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Matematica. 4 Generalization of the Second Isomorphism Theo-
rem in Group Theory. Nota® di Orar TaAMASCHKE, presentata dal
Socio G. Scorza DRAGONTI.

RIASSUNTO. — Siano H e K sottogruppi di un gruppo G soddisfacenti alla HK — KH.
Indichiamo con HK/K : (KZK | 2€H) e con SH/HNK): = (HnKZK |ZeH) i
semigruppi generati dagh assegnati sottoinsiemi di G con riferimento alla moltiplicazione
fra « complessi». HK/K & un semigruppo di Schur su HK, S(H/HNK) & un semigruppo
di Schur su H e risulta HK/K == S(H/HNK). Se K & normale in G, questo risultato si
riduce esattamente al secondo teorema sugli isomorfismi nella teoria dei gruppi.

Let G be a group, H a subgroup of G, and K a normal subgroup of
G. Then the Second Isomorphism Theorem states:

() HN K 4s a normal subgroup of H.

(2) K is a normal subgroup of HK.

(3) The factor group HIHNOK s dsomorphic to the factor group HK|K.
We weaken the hypotheses of this theorem.
Let G be a group, and let H and K be subgroups of G such that

HK = KH.

Is there any isomorphy that can be stated for a factor structure of H
modulo HN K and a factor structure of HK modulo K ? Which are the
factor structures of such a hypothetical statement, and which is their notion
of isomorphy?

First let us discuss a factor structure of HK modulo K. By HK/K
we denote the semigroup with respect to subset (i.e. ““ complex ) multipli-
cation which is generated by the double cosets KgK, ¢ € HK, that is every
element of HK/K is the product of a finite number of double cosets KgK,
g €HK.  We call HK/K the double coset S—semigroup of HK modulo K.
(The S in that notation will be explained later.) Obviously, HK/K is
a group if an only if K is a normal subgroup of HK in which case HK/K
coincides with the factor group of HK modulo K. Therefore the double coset
S—semigroup HK/K seems to be a suitable generahzatlon of the factor
group HK/K in the Second Isomorphism Theorem.

Our next aim is to find an appropriate factor structure of H modulo
HnN K. We denote by S(H/H N K) the semigroup with respect to subset
multiplication which is generated by all the intersections -

HNnKgK |, geHK.

We note that each double coset KgK with ¢ € HK can be written as KAK
with a suitable % € H.

(*) Pervenuta il 1° ottobre 1968.
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LEMMA 1. The following statements hold.

(1) H= U (HnN KiK).

hCH
(2) HNKAK =HN KV K or HNKIK)NHN KA K) = o

Jor all %, 4'e H.
(3) HNKZK):={g1|geHNKsK} =HNKA 'K for all /€H.
(4) HNX)HNY)=HNXY for al/ X,Y eHK/K.

Proof. Statements (1), (2), (3) are trivial. We prove (4).
I. Take any @ ==Y C HK such that KY =Y. Then

Y = U K4z,
heH
KiCY

HNnY=n HNKZ= N (HNK)~4
he H r€H
KlzgY thY

For every 2 € H the set HN K. = (HNK) % is the set of all representatives
from H of the coset Ki. Therefore HN'Y is the set of all representatives
from H for all of the cosets K/ C Y, and hence

K HNY) =Y.

II. Take any @ ==X C HK such that KXK == X. Then, because
KHMNX) =X, we obtain
KHNX)HNY)=XHNY) = XK HANY) = XY.

Therefore (HN X) (HN'Y) contains a complete set of representatives from H
for all the cosets Kz C XY. Obviously

HAK)HNX)HAY) = HAX) (HAY)

holds which implies that (HN X) (HNY) contains a// representatives from H
for all the cosets K/ C XY. Hence, by what we have proved in I,

(HNX)HNY) = HOXY.

All elements X ,Y € HK/K have the property KXK = X and KY =Y.
Thus we have proved Lemma 1.

If we set X = K/K and Y = K/ K with %,/% €H in statement (4)
of Lemma 1, then we obtain

(HNKZK) (HAKAZ'K) = U (HNKgK) for all 4, /4'eH.

£ € (KZK) (KZ'K)

Since every element of S(H/HNK) is the product of a finite number of
the sets HNKZK , 2 € H, we have proved
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LEMMA 2.  FEwvery element of SHHNK) is the union of some of the
sets HNKAZK |, 7 € H.

Lemmas 1 and 2 tell us that S(H/HNK) is a semigroup of a special
type. For the convenience of the reader we recall the definition of that class
of semigroups.

