

RiASSunto. - La macdonaldite è un silicato la cui formula chimica, tratta dalla letteratura, è: $\mathrm{BaCa}_{4} \mathrm{Si}_{15} \mathrm{O}_{35}$. II $\mathrm{H}_{2} \mathrm{O}$; quattro di queste unità stechiometriche sono contenute nella cella elementare. Il gruppo spaziale è Cmcm ; le costanti reticolari, rideterminate per il presente lavoro, sono le seguenti: $a=14,08 \mathrm{I}, b=\mathrm{I} 3$, $109, c=23,560 \pm \mathrm{o}, \mathrm{oOI} \AA$.

La struttura è stata determinata attraverso l'esame della sintesi di Patterson tridimensionale e di successive sintesi di Fourier tridimensionali. Il raffinamento è stato eseguito col metodo dei minimi quadrati. Il fattore di discordanza finale per i riflessi osservati è o.083. I poliedri di coordinazione del calcio sono ottaedri formati da atomi di ossigeno e da molecole d'acqua; questi ottaedri, mettendo in comune uno spigolo, formano catene parallele ad a. Tali catene sono collegate fra loro attraverso legami idrogeno e formano strati paralleli a (OOI). Tra due strati ottaedrici è posto un doppio strato tetraedrico costituito da anelli di quattro e otto tetraedri SiO_{4}. Gli strati tetraedrici sono del tipo apophyllite «idealizzato». L'impalcatura tetraedrica è attraversata da un doppio sistema di canali: uno parallelo a b con diametro utile di $2,1 \AA$, l'altro parallelo ad a con diametro utile di circa $3,4 \AA$. All'interno dei canali si trovano gli atomi di bario coordinati da sei ossigeni dei tetraedri e da quattro molecole d'acqua. Sono pure presenti nei canali molecole d'acqua non legate ai cationi.

Viene discussa l'analogia strutturale della macdonaldite e con le zeoliti fibrose e con i minerali rhodesite e delhayelite.

La formula chimica è modificata, sulla base dell'analisi strutturale, nel modo seguente: $\mathrm{BaCa}_{4} \mathrm{H}_{2} \mathrm{Si}_{16} \mathrm{O}_{38} \cdot(8+x) \mathrm{H}_{2} \mathrm{O}$ dove x è uguale a 2,4 per il cristallo usato nella presente ricerca.

Introduction.

Macdolnaldite is one of the seven barium minerals recently found in Eastern Fresno County, California, and described by Alfors et al. [r]. The following data are quoted from the Authors cited above:

$$
\begin{array}{ll}
\text { lattice parameters } & a=14.06 \pm 0.01 \AA \\
& b=13.08 \pm 0.01 \AA \\
& c=23.52 \pm 0.02 \AA \\
\text { space group } & \mathrm{Cmcm} \\
\text { cell content } & 4\left[\mathrm{BaCa}_{4} \mathrm{Si}_{15} \mathrm{O}_{35} \cdot \text { I I } \mathrm{H}_{2} \mathrm{O}\right] .
\end{array}
$$

The mineral occurs in crystals elongated following [ioo].
These cleavages are present: $\{001\}$ perfect, $\{010\}$ good, $\{100\}$ poor or a fracture.

In respect to the paper of Alfors et al. [I], who choose the axes setting corresponding to the convention used in Crystal Data, the reference axes have been interchanged in order to obtain an orientation consistent with the standard setting of the International Tables of X-rays Crystallography.
(*) This work was performed in the Sezione di Pavia del Centro Nazionale di Cristallografia del C.N.R., Istituto di Mineralogia dell'Università, Via Bassi 4, 27100 Pavia.
(**) Nella seduta del i9 novembre 1968.

Experimental.

The sample used for the crystal structure analysis was a prismatic fragment elongated following a. The side dimensions of the rectangular section of the sample were: 0.0200 cm (side parallel to b), 0.0096 cm (side parallel to c).

The lattice parameters were re-determinated and the values obtained are:

$$
\begin{aligned}
& a=14.08 \mathrm{I} \pm 0.00 \mathrm{I} \AA \\
& b=\mathrm{I} 3.109 \pm 0.00 \mathrm{I} \AA \\
& c=23.560 \pm 0.00 \mathrm{I} \AA .
\end{aligned}
$$

Integrated equi-inclination Weissenberg photographs of the $h k l$ reflexions (h from o to io) were taken with nickel filtered $\mathrm{CuK} \alpha$ radiation, using the multiple film technique. A total of 1948 reflexions, out of the 2626 present in the $\mathrm{CuK} \alpha$ limiting sphere (about 75%) were inspected; 1428 of them were measured photometrically, 520 were too faint to be suitably measured or did not give any blackening on the films.

The intensities were corrected for the Lorentz-polarization and absorption factors and for the incipient but incomplete $\alpha_{1}-\alpha_{2}$ spot doubling. The absorption factors were obtained through an exact integration over the whole diffracting volume -- considered as continuous - of the crystal; the formulas given by Cannillo and Mazzi [2] were used. The linear absorption coefficient is $\mu=\mathrm{I} 6 \mathrm{I} .8 \mathrm{~cm}^{-1}$ and the transmission factor ranges from I to 4 on a relative scale.

The correction for the $\alpha_{1}-\alpha_{2}$ splitting effect was applied taking into account the integration technique which complicates the splitting effect for its diagonal direction with respect to the sides of the film.

Crystal structure analysis.

A first inspection of the Weissenberg pictures permitted to observe that the average intensity of the reflexions with $h=2 n+$ I was noticeably lower than that of the reflexions with $h=2 n$. Furthermore, among the reflexions of the latter set, those with $h=4 n$ have the strongest intensities. The pseudo-symmetry inferred from these observations was taken into account in the course of the structure analysis.

From a three-dimensional Patterson synthesis it was possible to locate all the atoms of Ba, Ca and Si . A three-dimensional Fourier synthesis, computed giving to the Fo's the phases of the heavy atoms contributions, permitted to find the positions of the remaining atoms.

The structural model obtained in this way is self consistent only with the assumption that there are 16 Si atoms for each Ba atom in the chemical
formula and no alternative structure is possible with the number of Si and O atoms of the chemical formula given by Alfors et al. The chemical formula will be fully discussed later.

The arrangement of the atoms in the crystal structure of macdonaldite gives a full account of the intensity differences in the sets of reflexions mentioned above. All the atoms but barium are arranged in such a way that the glide plane at $x=\mathrm{I} / 4$ in the Cmcm space group becomes a mirror plane. Thus the contributions of these atoms to the structure factors of the reflexions with $h=2 n+i$ are near to zero. The strong average intensity of the reflexions with $h=4 n$ is explained by the fact that many atoms are crowded on planes at $x=0, x=\mathrm{I} / 4, x=\mathrm{I} / 2$ etc.

The discrepancy factor at this stage was 0.28 for all the observed reflexions.

Refinement.

Five cycles of least-squares calculation carried out on the observed reflexions, using the ORFLS program by Busing, Martin and Levy, with isotropic temperature factors for all the atoms, lowered the R factor to o.II.

