ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ASRIEL EVYATAR, MEIR REICHAW

A note on connectedness

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 44 (1968), n.6, p. 748–752.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1968_8_44_6_748_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Matematica. — A note on connectedness. Nota di Asriel Evyatar e Meir Reichaw, presentata ^(*) dal Socio B. Segre.

RIASSUNTO. — Caratterizzazioni di alcuni tipi di connessione per sottoinsiemi di uno spazio di Banach ad infinite dimensioni.

Let Y be a topological space and let JCY be a subset of Y. The questions: when is Y — J connected, locally connected, arcwise connected or locally arcwise connected have been investigated by a number of writers. Some classical answers can be formulated for closed subsets J of a Banach space Y in terms of extension properties of compact fields J (see [6]). Another answer to the above questions follows from results obtained recently in [1]-[5], [9] and [10]. In particular, the results obtained in [1], [2] and [9] imply that if Y is a separable infinite dimensional Banach space and $\{\mathrm{K}_i\}\,i=$ I , 2 , \cdots a sequence of compact subsets of Y then $\mathrm{Y}-\overset{\infty}{\cup}\mathrm{K}_i$ is a locally arcwise connected, arcwise connected space. The first of these questions is related also to the important problem of finding conditions under which a mapping $f: X \to Y$ maps X onto Y (see [11], Theorem 2, p. 1400). In this paper some conditions are found (Theorem 1) for a set $J \subset Y$ so that the set Y - J turns out to be locally arcwise connected and arcwise connected for locally normed topological (not necessarily linear, see Definition 1) spaces Y. These spaces include connected open subsets Y of infinite dimensional Banach spaces when $J \subset \bigcup_{i=1}^{\infty} K_i$, where K_i are compact sets $i = 1, 2, \cdots$ (Theorem 2) and connected open subsets Y of a Euclidean (n+2) — dimensional space when $J \subset \bigcup_{i=1}^{\infty} K_i$, where K_i $i = 1, 2, \cdots$ are compact spaces of dimension $\leq n$ (corollary 1). Theorem 3 is related to a result of A. Sard (see [12]).

In what follows B(ε) denotes the open ball $\{x ; ||x|| < \varepsilon\}$ in a normed space, \overline{P} the closure of P, δP the boundary of P, "iff" stands for "if and only if" and "*nbd*" for "neighborhood". Finally, [x, z] is the closed interval with endpoints $x, z, y, \overline{y}, \overline{z}$ is an arc with endpoints y, z, and a locally complete space is a space Y such that for each point $y \in Y$ there exists a *nbd* of y homeomorphic with a complete metric space.

Definition 1.—A space Y will be called locally normed iff for every point $y \in Y$ there exists an open ball B (ε) contained in some normed space X = X (y) and a homeomorphism $h = h_y$ defined on $\overline{B}(\varepsilon)$ such that $D=D(y)=h(B(\varepsilon))$ is an open subset of Y, $h(\overline{B}(\varepsilon)) = \overline{D}(y)$ and h(o) = y.

(*) Nella seduta dell'8 giugno 1968.

In the sequel $D = D(y) = h(B(\varepsilon))$ and h will stand for the sets and the homeormorphism defined above.

Definition 2.—Let Y be a locally normed space and let $D = h(B(\varepsilon))$ be an open *nbd* of $y \in Y$. Let $A \subset Y$, $K = A \cap \overline{D}$ and let $y_0 \in \overline{D}$. The \overline{D} -cone $C(A, y_0, \overline{D})$ is defined as follows: take the point $x \in h^{-1}(K)$ and let r(x) be the ray starting at $x_0 = h^{-1}(y_0)$ and passing through x. Let z = z(x) be the (unique) point of intersection $z \in r(x) \cap \partial B$ (if $x = x_0$, take z(x) = x) and let $C_0 = \bigcup \{ [x_0, z(x)] ; x \in h^{-1}(K) \}$. We put $C(A, y_0, \overline{D}) =$ $= h(C_0)$ and call this set the \overline{D} -cone with vertex y_0 passing through A.

