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Teoria delVintegrale. — Danzell’'s Method in the Theory of the
Aumann—Hukuhara Integral of Set~Valued Functions. Nota di Fran-
cesco S. DE Brast e Anprzej Lasora, presentata® dal Socio
G. SANSONE.

RIASSUNTO. — Viene fatto un confronto tra due definizioni di integrale per funzioni
multivoche proposte da Aumann e da Hukuhara.

The theory of integrals of set-valued functions goes back to J. Aumann [1].
It has been studied in connection with differential equations, optimal control
theory [6], [8] and classical problems of functional analysis such as the
theory of extremal points [2] and Liapunoff’s theorem [2], [5], [6]. The
reader can find further references, new results and interesting open questions
in [3].

A new easy approach to the definition of the integral of set-valued
functions, based on the ideas of Riemann and Daniell, was recently given
by M. Hukuhara [4]. The Hukuhara integral is defined on, the space Xp
of all integrable (see definition below) set-valued functions # — F () with
convex compact values F(#). Our purpose is to prove that the restriction of
Aumann’s integral to the space X coincides with the integral of Hukuhara.

The space Xp with suitable defined distance is a complete metric space.
Using the Hukuhara technique in the first part of the present note we shall
show that his integral may be immediately defined as the continuous exten-
sion of an uniformly continuous function given on a dense subset XsC Xg.
This short construction also shows that the space Xp with Hukuhara’s integral
is a natural generalisation of the space Ll of all single-valued Lebesgue
integrable functions. The proof that the theory of Aumann’s integral in the
space Xp is equivalent to that of Hukuhara is given in the part 2.

1. Denote by (H,7) the metric space of all nonempty convex compact
subsets of R# where the metric function 7 is given by the Hausdorff distance.
Let D be a measurable subset of R’ such that the Lebesgue measure
o0 <u(D) <oo. A function F:D—H is said to be measurable if for each
Ce€eH the set {#:F(#) N C==o} is Lebesgue measurable [7]. A measur-
able function F:D —H is called integrable if the single-valued function
| F ()] =~ (F (¢), 0) is Lebesgue integrable. The set of all integrable functions
F:D —H will be denoted by Xz. For F,G € Xp we put

Dist (F, G) :fr (F@#),G () de.

D

(*) Nella seduta del 19 novembre 1968.
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It is easy to see that the space (Xp, Dist) is a metric space if we as usual
identify functions different only on a set of measure zero.

THEOREM 1. 7he space (Xg, Dist) is complete.

The proof is quite analogous to that for single-valued functions. In fact
let us suppose that Dist (F,, F,) —o. By the standard argument we can
choose a subsequence F,; with the following property: for each ¢ > o there
is a subset D.CD such that p (D\D,) <e¢ and »(F, (#),F, (¢)—o0 uni-
formly on D.. Since the space (H,7) is complete there exists a set F () € H
defined for almost all 2€D such that » (F; (¢), F (#)) >0 ae. on D. The
function F:D —-H as a limit of .measurable functions is measurable too.
Fix e >0, § >0. We have

[7/<F¢z<t>’Fm<f)>dl‘§3

Dy

for sufficiently large 7 (# = 7;). So we can put 7 = 7, and pass to the limit
with s —oco and then with ¢ —-0. We obtain

[0, F@ya=s

for # >n5. From this it follows simultaneously that F is integrable and
Dist (F,, F) - o.

Let XsCXg be the subspace of all step functions, i.e., functions given
by the formulae

(M F@) = Z o, OC; Ul D;=D , D,ND;=g  (i=&5)

where XAy, stands for the characteristic function of a measurable set D, and
C; eH. The Hukuhara integral of the function (1) is given by

(2) I(F) = Z.‘,l w D) G

Let us observe that

3) 7 (L (F),1(G)) <Dist (F,G)

for F,G€Xs. So I:Xs—+H is an uniformly continuous function and
can be uniquely extended to the whole X3, since Xs is dense in Xg. To prove
that let us remember the following (see [4] p. 219).

