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Algebra lineare. — On Decompositions of Matrix Spaces with
Applications to Matyix Equations®. Nota ) di Apt BEN-ISRAEL, pre-
sentata dal Socio B. SEGRE.

RIASSUNTO. — Si dimostra un teorema di decomposizione dello spazio C”*”, delle
matrici complesse 72X 7, in una somma diretta di sottospazi ortogonali complementari, come
conseguenza di un teorema corrispondente dello spazio vettoriale di dimensione #z7.
Si danno inoltre delle applicazioni per equazioni matriciali.

INTRODUCTION.

mXn

A theorem on the decomposition of C”*", the space of 7 X# complex
matrices, into a direct sum of orthogonal complementary subspaces [1] is
proved here as a consequence of the corresponding theorem in C””, the mu
dimensional complex vector space. Applications to matrix equations are
given.

§ 0. — NOTATIONS.

C” the 7-dimensional complex vector space

(x,9) = ¥ x; 7; the standard inner product in C*

|zl = (xl, x)2 the Euclidean norm in C~.
For any subspace L of C*:

L' the orthogonal complement of L

C*" =L ®M denotes M =L}

Cmxn the space of 7 Xn complex matrices.
For any A eC™*":

A’ the transpose of A

A* the conjugate transpose of A

A+ the generalized inverse of A. [6]

R (A) the range of A

N (A) the null space of A.

For any subspace L of C™
Pp the perpendicular projection on L
ie. PL =P =P, R(P)=L.
For any A e C"*" | B € C**? the Kronecker product of A, B is
A®B=(a;B)eC”™™ (GG =1, - m; j= 1, -+, 7),[s]
If not specified, the dimensions of matrices should be clear from the
context.

(*) Acknowledgement: This research was partially supported by the National Science
Foundation, Project GP 7550 at Northwestern University.
(**) Pervenuta all’Accademia il 3 ottobre 1968.
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§ 1. — A CORRESPONDENCE BETWEEN C””” aAxp C™”.

Aside from the practical aspect of representing matrices on tapes or punch-
ed cards, there seems to be little interest or use in the observation that any
m X7 matrix may be regarded as an mn-dimensional vector. While most
of the interesting matrix properties are lost in passing from C™*” to C™"
those vector properties of linearity, convexity, standard inner product and
the Euclidean norm are naturally preserved by the following correspondence.

Definition 1: Let v:C""" —C™ be the mapping assigning to any
X = (x,) €C™" the vector v (X)= (), (=1, -+, mn),
given by Up(imly4j = Xy (=1, ym;j=1,,n)
ie. v (X) is the vector obtained by reading the rows of X one by one.
The mapping v induces in C”*” the inner product

(1) X, V) =@X),v(Y) =X x,7,; = trace Y*X
7
and the norm

@) X =100k = (ke

Since v : C"""—C™ is a nonsingular linear transformation it is clear that L
is a subspace of C""" if and only if o (L) is a subspace of C"*, and that
dim L = dim » (L). The following subspaces in C”*” are of special interest:

Definition 2: For any A € C"*? B e Coxn

3) R(A,B)={X:X =AYB for some Y €C?"|
the range of (A, B)
(4) N(A,B)={Y:AYB = o}

the null space of (A, B).
The vector space counterparts of these subspaces are given in:

LEMMA 1:
i 2(R(A,B)=RA®BY
(i) (N (A, B)) =N (AQB.

Proof —Follows from the easily verified

(5) v(AYB) = (A®B) v (Y), for all Y, eg. [5] p. o

n

Not all the subspaces in C"*" are of the form (3) or (4) since not all
the mnXpg matrices are of the form A®B’,A €C™? BeC™"  For
example, the subspace of symmetric matrices in R"*” can be represented
in the form (3) but only after rearrangement of components.
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§ 2. — ON RANGE-NULL SPACE DECOMPOSITIONS OF C”*”

For any A € C™*" we recall that

(6) C” = R(A)®N (A¥)
The analogous result in C"*” is:

THEOREM 1 ([1], [3]).—For any A €Cmxt B eCexm
(7) C"" = R (A, BYDN (A*, B¥).

Proof —Follows from lemma 1 since, by (6), the subspaces
RA®B)=vRA,B)
and
N (A®BH*) = N (A*®@ B*) = v (N (A*, B¥))

mn

are orthogonal complements in C"".

This theorem may be stated more generally [1], but the restriction to
matrices makes possible the above elementary derivation.

Before giving the perpendicular projections corresponding to the decom-
position (7) we need: :

LEMMA 2.—ZLet S, T,S;,T; (¢ =1, --,%) be matrix spaces and let
A A
fIIsi—=s,: [IT.—~T
z==1 =1

be a mapping satisfying:

() For all A;e€S;, B, €T, d=1,---,4)

S, A S By, By =f (G-, Gy
where for i =1, -,k
C,=A;B; or B;A, ®
() I[fA G=1, .-,k are Hermitian then so is f (A1, -+, Ay).
Then:
(8) (A1, AT =F AL, AF)
Jor all
A, €S, =1, 4k).