At this stage it was observed that two oxygen atoms, O (II) and O (i7), considered as water molecules, had temperature factors exceedingly high. This fact, together with the difficulties encountered in their location, suggested the following procedure. The multipliers of all the oxygen atoms were allowed to vary in the course of a cycle of the least-squares refinement. The result was a strong diminution of the multipliers of O (II) and O (I7) while the remaining oxygens showed only slight variations in both directions. Thus some doubt on the presence of those atoms arose.

In order to solve the question a structure factors calculation, without O (II) and O (I7) was carried out and the relative F_{0} Fourier synthesis was examined. This one appeared very disturbed by series termination effects and gave no conclusive information. In order to eliminate such perturbations a further Fourier synthesis was computed using $F O \cdot \exp B \frac{\sin ^{2} \vartheta}{\lambda^{2}}$ as coefficient ($\mathrm{B}=3.0$) instead of Fo's. Most of the disturbances disappeared while, the maxima corresponding to O (II) and $\mathrm{O}(\mathrm{I} 7)$ remained and their heights were those expected on the basis of the multipliers obtained from the least-squares refinement. An usual ΔF synthesis confirmed these observations. All these data were interpreted in terms of an incomplete occupation of the positions the two water molecules involved.

In the difference synthesis there was also a sure evidence that Ba and Ca had anisotropic thermal factors. The three successive least-squares cycles were computed varying the multipliers of O (II) and O (I 7) and using anisotropic temperature factors for Ba and Ca atoms. It has not been thought worthwhile to extend the anisotropic treatment to all the atoms because of the uncertainity on the number of water molecules and because the scale factor was not unique.

Table I.

Final atomic parameters and their standard deviations (in parentheses).
The letter w labels those oxygen atoms which are considered as belonging to water molecules. The asterisk (*) is used to distinguish the equivalent isotropic temperature factors, after Hamilton [18], of those atoms which were treated anisotropically in the refinement.

Atoms	x / a	y / b	z / c	B
Ba .	o	0.2054(I)	0.2500	0.70* ${ }^{\text {(4) }}$
$\mathrm{Ca}(\mathrm{I})$	o	$0.2522(3)$	-0.0022(I)	- $.55^{*}(8)$
$\mathrm{Ca}(2)$	0.2500	0.2500	\bigcirc	0.40* ${ }^{\text {(8) }}$
$\mathrm{Si}(\mathrm{I})$	0.1098(3)	0.1473(2)	o. 1153 (I)	0.17 (4)
Si(2)	0.3895(3)	0.1406(2)	0.1170(1)	0.24 (4)
Si(3)	0.2524(3)	$0.2695(2)$	o.1835(I)	0.08 (4)
Si(4)	0.2522(3)	$0.4642(2)$	0.1025(I)	O. 10 (4)
$\mathrm{O}(\mathrm{I})$	0.1212(6)	$0.2073(6)$	$0.0582(3)$	1.14 (12)
$\mathrm{O}(2)$	0.1542(6)	$0.2098(6)$	$0.1701(3)$	I. 28 (12)
$\mathrm{O}(3)$	$0.2536(7)$	0.4234(5)	$0.0386(3)$	1.12 (12)
$\mathrm{O}(4)$	0.1568(8)	$0.0352(6)$	0.1149(3)	1.76 (15)
$\mathrm{O}(5)$	0.257 I (7)	$0.3699(5)$	0.1476(3)	1.21 (12)
$\mathrm{O}(6)$	0.3751(6)	0.1998(6)	$0.0599(3)$	1.17 (12)
$\mathrm{O}(7)$	-. 3464 (8)	0.0251 (7)	-. 1159 (4)	2.37 (17)
$\mathrm{O}(8)$	- 3419 (6)	-.1974(6)	0.1714(3)	1. 20 (12)
$\mathrm{O}(9) w$.	o	0.4217 (15)	$0.0404(8)$	5-36 (43)
$\mathrm{O}(\mathrm{IO}) w$	o	$0.3830(15)$	0.1825(8)	5.52 (45)
$\mathrm{O}(\mathrm{I}$) $) z^{\prime}$	0. 5000	$0.3823(23)$	-.1682(12)	4.63 (98)
$\mathrm{O}(12) w$	0.5000	$0.4188(17)$	$0.0407(9)$	6.43 (51)
$\mathrm{O}(\mathrm{I} 3) w$.	o.105 I(I2)	0.0227 (10)	0.2500	2.74 (24)
$\mathrm{O}(\mathrm{I} 4)$.	\bigcirc	0.1319(7)	-.1348(4)	0.64 (16)
$\mathrm{O}(\mathrm{I} 5)$	0.2491 (9)	$0.3002(8)$	0.2500	1.22 (17)
$\mathrm{O}(16)$	0. 5000	0.1239(8)	0.1339(4)	1.07 (18)
$\mathrm{O}(17) w . .$.	-.3574(26)	0.0112(26)	0.2500	6.30 (1.2I)

The final R factor is 0.083 for the observed reflexions and o.II6 for all the reflexions.

The anomalous dispersion correction for barium was carried out with the method proposed by Patterson [3]; Δf^{\prime} and $\Delta f^{\prime \prime}$ are given by Cromer [4].

The secondary extinction effect appeared to be nearly negligible and no correction was applied.

Table II. Analysis of the anisotropic thermal parameters.
(Root mean square thermal vibration along the ellipsoid axes (\AA), magnitudes of the principal axes $\left(\AA^{2}\right)$ and angles (${ }^{\circ}$) between the crystallographic axes and the principal axes of the vibration ellipsoid).

Atom	r.m.s.	B	α	β	γ
Ba	0.09	0.72	0	90	90
	0.12	I. 15	90	-	90
	0.05	0.22	90	90	O
$\mathrm{Ca}(\mathrm{I})$.	0.06	0.30	90	I 18	28
	0.12	I. 16	90	28	62
	0.05	0.21	-	90	90
$\mathrm{Ca}(2)$.	0.05	0.23	I I	90	79
	O.II	0.97	93	I6	74
	O.OI	O.OI	100	106	19

Final atomic coordinates and thermal parameters with their standard deviations are given in Table I. The analysis of the anisotropic thermal parameters of $\mathrm{Ba}, \mathrm{Ca}(\mathrm{I})$ and $\mathrm{Ca}(2)$ is reported in Table II; of course their significance is lessened by the fact that not all the atoms were treated anisotropically and that the structure factors were scaled level by level. In Table III the final observed and calculated structure factors are compared.

Discussion.

The interatomic distances and bond angles are presented in Table IV as well as their standard deviations.

Calcium. Both calcium atoms in the asymmetric unit have a six-fold coordination. $\mathrm{Ca}(\mathrm{I})$ is linked to four oxygens belonging to the $\mathrm{Si}-$ tetrahedra and to two water molecules. $\mathrm{Ca}(2)$ which lies on an inversion center, is surrounded by six oxygens of the Si-tetrahedra. The coordination polyhedra of both Ca atoms could be considered as squares bipyramids rather than octahedra because there are four oxygens forming a square around Ca at distances ranging from 2.29 to $2.35 \AA$, and two oxygens, at opposite sides of the square, with longer $\mathrm{Ca}-\mathrm{O}$ distances (from 2.42 to $2.45 \AA$).

