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Algebra. — 7%e Matric Equation AX, - -- X,=B. Nota di
A. Duane PorTER, presentata @ dal Socio B. SEGRE.

RIASSUNTO. — Si determina il numero delle soluzioni dell’equazione matriciale
AXi...X, =B sopra un campo di Galois.

I. INTRODUCTION.—Let F = GF (y) be the finite field of y = 5/ elements,
# odd. Matrices with elements from F will be denoted by Roman capitals
A,B,---. A@n,s) will denote a matrix of # rows and s columns, and
Aln,s; r) a matrix of the same dimensions with rank ». I, will denote the
identity matrix of order », and I (7, 5 ;7) a matrix of # rows and s columns
having I, in its upper left hand corner and zeros elsewhere.

Let A=A (n,s;7) and B=B (n,¢;%) with » >u. John H. Hod-
ges [4] found the number of solutions X = X (s, #) over F of the matrix
equation AX = B. The problems of determining the number of solutions
to various matric equations has also been considered in a number of other
papers, e.g. [1], [2], [3], [5]. In this note we wish to generalize [4] and
so consider the number of solutions Xj,---, X, over F of the equation

(1.1) AX; - X, =B,
With A, B defined as above; ¢ >2;X; = X, (s, 5,), X, = X, (S4—1, %), and

for 1 <7 <a we have X;= X, (sl 1,9%;) Where s;, 1 <i<a represents
an arbitrary positive integer.

2. NOTATION AND PRELIMINARIES.—If A= (8;)= A (», 7) then o(a) =
= B+ -+ B,, is the trace of A, and it is noted [s; § 2] that for AB
square we have o (AB) = ¢ (BA). Also, it is clear that ¢ (A -+ B)=06CA) +
+ 6 (B). With F as previously defined and « € F, we define
(2.1) e(w)=-exp(mit(@)[p) ; t(@)=oa-+ a4+ .. gt/

from which it follows that

\e<a+s>:e<«>e<s> and
k @B =

where the sum is over all Be€F. By use of (2.2), we may obtain for

A=A(m,n)

(2.2)

:O)

O,a==0,

¢

( mn)A: ,
(2.3 T, cle@my= 0

D (n,m)

with the sum over all matrices D = D (z, m).

(*) Nella seduta dell’8 giugno 1968.
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If B= B (s,#;u«), then following [3; 8.4], we define
(2.4) HB,9= % (o0,

with the sum over all C =C (¢, s;2). The value of this sum is given [3;
Theorem 7] to be

2z

(25) H(B,2) =g X (— /g2 " g(c—u,t—uss—j),
7=0 )

where the bracket in (2.5) denotes the g-binomial coefficient defined for
nonnegative integers by

[ﬂ:l , [ﬂ:il:[:%:;’;—:; if 1<i<u, {Z;./}:o if 7 >w,

and g (m , % ; y) represents the number of 7 X 4 matrices of rank y. By [6]
we have

@6)  gOn, kiy) =g o L@t —1) @ ig — ).

From (2.5) it is clear that H (B, 2) depends only upon the integers s, ¢, 2, z,
so we may write

(2.7) HB,s)=H(,¢t,u%;2).
Finally, as is noted in [3; p. 507], H(s,?,0;2) =g (s,%;2).

3. THE CASE a = 2.—We first prove

THEOREM [.—Let n,s, s ,t represent avbitrary positive integers; v ,u
arbitrary integers with v >wu >0; A=AMm,s;r), B=B@xn,t;u),
X=X (6,5, Xog=Xy(51,8). Then the number Ny =Ny (s,51,%,7,u)
of solutions X, Xy of the matric equation

(3.1) AX,; X, = B,

if any exist, is given by

@#:7)
Ny = g/enten 3 H (r, ¢, u;2) g9,
z,=0
where (t,r) = minimum of t and r; H(r ¢, u;2) is given by (2.5) and (2.7)
with H(o,¢,0;0) = 1.
During the proof of Theorem I, we will also obtain a solvability crite-
rion for (3.1). We state this result now, for continuity of presentation.