The set G: = {X | g == X C G} is a semigroup with respect to the sub-
set multiplication

X, V) =>XY:={xy|xeX and yeY)
) Y

DEFINITION 1 ([3], p. 74). A subsemigroup T of G is called a Schur—

semigroup (¢z short: S-semigroup) on G if it has a unit element and if there
exists a set T C G such that

(1) G= U %
GE€ET
(2) =T or SNC =0 jfor all $,C€g.
(3) ‘6’—1::{g--11g€"6}63 Jor all T€g.
4) X= U € foral XeT.
TES
TNX+0

(5) T is generated by T, that is every element of T is the product of a finite
number of elements of X.

Note that T is uniquely determined by T and the axioms (1)-(5). There-
fore we call the elements of T the T-classes of G.

Thus Lemmas 1 and 2 show that S(HH/HNK) is an S-semigroup on H
with the set {HNKZK | 2 € H} as the set of all S(H/HN K)—classes of H.
Obviously, the double coset S-semigroup HK/K is an S—semigroup on HK
(and that is the reason for having chosen the term double coset S—semigroup).

For the generalization of the Second Isomorphism Theorem which we
are going to establish we take the S-semigroup S(H/HNK) as a factor
structure of H modulo HNK. Now we have both factor structures of our
still hypothetical Isomorphism Theorem. We will deal now with the relev-
ant notion of ismorphism. ‘

Let F be a group, Z an S—semigroup on F, and & the set of all Z—classes
of F (that is & plays the same réle for X as T does for T).

DEFINITION 2 ([3], Definition 2.1). A4 mapping ¢ of T into S is called
a homomorphism of the S—semigroup T on G into the S—semigroup % on F
if it has the following properties.

(1) (XY)? = X®Y® for all X, Y €T,

(2) For every T—class © of G there exists a Z~class & of F such that
TP =8 and (TTHP=s"L

(3) X®= U %* for all X €T.

GET
GCX
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A homomorphism ¢ : T — X is called an isomorphism if o is a bijective
mapping.
To return to our problem, let us look at the mapping

: X -HNX (X e HK/K).

We want to show that ¢ is an isomorphism of the double coset S—semigroup
HK/K onto the S-semigroup S(H/HNK). By Lemma 1 (4)

(XY)* = X¥Y? holds for all X,V € HK/K.
Every element X € HK/K is the product
X = KuK) - (Ki K)
of a finite number of double cosets modulo K. Hence
X? = KuK)?®* (Kt K)¥=HnNKnK) - (HN Kk, K)

is an element of the S—semigroup S(H/HN K) by the definition of S(H/HN K).
Therefore ¢ really is a mapping of HK/K into S(H/HNK). Furthermore,
Definition 2 (2) holds for ¢ because

(KZK)* = HNK4K  and  ((KAK) ™Y = (HAKZK) ™.

Definition 2 (3) is satisfied as well since

g€X

XP—HN U KgK= U (HAKeK)= U (KgK)".
g€X g€ X

Thus we have proved that ¢ is a homomorphism of the double coset S—semi-
group HK/K onto the S-semigroup S(H/H N K). Finally, the arguments
of the proof of Lemma 1 (4) show that

v:Y —-KY (YeSH/HNK))
is the inverse mapping of ¢. Therefore ¢ is an isomorphism. Now we are
able to state the intended generalization of the Second Isomorphism Theorem.
THEOREM 1. Let G be a group, and assume that H and K are subgroups
of G suck that HK = KH holds. T, hen

(1) The semigroup S(HH O K) with respect to the subset multiplication
which is generated by the set {(HNKAK|h€H} is an S-semigroup
on H contained in HHNK: = {z == Z CH|HNK)ZHNK) =Z}.

(2) The mapping

9: X -HNX
i an isomorphism of the double coset S—semigroup HK[K on HK
onto the S—semigroup SHHNK) on H, and
$:Y = KY

1S its inverse.
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In general, SH/HNK)=H/HNK will not be true. ~We ask for
conditions that this equality hold. For that end another concept is needed.

DEFINITION 3 ([3], Definition 1.9). LZet T be an S—semigroup on the

group G, and T the set of all T—classes of G. Let N be a subgroup of G such
that

(1) N= u %.
zex
GNN+0
(2) N€ = @GN for all T€Z.

Then N is called a T-normal subgroup of G.

If we apply Definition 3 to the double coset S-semigroup HK/HN K
then a subgroup N of HK is HK/HN K-normal if and only if

(1) HNK <N,
(2) N HNK)g(HNK) = HNK)g HNK)N for all g € HK.