TAble III.
Structure factors of macdonaldite.
Reflexions marked with an asterisk were unobservably weak; in this case Fo derives from $0.5 \mathrm{I}_{\mathrm{min}}$

Table III (continued).

	1 10F0	F		1 10Fo												1 10Fo							107c		1 10Fo		$k 11070$	107e	
		-867	115	1392	1428	1*		-234	13 2*	2* 440	324		114.468		105	51024	-1135		1925	-992		731	-623	$\bigcirc 10$	- 2006	-1849	1796	1604	
10	${ }_{5} 1033$	1192	16*	5* 440	258	72	21313	1408	$13^{3} 3$	3* 436	-648		124203	c939	106	61824	-2001	122	2 Les	-290			1045	012	21053	-1018	612144	-643	
	6*490	-586	117	955	-973	3*	3* 401	241	$13{ }^{4 *}$	${ }^{4 *} 434$	-637		13*477	495	107	946	945	123	$\mathrm{ol}^{\circ} \mathrm{P}$	1102	$7: 3$	3630	553	- 14	$4{ }^{645}$	532	132639		
10	7* 497	448	1 18*	8* 436	-251	74	4 7月9	-A46	13 5*	5* 430	566		14** 40	12	108	1737	-1226	${ }_{1}{ }^{24 *}$	6* 293	89	716	61028	-1043	$\bigcirc 16$	61905	2104	141264	-1215	
10	81025	1124	119	1351	1420	5*	5* 427	-50s	13 6*	6*424	304		152059	-1918	109	1790	-1954	125	648		717	7678	617	- 18	8754	-740	15721	141	
10	9* 509	489	204	204 417	191	76	61197	1195	13 7*	7*440	- 529		161827	1804	1010	103592	-3839	126	313	-372	718	8945	947	- 20	2* 310	-2	6161339	1306	
10	10* 512	307	21	809	-799	77	7047	887	13 sm	\$* 430	-499		17760	-331	10 11*		267	3.0			719	9* 297		- 22	22347	-2605	6171004	-829	
	11* 512	-134	$122 \times$	2* 382	-345	78	81229	-1288	13	9832	860		18* 406	331	1012	12* 449	592	1	11031	988	720	- 509	-543	024	41840	2200	6 18* 326	147	
10	12904	912	123	959	91	7 9*		-626	$13{ }^{10}{ }^{\text {a }}$	417	1		19* 384	-477	10	89	123	32	973		721	1*259	-362	-	O 1454	-1370	192624	608	
	131244	-1194	$124 *$	4*348	4 A		0 1298	1190	1311	1711	-741		202349	2340	10 14*	4**21	-329	${ }^{3} 3$	3399	-299	722	233	609	1	12360	-264	620661	-602	
10	$1625 n 0$	-2416	125	612	-680	$11+$	1+ 525	-8	$13{ }^{12 *}$	2* 364	-340		212084	2020	10 15*	5* 387	236	4	4540	-553	723	3340	412	2	21002	-1036	211002	1008	
	151022	${ }^{1} 11$	26*	6* 298	-274	12	21112	-1049	1313	3640	728		221898	1996	10 16*	16* 360	-294	35	684	733	c	c* 373	324	3	31368	-1462	22* 215	2	
10	161131	1036	${ }_{1} 27$	876	1092	13*	3* 551	-505	13 14*	4* 291	336		23904	-960	10 17*	17*334	-316	36	6652	561	91	992	1092		4780	142	861	31	
	17 547	-432	0	01156	-1076	14	41243	1088	1315	5494	-551		24* 295	87	10	182308	-2503	37	71205	122	92	698	-685	5	5* 293	205	1*372		
	19** 372	439	31	1010	1019	15*	5* 525	191					$25 \quad 454$	390	10 19*	19* 269	-105	38	8 774	-707			-568	6	63313	3588	832	911	
10	10607	495	32	1140	1196	16	6971	-897					$26 \quad 584$	-659	*	11	134	39	1085	1071		799	857	7	72895	2905	32329	-2555	
				31143	-1289	17*	7* 462	-355		8 k 1			O 1177	-1203	12 o	1487	1569	310	1091	948			421	8	83673	-35s5	41675	1675	
10	21* 283	-210	34	1028	1186	18	981	817				6	907	85	12	423	13	311	1871	-720	96	611	-622	9	92019	-1814	51409	495	
	22721	-961	35	65s	764	19*	9* 405	274	02	21024	992		21348	-1557	122	21600	1680	312	-897	-798	97	688	-690	210	0* 403	-213	6* 398	-43	
12	- 434	-790	36	1287	1443	20	- 793	-859	-	4582	147	6	32413	2463	123	1428	1569	${ }^{3} 13 \pm$	3* 389	391	98	8* 400	147	211	11591	-1213	71371	487	
12	1*484	-373	37	832	19	21	1650	-623	-	6651	-376	6	42769	-2935	124	1389	1322		4897	845	99	829	773	212	2905	836	8769	786	
12	21062	1153	38	1295	-1405	22	2998	1093	0 R	\% 3661	3672	6	52565	-2740	12	777	-653	315	5968	-889	910	956	-898	213	3* 376	-224	* 416	407	
12	31298	-1326	39	704	746	230	3* 310	260	10	- 813	519	6	63020	-3209	12	2410	2644	316	635	-644	11	1599	-551	214	$1{ }^{1} 1054$	1049	10769	739	
12	${ }_{4} 1031$	-1212	310	1061	1032	24	4698	-835	012	21548	1302	6	71352	-1080	12	2210	-2448	17*	7* 348	317	912	2643	607	15	51955	2012	111823	-1812	
12	5* 492	-31	${ }^{3} 11$	127	1193	0*	0* 449	437	$\bigcirc 14$	${ }_{4} 2761$	-2976	6	1156	98	128	426	45	18	879	62	91	946	914	16	6* 350	289	12144	1306	
12	6*490	-367	12	2951	-962	1*	1* 452	648	16	63897	4490		1415	-1426	129	638	581	319	775	-766	914	14*376	-352	217	7642	-524	13* 424	220	
12	72458	2654	13	877	A26	2*	2* 456	-600	18	81532	1436	10	101275	-1062	1210	tc 1509	1506	320	750	-718	915	5730	-713	218	8*340	-277	14* 390	-282	
12	R ${ }^{4} 490$	-217	14	41206	1137	93	3946	-1011		2026	2719		113973	3993	1211	111406	1508	321	1671	645	916	6529	47	219	9* 334	243	15528	-482	
12	915	-849	15	51039	-1054	4*	465	717	22*	2* 351	-84		122182	1704	1212	12* 387	146	322	276	723	917	7741	72	220	- 1806	-1883	16* 334	-450	
12	101487	1505	16	783	-737	95	027	1135	- 24	4551	664		13929	662	1213	13* 354	-351	323	891	-934	918	8829	-820	221	11071	-1094	172105	2151	
12	111025	-987	17	7655	726	6*	484	-625		26* 101	492	614	141482	-1119	1214	141787	1795	324	4465	-454	919	9348	-343	222	21933	2069	181175	1286	
12	12** 462	-631	18	8 -874	864	97	B52	-882	20	3977	416		15780	-780	1215	15* 283	-211	325	5343	419	92	- 555	540	223	3845	840	191324	1347	
12	13* 460	-112	19	9673	695	8*	${ }^{8 *} 503$	49		1123	1002		161042	-886	1216	16* 228	18		01754	1786		0* 373	93	2218	2333	-416	20758	-860	
12	14* 397	559	20	- 859	-890	9 9	987	1059	22	286	303	17	171289	1293	140	662	639	1*	1*279		11	667	-702	0	¢ 3509	3808	10 0* 380	85	
12	$15 \quad 599$	540	210	1*395	420	10	- 931	-855	3	31001	-708		19* 392	-121	141	1009	1184	2	1400	-1507		${ }^{2 *} 373$	101	1	11632	1541	1011648	1957	