THEOREM II.—/f P,Q, R, T are nonsingular matrices over ¥ such that
PAQ=1(n,s;7) and RBT =1 (n,¢;u), and if D =PR-1=(3;), then (3.1)
will have . solutions if and only if d;=o0 for r<i<m,1<j<u

It is of interest to note that Theorem II corresponds exactly to the sol-
vability criterion obtained by Hodges for the equation AX = B [4; Th. 2].
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Proofs. (of Theorem I and Theorem II)—If P,Q,R,T,D are as
defined in Theorem II, then (3.1) may be transformed into an equivalent
matrix equation

(3-2) I(n,s;7) Y1 Yo =DI (%, ¢; un),

with ¥V, =Q71X; =Y, (s,5) and YV,=X,T=Y,(s,,4),D=D (n, ).
By (2.3) the number of solutions of (3.2) is given by

Ngzg—”‘;yge{c([I(n,s;f)Yle-—DI(n,t;u)]C)},

where the sum over C is over all C = C (¢, %) and which, in view of (2.2),
may be written as

(3.3) N, =g—n1§e{_c(D1 (n,t;u)C)}YEY e{c(I(n,s;7) Y Y,0)}.

Since 6 (I (%,5;7)Y; Y,C) =06 (CI (%, s;7) Y; Y,), the inner sum in (3.3)
may be evaluated by (2.3) as

g, Cl (n,s5;7) Y1 = o,

o , otherwise.

(3-4) YEY e{c(Cl(n,s;7n) Y, Yy)} =

We now seek the number of solutions Yy (s1,#) of
(35) CI (%)S;r> Y1:O<t:51>'

We may write (3.5) as

CiCal|y o] [ = [Vl =o,

with Cp = C (f 7‘) Co = Ce (l‘ %—7") Yi=Yn (7’ Sl) Yo = Yz (s~r J‘1>
The choice of elements of Y1 corresponding to the block Yis is clearly arbi-
trary so their number is g2¢=, and if Ci is of rank 2,0 <z < (¢,7),
'the number of solutions of CiXm = o0 is given [4; Theorem I] to be
g¢—=). Hence, the number of solutions of (3.5) is g2¢—=) so that the value
of the sum in (3.4), subject to the condition rank Ci = 2, is

(36) gfl (s+2—2y),

We note that ¢ (DI (72, ¢; %) C) = 6 (CDI (, ¢ ; »)) and write CDI (2, #; u)
as '

[Cr, Col[p2t D] [

[C],Cz][] [CiDi 4 Ca D],

where D11’ = Dg1 (7" , %) , Dig = Das (7’ y B — %) , Do = Dgy (n—-—r, u) , Dog =
=D§z(n~—rb,n——u),D1: [Du,0]l =D1(r,¢; u),Ds = D21, 0] =
= D (# — 7, #). Hence, by (2.2) and the properties of the trace

e{—o(CDI(n,#;#)} =e{—c(CiD)}e{—o(CaDs)};

52. — RENDICONTI 1968, Vol. XLIV, fasc. 6.
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hence the summation over C in (3.3) is equivalent to the summation over C;
and Cp independently, so that

(3.7) ‘C‘:e{——G(CDI (%,z‘;%))}=;e{—cr(D] cg};e{—c@zcz)}.

In order for (3.6) to represent the value of the inner sum of (3.3), we must
have C; of a fixed rank. Hence, we divide the sum over C; into successive
sums over all Ct =Cy(¢,7;2),0 <z < (¢,7), and by (2.4) have

) )

(3.8) ;e{—c(DlCJ)}z EH (D1, 2) = }_:‘,H (r,t,u;2).

The value in (3.6) is independent of rank Cs so we have

‘ qt(w——r)’ DZZO,

(3-9) ;e{—c(DzC:z)}: ? o ., Dyko.

Theorem II follows from (3.9), since the value of (3.7) and thus the value
of (3.3) is not zero if and only if Dz = o, and D2 = o if and only if §; = o,
r<i<n,! <j<un where D= (3;).

If we now substitute (3.6) and the value of the left sum in (3.7) which
is given by (3.8) and (3.9) into (3.3) Theorem I is established.