Definition 3.—A subset ACY will be called strongly nowhere dense at the point $y \in Y$ (snd at y) iff there exists an open nbd $D = h(B(\varepsilon))$ of y such that for every $y_0 \in \overline{D}$ the \overline{D} -cone C (A, y_0 , \overline{D}) is nowhere dense in \overline{D} . A subset ACY is snd iff it is snd at every point $y \in Y$. A family F of sets A is said to be snd at $y \in Y$ iff there exists an open nbd $D = h(B(\varepsilon))$ of y such that for every A of F and every $y_0 \in \overline{D}$ the \overline{D} -cone C (A, y_0 , \overline{D}) is nowhere dense in \overline{D} . If F is snd at every point $y \in Y$ then F is said to be snd.

Examples.—(a) If $Y \subset E^{n+2}$ is an open subset of the (n + 2)—dimensional Euclidean space E^{n+2} , then the family of all sets $A \subset Y$ for which there exists a compact *n*-dimensional (see [8]) subset $K \subset E^{n+2}$, with $A \subset K$, is *snd*.

(b) If Y is an open subset of an infinite dimensional Banach space Y_1 then the family of all subsets AC Y for which there exists a compact subset K of Y_1 with AC K is *snd*.

LEMMA I.—If Y is a locally normed space, $y \in Y$ and $A \subset Y$ is snd at y then for every open nbd U of y there exists an open nbd $D = D(y) = h(B(\varepsilon))$ of y such that $\overline{D} \subset U$, $\partial D = \overline{D} - D \neq \emptyset$, and such that for every point $y_0 \in \overline{D}$ the set $C(A, y_0, \overline{D}) \cap \partial D$ is nowhere dense in ∂D .

Proof.—By definition 3 and definition I there exists an open *nbd* $D = h(B(\varepsilon))$ with $\overline{D} \subset U$, $\partial D = \overline{D} - D \neq \emptyset$. Suppose now to the contrary that there exists a point $y_0 \in \overline{D}$ such that $\overline{C(A, y_0, \overline{D})} \cap \partial D$ contains an open (in ∂D) subset $L \neq \emptyset$. Then $\emptyset \neq h^{-1}(L) \subset \partial(B(\varepsilon))$. Thus the set $\cup \{[h^{-1}(y_0), x]; x \in h^{-1}(L)\}$ contains an open subset of $B(\varepsilon)$. Hence $C(A, y_0, \overline{D})$ is not nowhere dense in \overline{D} , contradicting the assumption that A is *snd* at *y*.

LEMMA 2.—Let $F = \{A_i\}_{i=1,2,...}$ be a sequence of subsets of a locally normed space Y and let $D = h(B(\varepsilon))$ be an open nbd of $y \in Y$, such that $C(A_i, y_0, \overline{D})$ is nowhere dense in \overline{D} for every $y_0 \in \overline{D}$. Let $S = \{y_j\}_{j=1,2,...}$ be a sequence of points contained in $\overline{D} - \bigcup_{i=1}^{\infty} A_i$. Then the set of all points $z_0 \in \partial D$ such that

(I)
$$C(S, z_0, \overline{D}) \cap (\bigcup_{i=1}^{\infty} A_i) \neq \emptyset$$

is of the first category in ∂D .

Proof.—For each y_j we have as in Lemma 1, that $C(A_i, y_j, \overline{D}) \cap \partial D$ is nowhere dense in ∂D . Thus $\bigcup C(A_i, y_j, \overline{D}) \cap \partial D$ is of the first category in ∂D and the Lemma holds.

THEOREM 1.—If Y is a locally normed connected and locally complete space and $F = \{A_i\}_{i=1,2,...}$ is a sequence of sets which is snd then $Y = \bigcup_{i=1}^{\infty} A_i$ is a locally arcwise connected and arcwise connected space.