THEOREM 2. Under the hypotheses of Theorem 1 the following are equival-
ent.

(1) S(HHNK) = HHNK.
(2) K 4s an HK/HN K-normal subgroup of HK.
Proof. Assume that (1) holds. Then, by Definition 2,
(KAK)® = HNKZK = (HNK) 2 (HNK) for all /€ H.

For every g € HK there exist £ € K and Z€H such that g = £4. Therefore,
using the arguments of the proof of Lemma 1 (4),

KHMNK) g HNK)=Kz2HNK)=KHMNK)2HNK) =
= K (HNK/ZK) = KZK = KgK.
The arguments of the proof of Lemma 1 (4) can also be applied to the cosets
/K instead of the cosets K/%, and g € HK can be written as g = 4’ 2" with
%' €H and £ € K. Hence
HNK) g HNK)K = HNK)Z K=HnK)2Z HNK)K =
= HNKAZK) K = K/'K = KgK.
It follows that K is an HK/HN K-normal subgroup of HK, i.e. (2) holds.
Conversely, (2) implies (1) by the Second Isomorphism Theorem for S-semi-

groups ([3], Theorem 2.13).
Let us finish this paper with comments on Theorem 1.

I. Theorem 1 shows that the property of an S—semigroup to be a double
coset S-semigroup is not invariant under isomorphisms since S(H/HN K)
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is, in general, not a double coset S—semigroup though it is isomorphic to the
double coset S—semigroup HK/K. Vet it is easy to see that every homo-
morphic image of a double coset S—semigroup into any double coset S—semi-
group is again a double coset S-semigroup. The point is that though
SH/HANK) is contained in HHHN K the mapping ¢ : X - HN X need not
yield a homomorphism in the sense of Definition 2 of the double coset
S—semigroup HK/K into the double coset S-semigroup H/HN K.

II. Theorem 1 also shows that the notion of S-semigroup has a sort
of ‘“ categorical 7 property in the following sense. Given any group H and
any subgroup D of H, then the S-semigroups on H which are contained in
H/D yield, up to a certain degree, information on the possible embeddings
of H into a group G such that

G=HK and HnNnK=D

holds for a subgroup K of G. In fact, not all S-semigroups on H contained
in H/D are relevant to that sort of embedding, but only those which are iso-
morphic to double coset S-semigroups, namely isomorphic to S(H/HNK)
for a possible embedding of H in the described sense.

III. Our remark II points to applications of Theorem 1 in the follow-
ing direction. Let G be a transitive permutation group on a set Q. Let G,
denote the stabilizer in G of a letter « € Q. Assume further that H is a
transitive subgroup of G. This means that

G = HG, = G, H

holds. Thus we have the situation of Theorem 1, and the double coset S—
semigroup G/G, is isomorphic to the S-semigroup S(H/H NG,).

As for the meaning of the double coset S—semigroup G/G, as a sort of
‘““ endomorphism ring ” for the transitive permutation group G we refer the
reader to [4], Section 10. There the isomorphy class [G/G,] has been introduc-
ed as the #ype of the transitive permutation group G.

To indicate how the applications of Theorem 1 will work it should be
noted that every subgroup U of G such that G, < U < G is mapped (in the
sense of [3], Proposition 2.2) by the isomorphism ¢ : X—-HNX onto the
subgroup HNU of H which has the properties

HNnU= U HNG 4G, and HNG, <HNU < H.
AeHAU
Thus the transitive permutation group G is primitive if and only if there does
not exist any subgroup V of H such that
V= Uv HNG,vG,) and HNG, <V < H.
ve
Then we call SH/HNG,) a primitive S—semigroup.

Also the number of G/G,~classes of G is equal to the number of orbits

of G,. For instance, G is two-fold transitive if and only if G has exactly
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two G/Gg-classes. Therefore, if H has no primitive S-semigroups contained
in H/HNG, other than the trivial one which is defined by the subsets
HNG, and H\ (HNG,), then G must be either imprimitive or two-fold
transitive.

Thus some of the properties of the transitive permutation group G
can be decided internally within the smaller transitive group H by the
properties of the existing S-semigroups on H contained in H/HNG,.

What we have indicated in I1I is just the method of Schur in a general
form for abitrary groups which, incidentally, justifies our notation of Schur-
semigroup. In fact, Theorem 1 is just the straightforward generalization of
SCHUR’s Theorem of the ‘ transitivity module” of G, (cf. [6], Theorem 24.1)
to arbitrary groups and S—semigroups, a fact which the author wishes to
acknowledge expressis verbis.
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