4. THE GENERAL THEOREM.—We may now prove

THEOREM IIl.—LZet a be an integer > 1;m,5,t,51, +,S,—1 represent
arbitrary positive integers;, v, u represent arbitrary integers with v > u > 0;
A=A@m,s;r), B=B@xn,t;u), Xi=X1(s,s) , X; =X, (5521, 5) for
1<z <a,X,=2X,(Se1,?). Then the number N=N (a,s,¢,s;,7,u) of
solutions in ¥ of (1.1), if any exist, is given by

(7,2)
N = gf(fa—1—’)+”1+-“1‘z‘|‘“""v“a—zfa—l 2 H(,t,u $ 201 9*2a~1-‘a-.1 %
5,1 =0
a—1 Ca—it10Sa—it1)
X zIIz . E_O & (Baciv1 s Samiv1; Zai)g 0O
with (x,y) = minimum of x and v, H{,¢,u;2,.1) defined by (2.5);
g (m , k;y) defined by (2.6); and we define H (0,#,0;0) =g (0, %4;0) = 1;
the product over z is defined to be 1 for @ = 2; s,_9 = 0 for ¢ = 2.

During the proof of Theorem III, we will find that the solvability crite-
rion for the general equation is exactly the same as for the case a = 2.
Hence, we state

THEOREM IV.—A necessary and sufficient condition for the solvability
of (1.1) is obtained by replacing (3.1) by (1.1) in Theorem I1.

Proof—We prove theorem III by induction for all ¢>1. The case
for @ = 2 is proven in Theorem I, so we suppose Theorem III is valid for
a=k—1, and consider @ = £ > 3. By proceeding as in Theorem I, we
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obtain an equation corresponding to (3.3) which represents N, = number
of solutions of (1.1) for @ = £ as

(41) Ny=g X e{—o6DI(n,t;2)C} X, e{c(l(n,s;7) Y1 -Y,C},
c v, Y,

with C=C(¢,n). If we write C= [C1,Ce], with C=Cy1({#,7;2_1),

Co=Co (¢, 7n—7), then it is clear the value of the sum over C in (4.1) is

given by (3.8) and (3.9) to be
((%0]
(42)  Xe{—oDI(n,t;u)Cl=g'=" X H(r, ¢, u;z 1) D)
C 231=0
with ¢ (D2) = 1 or o depending on Dz = 0 or Dz == 0 where Ds is as defin-
ed below (3.6). Hence, the solvability criterion for the general case is exac-
tly as stated in Theorem IV.
By noting (2.3) and the properties of trace, we may evaluate the inner
sum in (4.1) as

ts
A—1 I . ... Y =
(4-3) E e{c(Cl(n,s;”Y1---Y,} = 7 yCl(m,s;7) Y1 —-1=0,
v, v, o yCl(,s;7) Y1 - Y, y=Fo.

We now need the number of solutions of the equation CI (z,s;7) Yi---
.Y, y=o0. If C is as defined above and Yi = col (Yu, Yi2) with
Yu=Yu{,s), Yio= Y2 (s —7, s;), this number is given by

(4.4 oo N,

where N = number of solutions of C; Yi1---Y,_1 = 0. Since the constant
in this equation is zero, the solvability condition is satisfied, so that N is
given our induction hypothesis to be

F sy 1(p_o—24 _()trsy -ty g5,
N = g%-1Cr—275—1+71 £—3k—2

(2p_1,55—1)
—z5 oS5
ws) X X H{zmer,s1,0;520) ¢ #72%2
4-5 | 2—2=0
) =2 Gp_isspy)

X H 2 &z, Sii; Bp_iq) g FimUhmim1,

=2 z_; =0
where s, 3 =o0 if £=3. If we recall that H (z_1,$-1,0;2._9) =
=g (8s—1, S4—1, Z2—2), and combine the results of (4.1) through (4.5), we
have ‘
, Vst (7:2)
s - ooty s z s
N, :q(k«l N)Fssybe a1 E H(r,t,u;5_0) g 1% x
Zk—1=0
£—2 @15z iq1)
sy Sy
X I; E & (Bhiv1 s Sh—it1; Zp—i) g AL
I= zp_ ;=0 .
But this is exactly Theorem III for @ = £ so that the theorem is proven for
all a > 2.
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