Proof.—Let $y \in Y$ be a given point and let U be an arbitrary open *nbd* of y. Applying Lemma I and Lemma 2 one obtains an open *nbd* D = D(y) = $= h(B(\varepsilon))$ with $\overline{D} \subset U$ such that for every two points y_1 and y_2 of $\overline{D} - \bigcup_{i=1}^{\cup} A_i$ the set of all points $y_0 \in \partial D$ for which $C(S, y_0, \overline{D}) \cap (\bigcup_{i=1}^{\infty} A_i) \neq \emptyset$ is of the first category in ∂D , where $S = \{y_1, y_2\}$ is the sequence consisting of the two points y_1 and y_2 . Since by Lemma I $\partial D \neq \emptyset$ it follows by the local completeness of Y that there exists a point z_0 for which (I) does not hold. Hence there exist two arcs $R_1 = \widehat{y_1}, z_0$ and $R_2 = \widehat{y_2}, z_0$ contained in $\overline{D} - \bigcup_{i=1}^{\infty} A_i$ (we have even $R_1 \cap R_2 = \{z_0\}$). Thus

(2) for each open *nbd* U of y there exists an open *nbd* $D \subset \overline{D} \subset U$ such that every two points y_1 and y_2 of $D - \bigcup_{i=1}^{\infty} A_i$ can be joined by an arc in U.

If follows that $Y - \bigcup_{i=1}^{\infty} A_i$ is locally arcwise connected. Let now z and z^* be arbitrary points of Y. Since Y is connected there exists by (2) a simple chain $D_j = D(z_j) = h(B(\varepsilon_j))$ $j = 1, 2, \dots, n$ of open neighborhoods (see [7], p. 108) with $z_1 = z$ and $z_n = z^*$ such that $D(z_j) - \bigcup_{i=1}^{\infty} A_i$ is arcwise connected, $j = 1, 2, \dots, n$. Moreover since Y is locally complete, and the sequence $\{A_i\}$ is *snd* it follows that for every $j = 1, 2, \dots, n - 1$ one has $(D(z_j) - \bigcup_{i=1}^{\infty} A_i) \cap (D(z_{j+1}) - \bigcup_{i=1}^{\infty} A_i) \neq \emptyset$. Hence $Y - \bigcup_{i=1}^{\infty} A_i$ is arcwise connected. Theorem 1 is proved.

COROLLARY I.—Let $Y \subset E^{n+2}$ be an open, connected subset of a (n + 2)—dimensional Euclidean space E^{n+2} and let $\{A_i\}$ and $\{K_i\}$ be sequences of sets of E^{n+2} with $A_i \subset K_i$ and K_i compact and at most n-dimensional (in the sense of Menger–Urysohn, see [8]). Then $Y - \bigcup_{i=1}^{\infty} A_i$ is a locally arcwise connected and arcwise connected set.

Proof.—The space Y is a locally normed connected and locally complete space and the sequence $\{A_i\}$ is *snd*. It remains to apply Theorem 1.

We prove now

THEOREM 2.—Let Y be an open connected subset of an infinite dimensional Banach space Y_1 and let $\{A_i\}$ and $\{K_i\}$ be sequences of sets of Y_1 with $A_i \subset K_i$ and K_i compact. Then $Y \longrightarrow_{i=1}^{\infty} A_i$ is a locally arcwise connected and arcwise connected set. *Proof.*—Since Y_1 is infinite dimensional and K_i are compact $i = 1, 2, \cdots$ the sequence $\{A_i\}$ is *snd*. Y being connected and locally complete, it remains to apply Theorem 1.

COROLLARY 2.—Let $\{y_n\}_{n=1,2,...}$ be a sequence of points in an open connected subset Y of an infinite dimensional Banach space Y_1 and let $\{Q_{n,i}\}_{i=1,2...}$ be a sequence of finite dimensional planes passing through y_n . Then $Y \longrightarrow Q_{n,i}$ is a locally arcwise connected and arcwise connected set.

Proof.—Represent each $Q_{n,i}$ as a countable union $Q_{n,i} = \bigcup_{j=1}^{\infty} K_{n,i,j}$ of compact subsets of Y_1 and apply Theorem 2.

