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Ricerca operativa. — Optimal Decision Rules in Conditional
Probabilistic Programming ®. Nota® di A. CoarNEs®, WirLiam W,
CoorEr®, e MicuaeL J.L. KirBY @, presentata dal Socio B. SEGRE.

RIASSUNTO. — Nella presente Nota si sviluppa una teoria unificata della programma-
zione probabilistica. Questa, nell’adoperare dei vincoli probabilistici condizionali, porge una
caratterizzazione delle classi ottimali di regole stocastiche di decisione. In particolare, vien
stabilita I'ottimalita delle regole lineari discretizzate di decisione per la minimizzazione del
valore assunto da una funzione concava di variabili di decisioni stocastiche.

INTRODUCTION.

In [1, 2, 3, 4, 5] it has been shown how the study of major forms of
probabilistic programming can be carried out from the point of view of chance
constrained programming. Past results on the optimality of stochastic decision
rules, in computation of specific examples, etc., have depended on sophisticated
constructs, elaborate analyses, ingenious devices and in severe restrictions
not only on admissible classes of stochastic decision rules but also on the
functionals to be optimized. [See references 1—-15]. In the following we focus
on problems with the seemingly more complicated conditional chance cons-
traints and develop an analytical tool which unifies in form the informational
bases of different varieties of probabilistic programming and, at the same
time, provides a direct characterization of optimal classes of stochastic deci-
sion rules. In particular, the optimality of piecewise linear decision rules
is established for the general objective, to minimize the expected value of
a concave function of the stochastic decision variables. Characterizations
are also developed for the optimal stochastic decision rules for the problem
of minimizing the expected value of a general convex (differentiable) function
of the stochastic variables. In addition, necessary conditions are developed
for pther general classes of objective functions. Corollaries are general results
for problem with (possibly) non-linear functionals and linear programming
under uncertainty constraints. In fact, the results are extended to heretofore
never considered mixed systems of conditional chance-constraints and linear
programming under uncertainty constraints.

(*) Pervenuta all’Accademia il 30 luglio 1968.

(1) To Dr. Gunter Karl von Noorden whose thought and hand restored the sight of
A. Charnes.

(2) Northwestern University and University of Texas.

(3) Carnegie-Mellon University.

(4) Dalhousie University.



232 Lincei — Rend. Sc. fis. mat. e nat. — Vol. XLV — novembre 1968 [116]

ANALYTICAL RESULTS.

The general n-stage chance-constrained problem with linear conditional
chance-constraints and constant structural matrix may be represented as

(1) Min EH (-, 2; (b1, -+, b_p), )

s.t. p(E Ayxy(br,- -+, 6,1 < bl) > @ i=1, --,m
7=1

xj<&l)"';éj—l>20: ].:I,"',%
where é;-r = (bi1, *, b;m), P denotes probability conditional on 41, -, 4;_4,
& = (CZEEE Gm;) is a vector of functions of & ,---, 6;_y with all &,

in [0, 1], the A;; are constant matrices and E is the expectation operator.
As in [4], these chance-constraints may be inverted to give the equival-
ent linear inequality constraints:
i

(2) > Ay (b, boy) < F(&) L=1, -, m
1

7=

xj@lf"’éj—l)ZO J=1
where F;'(@) is the vector of marginal fractiles of &, conditional on
1, -+, b6;—1. Further, in equality form (2) becomes:
(3) ElAijxj<ély"'aéj—l>+&z<bl)"";bi~1>:Fi_l(&z) Z':I,""m
=
X;,$; =0 i=1, - ,m; j=1,-++,n.

The following system renders in a single form both the previous systems
and new mixed systems of conditional chance-constraints and linear program-
ming under uncertainty constraints:

) min EH (', -, 2
s.t. 21:1 P,'jkj(bl v b)) =g, (b1, -, biy) i=1,--,m
e
K (b, 6i1) =0 J=1,
We assume henceforth that this system is consistent for every (b1, -+, 8,)

and that the columns of the P;; have the Opposite Sign Property. [See 13
and 16]. In analyzing the system (4) we assume the information pattern to
be the following: The N vector is determined after ¥ &y 7 =1,--+,i—I1 and
g; (b1, -+, 6;,_1) are known but before all other \,g and &;,---,5, are
known. We call vectors X’ which are determined recursively in this way
‘“informationally feasible ’’ vectors.
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LEMMA 1: Let '™ denote the vector with matrix components each of
whose entries is a left inverse of one of the N, submatrices of P, which
consist of linearly independent columns.

Lety' = p (b1, -, bi1) = (“i(&l,"';éi-—l)y' . ',P‘iri(él ooy b)) =0

be a conformable vector of scalars with w'me = 1, where ¢ is a vector with
all entries unity.

Let K' = /"L,

Then the general informationally feasible decision rule for (4) is defined
recursively by:

i—1 : .
(5) h’:K’(gi—E P,-ﬂ() where 2" >o, I=1, 7.
\ 7=1

LeMMA 2: The set of informationally feasible decision rules for (4) is
convex and spanned by the finite number of extreme points which may be
represented recursively by

i—1

(6) 7\1:El(gl~—EPlvj7\]>, where A >o, i=1, 7%
/=1

and E’ denotes a component of L'

Thus each extreme point decision rule is defined by a sequence of left-

inverses for which the g, satisfy a system of linear inequalities defined by
these left-inverses.

LEMMA 3: There exists a finite disjoint decomposition of the domain
of the é1,---, b, on each set of which only a finite number of extreme point
decision rules hold.

THEOREM 1: /If H ()\1 o N ds comcave, then there exists a vector of
optimal decision vules for (4) whick is piece-wise linear in the g;. The pieces
corvespond to extreme point rules, thus the optimal rules involve shifting between
a finite number of linear decision rules.

COROLLARY 1I: Piece-wise linear decision rules are optimal for problems
with (possibly mixed) systems of conditional chance constraints and linear
programming under uncertainty constraints.

THEOREM 2: /f H (7\1 oy N is comvex and differentiable, and the convex
set of decision rules has an interiov point, them a vector of decision rules
(W XY ds optimal if and only if

o A S 5 -
—_— = Vio, — or Sonie  V; o

and' Vi Ny, = 0.

THEOREM 3: [f H is differentiable and the convex set of decision rules
has an interior point, then (7) is necessary for optimality.
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CONCLUSIONS.

The above lemmas and theorems provide a new route for the study of
probabilistic programming, including chance-constrained programming, linear
programming under uncertainty, etc. Extensions of the above results and
specializations permitting sharper conclusions will be developed in forthcom-
ing publications.  In particular, further developments characterizing the
constraint set and the optimal decision rules from both geometric and alge-
braic viewpoints will be given. Further results involving other constraint
sets and information patterns will be presented. In the meantime the above
development provides heretofore missing elements for unifying various approa-
ches to probabilistic programming.
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