12	161414	- 1372	${ }^{3} 22$	2809	830		1* 525	-610	24	43036	-3324	d	191474	1322	142	21268	-1278	53	3492	505	3	31219	1331	2	2* 281		102606	-654	
12	17987	912	23	3796	-870	9 12*	2* 528	736	$5 \times$	5+ 292	-27		20695	-730	143	3* 381	-308		890	992		4* 386	-120	3	31165	-1128	10 3* 382	-333	
	18 689	861	24	713	-795	13	3823	874		1671	-1678		211132	1063	14	674	731		5* 324	-407		51203	-1293	4	43198	3655	41481	1555	
14	0*433	134	25	500	612		4* 525	-623	27	2818	3054		222588	-2720	14	607	468	56	1377	-1431		6* 389	187	45	748	738	10 5* 403	716	
14	${ }^{1 *} 433$	393	26	665	792		5* 481	-682		1283	-972		23862	-959	$14{ }^{6}$	938	-1077		355	283		7* 386	347		6* 340			-872	
14	${ }^{2+431}$	-554	27	7577	-724	16*	6* 440	235	,	1632	1180		$24 \quad 683$	-656	147	740	678	58	1275	1283	118	8* 380	300	7	71729	-1722	107769	748	
14	3* 427	-306		- 1318	1246	17	7807	854	${ }^{2} 10 *$	10* 435	228		- 2007	1860	$14{ }^{8}$	8 8 323	-17		9569	- 511		864	-863			-584	$\begin{array}{lll}10 & 8 * 406\end{array}$	234	
14	4880	746	51	1540	-444	18*	8* 389	-415	${ }^{2} 11$	1679	-439	8	1* 401	-305	14	9* 278	-150	510	- 957	-968		0* 373	220	9	91589	1453	10 9* 400	285	
14	5* 422	447	2	21419	-1390		9 585	-592	212	22736	2732	8	${ }^{2} 888$	807		101418	-1954	511	1772				1174		O 2954	2822	$1010 * 400$	-548	
		-775	3*	3* 339	10		- 339	469	213	31115	971	8	3+412	-238				512	2912	961	1112	2* 353	-111	4 11*	1* 443	-322	10 11* 398	-320	
14	8* 408	73	55	293	1266	21	518	747	214	14 668	-669	8	4.1268	-1157					3* 433	358	1113	3928	-925	412	21670	1468	10121574	1466	
14	91609	1558	6	61158	-1109	11.	0*481	-205	216	64540	4893	8	63207	3249				$515 *$	5*389	14		5533	558	4	${ }_{4}{ }^{2} 4.412$			-926	
14	10*389	-149	74	7* 405	127	111	863	-879	217	71217	-1248	8	71337	1490			24	${ }_{5} 16$	61419	1424	1116	6* 234		415	52189		14* 151104		
	111080	007	8	81258	1223	$11{ }^{2+}$	2* 481	84	218	18* 398	-245	8	81600	1601	1	928	-1184	5 17*	7* 348	-330		7876	-1063	416	61374	-1344	10 16* 256	-7	
14	121412	1616		9* 446	115	113	3958	1009	219	91460	-1570		$9 * 474$	217		531	-568	519	9 8.56	-872	130		-44	417	72277	2256	1017611	-7	
				O 1450	-1410	$11{ }^{11} 4$			220	2098	-921	81	102711	2641	3	31232	1446	520	O 736		131		330	418	81989	-1910	12 0* 374	51	
	7 k 1			511	1*493	199	115	995	-921	221	211019	-978		111931	-1804	4	4423	466		1*282		132		399	419	9* 324	-56	12121448.	1541
					21179	1021			109	222	2262	-604		12* 498	202	15	1509	-1567	522	2946	-997	13	759	-758	420	2 1258	1303	122579	6
				S 513	3* 541	${ }^{-361}$	$11{ }_{11} 7$	7*487	88	223 2 24 1	23 1669	1750		13792	560		619	-534	523	344	446	134	4755	-741	421	1838	763	$12 \quad 31259$	1011
	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & \hline \end{aligned} 5827 .$	${ }_{-1}^{-1900}$	¢ 14	$\begin{array}{ll}4 & 1318 \\ 519\end{array}$	-1108	${ }_{11}^{11}{ }^{8}$	8* 487		224	21827	-1594	81	14.1688	1454	7	71547	1479	524	704	856	13	5929	1011	422	2* 273	-129	1241417	-1516	
1	31393	1556	516	6974	916	1110	10* 481	${ }_{-} 824$		(1) 290	-437	815	151093	932	8	550	520	-	- 825	-856	136					131	$12 \quad 51509$	1549	
1	4607	474	517	7* 468		1111	1889	856	0	${ }_{0} 1814$	-474 164		161505	${ }_{-535}^{1408}$			1049 -636										12 ${ }_{12} 6 \times 364$	362	
1	51145	-1075	518	81208	-1197	$11_{12}{ }^{\text {+ }}$	${ }^{\text {2* }} 468$		1	12170	2094		181661	-1486	111	111280	${ }_{1} 1304$			478								317 507	
1	${ }^{6 *} 380$	-343		9* 430		1113	31092	-1050	2	718	600	${ }_{8} 1$	191536	-1614	${ }_{1}^{1} 12$	12706	1364 626	74	3* 4 1123	-1185		- 489	498	6	2* 335	-517		2427	
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	71360 $8 * 415$	1222 303		20 957	1009	${ }^{11} 1^{14}$	14* 411	157	3	2388	2314	8	20.655	-428	113	131024	-1068		5* 366	-152			4	63	${ }^{2 \times 2} 234$	2301	12101380	1364	
$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$8 * 415$ 9 1288	-1265	22	21* 380	-972		15 611	610 -35			${ }_{2} 21216$			1850 1590	$1 \begin{array}{ll}1 & 14 \\ 1 & 15\end{array}$	$\begin{array}{lll}14 & 597 \\ 15 \\ 15\end{array}$				1010 325						-4003	12111434	99	
1	10*417	-314	${ }_{5} 23$	3**34	342	1117	$17 \quad 798$	-813	5	812		${ }^{8} 10$	- 21.1312	${ }_{-1835}^{159}$		15* ${ }^{1276}$				${ }_{-521}$					52714 $6 * 388$			-	
	111407	1401	24	24919	982	1118	18*300	-78	7	72195	-1923	10	1*437	474	1.17	17743	-786		9915	-796	0		-305	7	7* 398				
	12*427	-1266	525 526	25* 298		1119	19626	721	48	8738	-438	10	21830	-1891	118	$18 * 334$	-363	710	10 1049	990	-	41396	1276	8	8* 408	$\begin{array}{r} 305 \\ 99 \end{array}$			
	131224	1266				130	0*442	-274	49	91491	1395	10	3* 442	-92			1130		1* 431	368	- 6	62452	-2466	69	736	678			
	436	-158	-	- 1253	-1364		1768	97	10	101988	1805	10	41896	1982	120	20631	637	712	2815	-720	O 8	83180	3377	610	0* 430	431			

Barium. Barium lies on a mm equipoint and so its coordination polyhedron is rather regular. This cation is surrounded by six oxygens lying at the corners of a slightly folded hexagon and by four water molecules. Two out of them are located above the hexagon, on a mirror plane, and two below, on another mirror plane normal to the former. The barium-oxygen system has a_{1} compact structure that is comparable with a close packed arrangement of spheres.