The following example—communicated to the authors by A. Ran—shows that Theorem 2 does not have a natural generalization to infinite dimensional linear topological locally convex spaces.

Example.—Let $Y = l_2$ be the Hilbert space of all points $y = (y_1, y_2, \cdots)$ y_i —real numbers and $\sum_{i=1}^{\infty} y_i^2 < \infty$, with the *weak* topology. Let $A = \{a_i\}_{i=1,2,\cdots}$ be a dense (in the norm topology) sequence in Y and let $\overline{B}(a_i, 1) = \overline{B}_i = \{y; \|y - a_i\| \le 1\}$ be the closed ball of radius I and center $a_i, i = 1, 2, \cdots$. Take any two points $x_0 \neq y_0$ of Y. The set $Y - (\{x_0\} \cup \{y_0\})$ can be covered by the sequence $\{K_i\}$ of compact (in the weak topology) sets where $K_i = \overline{B}_i, i = 1, 2, \cdots$. But obviously $\{x_0\} \cup \{y_0\}$ is not connected.

We end the paper with the following

THEOREM 3.—Let $f: X \to Y$ be a mapping (not necessarily continuous) of a second—countable topological space X into an infinite dimensional Banach space Y and let Z be the set of all points $z_0 \in X$ such that there exists an open set U (z_0) = U with f(U) contained in a finite dimensional plane Q = Q (z_0) (depending on z_0 and U). Then f(Z) is of the first category in Y and Y—f(Z)is locally arcwise connected and arcwise connected.

Proof.—Since X is second—countable one can find a countable family $U_n = U(z_n)$, $z_n \in \mathbb{Z}$ covering Z. For every point z_n , the set $f(U_n)$ is contained in a finite dimensional plane $Q_n = Q(z_n)$. Thus $f(U_n)$ can be covered by a countable family of compact sets $K_{n,i} i = 1, 2, \cdots$. Hence $f(\mathbb{Z}) \subset \bigcup K_{n,i}$ and it follows that $f(\mathbb{Z})$ is of the first category in Y. By Theorem 2, $\mathbb{Y} \stackrel{n,i}{\longrightarrow} f(\mathbb{Z})$ is also locally arcwise connected and arcwise connected.

Remark.—As easily seen Theorem 3 holds when Y is an arbitrary connected, open subset of an infinite dimensional Banach space.

References.

- [I] R. D. ANDERSON, Hilbert space is homeomorphic to the countable infinite product of lines, « Bull. Amer. Math. Soc. », 72, 515–519 (1966).
- [2] R. D. ANDERSON, Topological properties of the Hilbert cube and the infinite product of open intervals, «Trans. Amer. Math. Soc. », 126, 200-216 (1967).
- [3] C. BESSAGA, On topological classification of complete linear metric spaces, «Fund. Math.», 55, 251-288 (1965).

- [4] C. BESSAGA and V. KLEE, Two topological properties of topological linear spaces, « Israel Journal Math. », 2, 211-220 (1964).
- [5] C. BESSAGA and A. PELCZYNSKI, Some remarks on homeomorphisms of F-spaces, Gauthier - Villars, « Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. », 10, 265-270 (1962).
- [6] A. GRANAS, On the disconnection of Banach spaces, « Fund. Math. », 48, 189-200 (1960).
- [7] J. G. HOCKING and G. S. YOUNG, Topology, Addison Wesley, I.N.C. (1961).
- [8] W. HUREWICZ and J. WALLMAN, Dimension theory (1941).
- [9] M. I. KADEC, On topological equivalence of separable Banach spaces, "Dokl. Akad. Nauk S.S.S.R. », 167, 319-322 (1966).
- [10] V. KLEE, Connectedness in topological linear spaces, «Israel Journal of Mathematics», 2, 127-131 (1964).
- [11] M. REICHBACH (M. Reichaw), Some theorems on mappings onto, "Pacific Journal of Mathematics", 10, 1397-1407 (1960).
- [12] A. SARD, The measure of the critical values of differentiable maps, "Bull. Amer. Math. Soc. », 48, 883-890 (1942).