LEMMA 1. (Hukuhara). For cach € >0 and F € Xy such that | F (£)| < ¢
(¢ = const) there exists a function F' € Xs such z%at Dist (F', F) <e and
[F@OI<[F@O|+1

THEOREM 2. The set Xs is dense in (Xg, Dist). Moreover, jfor each
F €Xg there exists a sequence {F,} in Xs such that Dist (F,,F) —~o and
|Fn‘<t)| SIF<X>| + L.
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Setting F, () = F ()Nn{x € R*: | x| <#} we have

Dist (F;, , F) g/r(F;(z),F(z))dzgz/|F(z)[dt=en

where D, = {¢:|F ({)| = n}. Since the function | F| is integrable, ¢, — o.
Evidently | F, (#)| <|F (#)| and to end the proof it is sufficient to choose
by lemma 1 for every F, a function F, such that Dist (F,, F,) < 1/x.

From theorems 1, 2 and inequality (3) it follows immediately the following
extension theorem.

THEOREM 3. There exists exactly ome continuous function 1:Xg —H
which is equal to (2) on Xs. The function 1 satisfies on Xy inequality (3).

In fact the extension of a uniformly continuous function from a dense
set exists and is unique and the extension of a Lipschitz function is a Lip-
schitz function with the same constant (in this case equal 1).

2. Denote by A the family of all nonempty subsets of Rt We write
limA, = A if limsup A, = liminfA, = A. By definition x € lim inf A,
if and only if every neighborhood of x intersects all the A, with sufficiently
high 7 and x €limsup A, if and only if every neighborhood intersects
infinitely many A,. It is easy to see that for A, ,A€H (sup|A,| < oo)

(s) lim» (A, ,A)=o0 is equivalent to limA, = A.

Let X be the space of all functions F:D —A. For F € X the Aumann
integral is given by

JF) = %ff (#)dt:f is integrable , f(#) € F (¥)a.e.} -
b

Denote the restriction of J to Xg by Jg. We shall use the following proper-
ties of Jg:
(@) If Fc (/) =C(C€eH) then Jg(Fc) = p(D)C.
(@) IfDy,- - -, D, are disjoint measurable subsets of D and D= D, then
i=1
o (F) = 3 T (1, )
for every F € X5.
() If im F, (/) = F (¢) a.e. (F,, F € Xp) and if there exists a single-
valued integrable function # such that |F, ()| <m (¢) (+€D),
then lim Jg (F,) = Js (F).

The proof of (277) is given by Aumann (see [1] th. 5). Property (i)
follows immediately from the definition of Jg. As for (¢) it is easy also to see
that w (D)C C Jg (Fc). To prove that Jg (Fc) C w(D)C it is sufficient to
apply the integral form of the mean value theorem

/}(;)dtc WD)z {f():t€eD}.

D
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From (7) and (é) it follows that for step function (1) the integral Jg is
given by

©) Je(F)= 21 w (D) C;.
So both the integrals I and Jg are equal on Xs, i.e.
(7) Je (F) = I(F) F € Xs

and consequently

7 (Js (F), Je (G)) < Dist (F, G) F,GeXs.

Suppose now that F,G are arbitrary functions in Xp. By theorem 2 we
can choose two sequences {F,},{G,} such that

(8 Dist (F,,F) -o , Dist(G,,G) —o

and

©) IEOI<IFOI+1,]GOI=[GO|+1

Using Egoroff theorem and passing to subsequences we can suppose that
(10) rE @, F@)—>o , »G,®,G@®) >0 ae.

We have

(11) 7 (Js (F.), Je (G,)) <Dist (F,,G,)

From (8) it follows that the right-hand side of inequality (11) converges to
Dist (F, G). Inqualities (9) imply

(12) IJB(FQISIFF@)JdtJrM(D) ) HB(GMéj‘\G(fﬂdf-Fu(D)-

By using (10), (9), (¢%), (12) and (5) we see that the left-hand side of (11)
converges to 7 (Js (F), Js (G)). So we obtain

7 (Js (F), Js (G)) < Dist (F,G) F,GeXs.

From this it follows that the Aumann integral Jp is a continuous function
on Xg and consequently by (7), continuity of I and theorem 2 we have

, THEOREM 4. On the space Xp the Aumann integral is equal to that of

Hukuhara, i.e.
Js(F) =1(F FeXs.

ADDED IN PROOF. While this paper was in print we became acquainted,
through the courtesy of Dr. G. S. Goodman, of a recent paper of G. Debreu
«Integration of correspondences, Proceedings of the Fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, vol. II, part 1, 35172,
Univ. of Cal. Press, Berkeley & Los Angeles, 1967» where among many
other interesting results the equivalence of Aumann and Hukuhara integrals
is established by using an argument which is different from ours (and
less direct).
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