Proof —The right side of (8) satisfies the defining conditions of the
generalized inverse of f(Ayr,---, Ay, e.g. [6].

(1) One choice for each i but possibly different choices for different 7, e.g. f (A1, Ag)
f(B1, B2) = f (A1 B1, Ba Ap).
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COROLLARY 1.—For any matrices A, B.

() (AYr=@ry @
(i) (A®B)* = A+®B+

Proof—Use lemma 2 with:

() &=1.,7(A)= A
iy £=2,f(A,B)=A®B

and verify in each case that f satisfies conditions (i), (ii) of lemma 2.

COROLLARY 2.—7Ve perpendicular projections of C™™" on the subspaces
R (A, B), N (A*, B*) of theorem 1 are given by:

9 Prapy X = AA+ XB+ B
(10) Pyarpy X = X —AA+XB+ B

Proof—(9) follows from (5) and lemma 1 since

Prage, = (A®B) (A BT , eg. [3]
= (A®BY) (A*®B+) , by corollary 1
= (AAY)® (BT BY ,  cg. [s]

(10), follows now from (9) and (7).
The projection (9) is rewritten as

Prea,p) X = Pray XPgrey
and (10), by subtracting and adding AA* X, becomes
Pxasy X = Pxany X + Pray XPy,
or alfernatively |
Py, py X = Pnax XPR(B*> + XPye).
The corresponding projections in C”” are therefore

o z
RAA®B) — P R(A) ® PR(B*)

P P

o(R(A,BY)

Pz/(N(A*,B*)) = PN(A*@B*f

®I+P.,  ®P

y T P R(A) N(B)

N(A%)

=P ,®P,  +IQFP

N(A%) R(B¥) N(B)*

(2) This is different from
(AX)F = (AT), [6]

which also can be proved by lemma 2.
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§ 3. — APPLICATIONS.

The above results have direct applications to matrix equations:
THEOREM 2 (PENROSE [6]).—7%e matrix equation

(11) AXB =C

is solvable if, and only if

(12) AA*CB+B =C

in which case the gemeral solution is

(13) A+*CB* + Y —A+AYBB*, Y arbitrary

Proof —(11) is solvable if, and only if C € R (A, B) which proves (12) by
using (9). The general solution is any particular solution, e.g. A+CB+ by (12),
plus the general element of N (A, B) which by (10) proves (13). The least
squares solution of (11) are also easily obtainable from the above results:

THEOREM 3 (PENROSE [7]).—7%e matrix
(14) A+ CB+
s of minimal norm (2) among all matrices minimizing
|AXB —C|.

Proof —It follows from the corresponding result in C”* that the vector
(A®BN)* 2 (C) = (A*®B*) v (C) = v (A+*CB*) is of minimal norm among
all vectors minimizing

[A®B) 0 (X) —v(C)] = | v (AXB —C)]
The following characterization of A+ is also interesting:
COROLLARY 3.—Let A € C"*" and X satisfy
(1%) AXA = A,
Then the following are equivalent:
i X=A+
(i) X eR(A*, A%
(i) X is the minimal norm (2) solution of (13).
Proof —The general solution of (15) is
(16) X =A+AA+ + Y —A+*AYAA+ | by (13)
= A* + Pxan Y , by (10)
(i) = (ii) now follows from (7) since

At = AT AATAAT = A* A+ At Ax+ A¥ € R (A% | A¥)
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and (i) &= (iii) from
X[ =1A%2 + [Pvany Y in (16).

An application to matrix inequalities will now be given. For any
X = (x;) € R""" we denote by X= o the fact

X;=0(E =1, ,m ; j=1, - n).

COROLLARY 4.—Let A, B, C be real matrices. Then the system of equa-
tions and inequalities

(17) AXB =C
is solvable if, and only if,

, X

v

o

(18) A'UB! =z o implies: trace U‘CZ= o.

Proof —The solvability of (17) is equivalent to that of
A®BY v (X)=2(C) , o2(X)=o
which by Farkas’ theorem [4] is equivalent to:
ABY2(U) = o implies (v (U), v(C)) > o
or, by (5) and (1), to (18).

Applications of these results to iterative methods of generalized inversion
are given in [10]. In particular it is shown that for Xo € R (A* A*) the
iterative method [2] (or the higher order methods of [8], [9]):

Xpr1 = Xz (21 — AX)) (f=o0,1,-)
converges to At if, and only if the spectral radius:

o (Pray —AXp) <1,
but that it may diverge for Xo with Py a) Xo == 0 even if

o (Pray —AXo) = o0

e A= (1 1) Xe=2 (! e} TH) ko
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