The $\mathrm{Ba}-\mathrm{O}$ distances range from 2.82 to $2.87 \AA$; these values are very near to the sum of the ionic radii of the involved atoms ($2.86 \AA$).

Silicon. Four silicon atoms occur in the asymmetric unit of macdonaldite. One silicon shares all the oxygens with other tetrahedra; the remaining three have one oxygen unshared. The bridging $\mathrm{Si}-\mathrm{O}$ bonds of the latter three silicon atoms are appreciably different from the non-bridging bonds. The mean lengths of the bridging bonds are: $\mathrm{Si}(\mathrm{I})-\mathrm{O}$ I. $629 \AA, \mathrm{Si}(2)-\mathrm{O}$ I. $626 \AA$, $\mathrm{Si}(4)-\mathrm{O} \mathrm{I}^{2} 625 \AA$; the lengths of the non-bridging bonds are: $\mathrm{Si}(\mathrm{I})-\mathrm{O}(\mathrm{I})$ r. $567 \AA, \operatorname{Si}(2)-O(6) \quad 1.567 \AA, \operatorname{Si}(4)-O(3)$ 1.597 $\AA . \quad$ Such differences are consistent with the $d-p \pi$-bonding hypothesis suggested by Cruickshank [5].

Table IV.
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ and their standard deviations (in parentheses).
An asterisk is used to distinguish equivalent atoms. The distances preceded by the sign ' occur twice; those preceded by " occur four times.

Atoms	Bond lengths	Atoms	Bond angles.
$\mathrm{Si}(\mathrm{I})-\mathrm{O}(\mathrm{I})$	1.567 (7)	$\mathrm{O}(\mathrm{I})-\mathrm{Si}(\mathrm{I})-\mathrm{O}(2)$	
- $\mathrm{O}(2)$	1.651 (7)	$\mathrm{O}(\mathrm{I})-\mathrm{Si}(\mathrm{I})-\mathrm{O}(4)$	$114^{\circ} 15^{\prime} \quad\left(28^{\prime}\right)$
- $\mathrm{O}(4)$	I.610 (8)	$\mathrm{O}(\mathrm{I})-\mathrm{Si}(\mathrm{I})-\mathrm{O}(\mathrm{I} 4)$	${ }_{11} 3^{\circ} 43^{\prime} \quad\left(28^{\prime}\right)$
-O(I4)	I. 625 (8)	$\mathrm{O}(2)-\mathrm{Si}(\mathrm{I})-\mathrm{O}(4)$	${ }_{107}{ }^{\circ} 34^{\prime} \quad\left(28^{\prime}\right)$
$\mathrm{Si}(2)-\mathrm{O}(6)$	1.567 (7)	$\mathrm{O}(2)-\mathrm{Si}(\mathrm{I})-\mathrm{O}(14)$	101 $^{\circ} 33^{\prime}$ (28)
$-\mathrm{O}(7)$	1.631 (9)	$\mathrm{O}(4)-\mathrm{Si}(\mathrm{I})-\mathrm{O}(\mathrm{I} 4)$	${ }_{1060}{ }^{\circ} 3^{\prime}\left(28^{\prime}\right)$
-O(8)	1.625 (7)	$\mathrm{O}(6)-\mathrm{Si}(2)-\mathrm{O}(7)$	$113^{\circ} 25^{\prime \prime} \quad\left(28^{\prime}\right)$
-O(16)	1.620 (8)	$\mathrm{O}(6)-\mathrm{Si}(2)-\mathrm{O}(8)$	$113^{\circ}{ }^{2} 2^{\prime}$ (28)
$\mathrm{Si}(3)-\mathrm{O}(2)$	1.620 (9)	$\mathrm{O}(6)-\mathrm{Si}(2)-\mathrm{O}(16)$	${ }_{11} 3^{\circ} 42^{\prime} \quad\left(28^{\prime}\right)$
$-\mathrm{O}(5)$	1. 565 (7)	$\mathrm{O}(7)-\mathrm{Si}(2)-\mathrm{O}(8)$	$106{ }^{\circ} 32^{\prime}$ (28)
-O(8)	I.601 (9)	$\mathrm{O}(7)-\mathrm{Si}(2)-\mathrm{O}(16)$	103 ${ }^{\circ} 37^{\prime \prime}$ (28)
-O(15)	1.617 (6)	$\mathrm{O}(8)-\mathrm{Si}(2)-\mathrm{O}(16)$	$105^{\circ} 21^{\prime}$ (28)
$\mathrm{Si}(4)-\mathrm{O}(3)$	I. 597 (6)	$\mathrm{O}(2)-\mathrm{Si}(3)-\mathrm{O}(8)$	${ }_{110^{\circ}} 33^{\prime}$ (28)
$-\mathrm{O}(4)^{*}$	I. 62 I (9)	$\mathrm{O}(2)-\mathrm{Si}(3)-\mathrm{O}(5)$	${ }_{109}{ }^{\circ} 41^{\prime} \quad\left(28^{\prime}\right)$
$-\mathrm{O}(5)$	1.633 (7)	$\mathrm{O}(2)-\mathrm{Si}(3)-\mathrm{O}(15)$	${ }_{1060} 37^{\prime}\left(28^{\prime}\right)$
- $\mathrm{O}(7)^{*}$	1. 622 (II)	$\mathrm{O}(8)-\mathrm{Si}(3)-\mathrm{O}(5)$	$\mathrm{III}^{0} 26^{\prime}$ (28)
$\mathrm{Ca}(\mathrm{I})-\mathrm{O}(\mathrm{I})$	2.299 (8)	$\mathrm{O}(8)-\mathrm{Si}(3)-\mathrm{O}\left(\mathrm{I}_{5}\right)$	$\begin{array}{llll}110^{\circ} & 3^{\prime} & \left(288^{\prime}\right)\end{array}$
-O(6)*	2.308 (8)	$\mathrm{O}(5)-\mathrm{Si}(3)-\mathrm{O}(\mathrm{I} 5)$	$1080{ }^{2} 2^{\prime}\left(28^{\prime}\right)$
-O(9)w	2.437 (20)	$\mathrm{O}(5)-\mathrm{Si}(4)-\mathrm{O}(7)^{*}$	${ }^{1060} 45^{\prime} \quad\left(28^{\prime}\right)$
- O (12) 2 u	2.417 (22)	$\mathrm{O}(5)-\mathrm{Si}(4)-\mathrm{O}(4)^{*}$	$106^{\circ} 4^{\prime \prime} \quad\left(28^{\prime}\right)$
$\mathrm{Ca}(2)-\mathrm{O}(\mathrm{I})$	2.340 (7)	$\mathrm{O}(5)-\mathrm{Si}(4)-\mathrm{O}(3)$	$\begin{array}{llll}111^{\circ} & 4^{\prime} & (28)^{\prime}\end{array}$
$-\mathrm{O}(3)$	' 2.447 (6)	$\mathrm{O}(7)^{*}-\mathrm{Si}(4)-\mathrm{O}(4)^{*}$	$\begin{array}{lll}111^{\circ} & 2^{\prime} & \left(288^{\prime}\right.\end{array}$
-O(6)	'2.350 (7)	$\mathrm{O}(7)^{*}-\mathrm{Si}(4)-\mathrm{O}(3)$	1110 ${ }^{\circ} 29^{\prime}$ (28)
$\mathrm{Ba}-\mathrm{O}(2)$	" 2.874 (7)	$\mathrm{O}(4)^{*}-\mathrm{Si}(4)-\mathrm{O}(3)$	$110^{\circ} 15^{\prime}$ (28)
-O(14)	' 2.880 (9)	$\mathrm{Si}(\mathrm{I})-\mathrm{O}(\mathrm{I} 4)-\mathrm{Si}(\mathrm{I})^{*}$	$144^{\circ} 4^{\prime} \quad\left(56^{\prime}\right)$
-O(ro) w	${ }^{\prime} 2.820$ (20)	$\mathrm{Si}(\mathrm{I})-\mathrm{O}(2)-\mathrm{Si}(3)$	${ }^{1} 35^{\circ} 41^{\prime} \quad\left(36^{\prime}\right)$
$-\mathrm{O}(\mathrm{I} 3) w$	'2.814 (14)	$\mathrm{Si}(3)-\mathrm{O}(\mathrm{r} 5)-\mathrm{Si}(3)^{*}$	${ }_{151}{ }^{\circ}$ (56)
$\mathrm{O}(3)-\mathrm{O}(3)^{*}$	2.71 (2)	$\mathrm{Si}(3)-\mathrm{O}(5)-\mathrm{Si}(4)$	${ }_{17} 70^{\circ} 24^{\prime} \quad\left(36^{\prime}\right)$
$\mathrm{O}(9) w-\mathrm{O}(9) w^{*}$.	2.80 (6)	$\mathrm{Si}(3)-\mathrm{O}(8)-\mathrm{Si}(2)$	${ }^{1} 37^{\circ} 24^{\prime}$ (36^{\prime})
$\mathrm{O}(\mathrm{I} 2) w-\mathrm{O}(\mathrm{I} 2) w^{*}$	2.87 (6)	$\mathrm{Si}(2)-\mathrm{O}(16)-\mathrm{Si}(2)^{*}$	$147^{\circ} 27^{\prime}$ (56')
$\mathrm{O}(\mathrm{II}) w-\mathrm{O}(\mathrm{I} 3) w$	3.05 (3)	$\mathrm{Si}(4)-\mathrm{O}(7)^{*}-\mathrm{Si}(2)^{*}$	${ }^{140^{\circ}} 53^{\prime} \quad\left(36^{\prime}\right)$
$\mathrm{O}(17) w-\mathrm{O}(10) w^{*}$	3.06 (3)	Si 4)- $\mathrm{O}(4)^{*}-\mathrm{Si}(\mathrm{I})^{*}$	$148^{\circ} 28^{\prime}\left(36^{\prime}\right)$
$\mathrm{O}(8)-\mathrm{O}(17) w$	3.07 (3)		
$\mathrm{O}(2)-\mathrm{O}(\mathrm{I})$ w	3.16 (2)		
$\mathrm{O}(2)-\mathrm{O}(13) w$	$3 \cdot 17$ (1)		

The tetrahedron around $\mathrm{Si}(3)$ needs a more detailed discussion. $\mathrm{Si}(3)$ shares all its oxygens with other tetrahedra and the average $\operatorname{Si}(3)-\mathrm{O}$ distance is 1.60 I \AA. It must be pointed out that the $\mathrm{Si}(3)-\mathrm{O}(5)$ distance is the shortest of all the $\mathrm{Si}-\mathrm{O}$ distances of macdonaldite. Pant and Cruickshank [6] suggest that large $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles " cause the bridging bonds to gain strength at the expense of peripheral bonds ". Actually the $\mathrm{Si}(4)-\mathrm{O}(5)-\mathrm{Si}(3)$ angle is 170° and this fact could explain the short $\mathrm{Si}(3)-\mathrm{O}(5)$ distance. On the other hand the second bond distance, $\mathrm{Si}(4)-\mathrm{O}(5)$, involved in the cited angle, is $1.633 \AA$. One could expect, on the basis of the cited large angle, a shorter length for the $\operatorname{Si}(4)-\mathrm{O}(5)$ bridging bond, but one must take into account the different π-orders existing in the $\mathrm{Si}(4)$-tetrahedron. However the average of the two $\mathrm{Si}-\mathrm{O}(5)$ distance is $\mathrm{I} .60 \AA$ that is a value which could be expected for a $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle of 170°. Fig. I shows a plot of the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles of some recently studied silicates versus the average of the two $\mathrm{Si}-\mathrm{O}$

Fig. I. - Plot of the average of the two $\mathrm{Si}-\mathrm{O}$ distances involved in one $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle versus the $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle for some recently studied silicates.
bridging bonds lengths involved. One can observe a rather regular shortening of the $\overline{\mathrm{Si}-\mathrm{O}}$ distances (from a value of about $\mathrm{I} .63 \AA$) with the increasing, of the angles (from a value of about 137°).

The $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles range from Ior° to $\mathrm{II} 4^{\circ}$. By plotting the mean lengths of any pair of bonds forming an angle at Si , against the $\mathrm{O} \cdots \mathrm{O}$ distances, the results of this work fit the corresponding curve given by McDonald and Cruickshank [7].

Balance of electrostatic valences. The balance of electrostatic valences computed in the usual way, assigning a bond strength of $\mathrm{I} . \mathrm{Oo}$ to tetrahedral $\mathrm{Si}-\mathrm{O}$ bonds, $\mathrm{I} / 3$ to $\mathrm{Ca}-\mathrm{O}$ bonds and $\mathrm{I} / 5$ to $\mathrm{Ba}-\mathrm{O}$ links, give some unacceptable results: $\mathrm{O}(2)$ and $\mathrm{O}(\mathrm{I} 4)$ are "overbonded" (2.20) while $\mathrm{O}(\mathrm{I})$, $\mathrm{O}(6)$ and $\mathrm{O}(3)$ are " underbonded " (i.66, i. 66 and I. 33 respectively). The valences get balanced if one accept the suggestion of Zachariasen [9] that "the observed bond lengths uniquely determine the bond strengths". In
this way $\mathrm{O}(\mathrm{I})$ and $\mathrm{O}(6)$, which form with silicon non-bridging bonds of $\mathrm{I} .57 \AA$, would have a bond strength greater than $\mathrm{I} .00 ; \mathrm{O}(2)$ and $\mathrm{O}(14)$ which form with silicon bridging bonds of $\mathrm{I} .62-\mathrm{I} .63 \AA$, would have a bond strength less than i.oo. As Pant [8] observes " ...the two theories ($d-p \pi$-bonding theory and the method of balancing of valences) for the $\mathrm{Si}-\mathrm{O}$ bonds are not exclusive. π-bonding in $\mathrm{Si}-\mathrm{O}$ bonds may be part of the mechanism whereby valency balance is achieved '".

Fig. 2. - Perspective view of the chains of Ca -octahedra and of a layer of tetrahedra. The rings of four and eight tetrahedra are shown; the layer is doubled by a mirror plane parallel to $x y$.

For the case of $\mathrm{O}(3)$ it is necessary to spend some more words. In fact, for this atom the valences balance is not achieved even with the application of the cited method; $\mathrm{O}(3)$ is linked to $\mathrm{Si}(4)$ with a non-bridging bond of I. $597 \AA$ and to $\mathrm{Ca}(2)$; in such a way the positive charge reaching this oxygen is about I. 4 that is far from 2.0. On the other hand, if this atom is considered to be a hydroxyl group, it would be "overbonded" ($1.4+$ I.0). Furthermore, the chemical formula would have an excess of positive charges.' The $\mathrm{O}(3)-\mathrm{O}\left(3^{\prime}\right)$ distance of $2.70 \AA$ is the shortest distance between oxygens not belonging to the same coordination polyhedron and surely represents a hydrogen bond,
but it seems too long (Zachariasen [9]) for the hypothesis of a hydrogen atom occurring midway between $\mathrm{O}(3)$ and $\mathrm{O}\left(3^{\prime}\right)$. Thus the possibility of a statistical distribution of one hydrogen between the two equivalent $O(3)$ seems to be the more convenient one. This assumption permits to get balanced the valences of $\mathrm{O}(3)$ and the sum of positive and negative charges in the chemical formula.

Description of the structure. The crystal structure of macdonaldite is characterized by the presence of double layers of Si-tetrahedra connected by layers of Ca -octahedra ${ }^{(1)}$.

Fig. 3. - Perspective view of the structure following b. The ring of tetrahedra normal to b is shown. The small black circles represent water molecules occurring in the channels and those linked to barium. The number in square parentheses are the y coordinates. The chains of octahedra occur at $z=0$ and $\mathrm{I} / 2$.

The Ca-octahedra, sharing two opposite edges, form chains parallel to a. The chains are linked to one another with hydrogen bonds and give rise to sheets parallel to (OOI) and occurring at $z=0$ and $z=1 / 2$.

The tetrahedral framework is located between two of such octahedral sheets. The basic unit of the silicate framework is a ring of four tetrahedra. The rings are linked together to form a corrugated layer of tetrahedra parallel to (OOI) (See fig. 2). The presence of the mirror plane at $z=1 / 4$
(I) The coordination polyhedra of calcium have been described as square bipyramids, but in the course of this description they will be designated more simply as octahedra.
makes the layer doubled. Each single layer is very similar to the " idealized" apophyllite layer which is derived from the condensation of wollastonite chains through the xonotlite ribbon. The doubling of the layers produces two sets of channels built up by eight-membered rings of tetrahedra: one set is parallel to a with a free diameter of $3.4 \AA$ and the other is parallel to b with a free diameter of 2.I \AA (figs. 3 and 4). The barium atoms and the water molecules not linked to calcium occur in these channels.

Fig. 4. - Perspective view of the structure showing the ring of tetrahedra that forms channels parallel to a.

The fact that the thermogravimetric curve of macdonaldite resembles those of mesolite and scolecite [I] and the presence of such channels, suggested the possibility of some relationship between fibrous zeolites and macdonaldite. In effect some structural arguments give strength to this hypothesis. Fig. 5 (left) shows the structural feature characteristic of natrolite [io] and of all the fibrous zeolites: it is a ring of four tetrahedra (two Si and two Al) with alternate vertices pointing upwards and downwards; a fifth Si -tetrahedon links the upper vertices and, repeated $6.6 \AA$ below, the lower ones to form a sort of string parallel to c. The vertices labelled i to 4 connect together neighbouring strings thus forming a three-dimensional tetrahedral framework. The openings among neighbouring chains give place to a double system of channels (with free diameter of 2.08 and $2.6 \AA$) formed by eight-membered rings of tetrahedra. Fig. 5 (right) shows the four Si-tetrahedra and one of
the two Ca -octahedra contained in the asymmetric unit of macdonaldite. This group could be derived from that showed in the left part of the figure by substituting in this one the tetrahedron labelled 4 with an octahedron. The figs. 3 and 4 permit to see how this structural feature of macdonaldite (four tetrahedra and one octahedron) is repeated in the structure and the role played by the octahedra of the second Ca atom.

The water molecules. Water is present in the coordination polyhedra of barium and calcium and, as "free" or zeolitic water, in the channels of the tetrahedral framework. $\mathrm{Ca}(\mathrm{I})$ is linked to two water molecules, $\mathrm{O}(9)$ and O (I2) lying on a mirror plane. Each of these water molecules form a hydrogen bond which together with that occurring between $\mathrm{O}(3)$ and $\mathrm{O}\left(3^{\prime}\right)$ contributes to hold together the chains of Ca -octahedra.

Fig. .5. - Left: the structural feature characteristic of fibrous zeolites; dark tetrahedra are AlO_{4} groups. Right: the structural feature of macdonaldite built up by four Si-tetrahedra and by one Ca-octahedra; the Ca atom involved is that labelled $\mathrm{Ca}(\mathrm{I})$.

The water molecules occurring in the channels and not linked to the cations are labelled $\mathrm{O}(\mathrm{II})$ and $\mathrm{O}\left(\mathrm{I}_{7}\right)$. They occupy two positions, on mirror planes, related by a pseudo-mirror plane to those of O (io) and $\mathrm{O}(\mathrm{I} 3)$. The occupancy is 64% for $\mathrm{O}(\mathrm{II})$ and 56% for $\mathrm{O}(\mathrm{I} 7$); the unit cell contains 9.6 of such water molecules. They are linked very weakly to the water molecules belonging to the coordination polyhedron of barium and to some oxygens of the Si-tetrahedra.

It must be pointed out that there is room in the channels for other atoms (cations or water) and the number of free water molecules could vary without disturbing the structure.

Chemical formula. On the basis of all the considerations made in the preceding discussions and of the fact that the number of $\mathrm{H}_{2} \mathrm{O}$ linked to calcium and barium could not be varied without important changes in the
structure, the chemical formula of macdonaldite can be written as follows:

$$
4\left[\mathrm{BaCa}_{4} \mathrm{H}_{2} \mathrm{Si}_{16} \mathrm{O}_{38} \cdot(8+x) \mathrm{H}_{2} \mathrm{O}\right]
$$

where x is the number of free water molecules; in the case of the present work $x=2.4$.

This formula is somewhat different from that given by Alfors et al. [I]. However the chemical analysis calculated from it does not diverge from the experimental analyses more than that calculated from the formula published by the mentioned Authors (Table V).

Table V.

Oxides in wt. \%	I	2	3	4	5
SiO_{2}	61.1	62.1	61.00	61.00	62.23
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.06				
TiO_{2}	O.OI	0.03			
FeO	<0.oI	O.I	0.96		
MgO	<0.05	-. 10			
CaO	14.8	14.95	15.3	15.19	14.53
BaO	10.2	9.0	$9 \cdot 3$	10. 38	9.93
$\mathrm{H}_{2} \mathrm{O}$	13.7	13.7	13.7	13.42	13.30
Total .	100:0	100.0	100.3	100.00	100.00

Analyses I, 2 and 3 are published by Alfors et al. [r].
1, 2: analyses made by G. W. Putman by $d-c$ arc emission spectrograph methods;
3: wet chemical analysis made by M. Tavela;
4: chemical analysis calculated from the chemical formula given by Alfors et al. [1], $4\left[\mathrm{BaCa}_{4} \mathrm{Si}_{15} \mathrm{O}_{35} \cdot \mathrm{II} \mathrm{H}_{2} \mathrm{O}\right]$;

5: chemical analysis calculated from the chemical formula given in this work, $4\left[\mathrm{BaCa}_{4} \mathrm{H}_{2} \mathrm{Si}_{16} \mathrm{O}_{38} \cdot\right.$. $\left.\mathrm{o} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]$.

Conclusion.

The description of the crystal structure made previously in terms of double layers of tetrahedra appears to be more suitable than that emerging from the comparison with the fibrous zeolites for a convenient introduction of macdonaldite in the Zoltai classification of silicates [II]. The crystal structure of this silicate, characterized by double layers of the apophyllite type, fills a gap in the series of structure families having as common feature
the wollastonite chain. Table VI shows the two series of structure families that can be derived respectively from the pyroxene chain and from the wollastonite chain: in the second series, the place corresponding to the "double sheets" subtype, the same as the hexagonal celsian family, was empty.

Table VI.

| | Pyroxene chain | | Wollastonite chain | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Structure family | Repeat unit
 or loop of
 tetrahedra | Structure family | Repeat unit
 or loop of
 tetrahedra |
| Single chain | Pyroxenes | 2 | Wollastonite | 3 |
| Double chain | Amphiboles | 6 | Xonotlite | 8 |
| Single sheet | Micas | 6 | Apophyllite | $4-8$ |
| Double sheet. | Hexagonal celsian | $4-6$ | Macdonaldite | $4-8$ |

Table VII.

Mineral	Cell dimensions	Chemical formula
Macdonaldite	$a=14.08 b=13.11{ }^{\text {I }} c=23.56 \AA$	$4\left[\mathrm{BaCa}_{4} \mathrm{H}_{2} \mathrm{Si}_{16} \mathrm{O}_{38} \cdot \mathrm{IO} .4 \mathrm{H}_{2} \mathrm{O}\right]$
Rhodesite		$4\left[\mathrm{~K}_{2} \mathrm{Na}_{2} \mathrm{Ca}_{4} \mathrm{Si}_{16} \mathrm{O}_{38} \cdot \mathrm{I} 2 \mathrm{H}_{2} \mathrm{O}\right]$
Delhayelite	$b=7.04 a=13.05 c=24.65 \AA$	

Probably macdonaldite is not the sole member of this structure family. 'Two minerals have crystallographic, physical and chemical properties similar to those of macdonaldite. They are rhodesite [12] and delhayelite [13] which can be compared also with fibrous zeolites. In Table VII are reported the crystallographic and chemical properties of these two silicates and of macdonaldite. The chemical formula of delhayelite is not so immediately comparable with that of macdonaldite as is that of rhodesite. The number of cations in this one is greater than that of macdonaldite, but it must be observed that the number of Ca, Si and O , the atoms which build up the foundamental part of the structure, is the same and that in the structure of macdonaldite there is room for other cations or water molecules. However only the structural analysis could confirm or discard the hypothesis.

Acknowledgements. We are much indebted to Prof. A. Pabst and Dr. J. Alfors, who made possible this investigation by kindly suggesting it and sending fine specimens.

References.

[i] Alfors J. T., Stinson M. C., Matthews R. A. and Pabst A., Seven new barium minerals from Eastern Fresno County, California, «Am. Miner.», 50, 314 (1965).
[2] Cannillo E. and Mazzi F., Absorption correction for some elongated prismatic crystals, «Rend. Acc. Naz. dei Lincei, Classe Sc. Mat. Fis. Nat.», ser. VIII, 42, 888 (1967).
[3] Patterson A. L., Treatment of anomalous dispersion in X-ray diffraction data, "Acta Cryst.», 16, 1255 (1963).
[4] Cromer D. T., Anomalous dispersion corrections computed from self-consistent field relativistic Dirac-Slater wave functions, "Acta Cryst.», I8, I7 (1965).
[5] Cruickshank D. W. J., The role of $3 d$-orbitals in π-bonds between (a) silicon, phosphor, sulphur or chlorine and (b) oxygen or nitrogen, "J. Chem. Soc.», 5486-5504, London 1961.
[ó] Pant A. K. and Cruickshank D. W. J., The crystal structure of $\alpha-\mathrm{Na}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}$, «Acta Cryst.», B 24, 13 (1968).
[7] MacDonald W. S. and Cruickshank D. W. J., A reinvestigation on the structure of Sodium Metasilicate, $\mathrm{Na}_{2} \mathrm{SiO}_{3}$, "Acta Cryst.», 22, 37 (1967).
[8] Pant A. K., A reconsideration of the crystal structure of $\beta-\mathrm{Na}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}$, «Acta Cryst. », $B 24$, 1077 (1968).
[9] Zachariasen W. H., The crystal structure of monoclinic metaboric acid, «Acta Cryst.», 16, 385 (1963).
[Io] Meier W. M., The crystal structure of natrolite, «Zeitsch. für Krist.», II3, 430 (1960).
[II] Zoltai T., Classification of silicates and other minerals with tetrahedral structures, «Am. Miner. », 45, 960 (1960).
[12] Gard J. A. and Taylor H. F. W., An investigation of two new minerals: rhodesite and mountainite, "Min. Mag.», 3I, 6II (1957).
[13] Sahama Th. G. and Hytonen K., Delhayelite, a new silicate from Belgian Congo, «Min. Mag.», 32, 6 (1959).
[14] Coda A., Dal Negro A. and Rossi G., The crystal structure of krauskopfite, «Rend. Acc. Naz. dei Lincei, Classe Sc. Mat. Fis. Nat.», ser. VIII, 42, 859 (1967).
[15] Peacor D. R. and Niizeki N., The re-determination and refinement of the crystal structure of rhodonite, (Mn, Ca) SiO_{3}, "Zeitsch. für Krist.», II9, 98 (I963).
[i6] Peacor D. R. and Prewitt C. T., Comparison of the crystal structures of bustamite and wollastonite, "Am. Miner.», 48, 588 (1963).
[17] Prewitt C. T., Refinement of the structure of pectolite, $\mathrm{Ca}_{2} \mathrm{NaHSi}_{3} \mathrm{O}_{9}$, «Zeitsch. für Krist.», 125, 298 (1967).
[18] Hamilton W. C., On the isotropic temperature factor equivalent to a given anisotropic temperature factor, "Acta Cryst.», I2, 609 (1959).

