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Fisica matematica. — The Riemannian structure of space-time as 
a consequence of physical hypotheses. Nota di M a r io  C a s t a g n i n o  (#), 

p re se n ta ta ^  dal Corrisp. C . C a t t a n e o .

R ia s s u n t o .  — Si dimostra che dalla ipotesi che lo spazio-tempo V4 sia una varietà 
differenziabile dotata di una connessione lineare, dal principio fisico di equivalenza e dalPipo- 
tesi che la curvatura spazio-temporale non abbia influenza sulle costanti universali c ed h, 
discende come conseguenza necessaria il carattere riemanniano di V4 .

i .  In t r o d u c t io n .

General R elativ ity  is based on the Riemannian Hypothesis, which esta­
blishes th a t the space-tim e is endowed with a m athem atical structure of 
R iem annian M anifold. I t  is either introduced as a postulate or it is explained 
as a consequence of certain geom etrical hypotheses, th a t usually  consist in:

a) the assum ption th a t local inertial frames, where gravitational forces 
vanish, are small carthesian triads in “ uniform  motion

b) the existence of parallelogram s, in local, approxim ately flat, space.
But any one of these conjectures has a geometric character and they

can hard ly  be proved directly, even by an ideal experience; so we th ink th a t 
a system  of physical hypotheses yielding to the same goal is useful, even 
more, if the new hypotheses are better based, are more precisely stated and 
allow us more rigorous deductions.

Obviously we are forced to m ake some basic geom etric assum ptions 
to define our geometrical background:

H. I .  The space-time has a structure of differentiable manifold’. V 4.

H. 2. This manifold is connected by a linear connection

W e shall study our problem  only in connection with a set of “ classical ” 
phenom ena: inertial-gravitational and electromagnetic ones. So we are only 
interested in the m otion of free charged particles in (inertial-) gravitational 
and electrom agnetic fields. (We m ake one exception: in our research we also 
include the motion of a free photon in a (inertial-) gravitational field). A bout 
this kind of phenom ena we set a fundam ental physical hypothesis, the 
Principle of Equivalence’.

H. 3. For every point of space-time there always exists a coordinate 
system— we shall call it a local-inertial fram e— in which gravitation has no 
influence either on the motion of particles or on any other physical process.

(*) Departamento de Fisica, Universidad del Litoral, Argéntina. 
(**) Nella seduta del 9 marzo 1968.

38. — RENDICONTI 1968, Voi. XLIV, fase. 4.
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The laws of Special Relativity, expressed in the local inertial frame, are valid 
in that point <1).

Thus, in a particu lar point, all the tensorial entities th a t exist in Special 
R elativity  exist too in a local inertial frame, and therefore in all the frames 
of General Relativity. A nd all the algebraic laws tha t vinculate these tensorial 
entities in Special R elativity, are valid too in all the fram es of General R ela­
tivity. In  particular we arrive to an im portant conclusion: the m etric tensor 
g ÿ  exists and it keeps its usual properties.

L et us now consider the m ain problem: W hich is th e . connection of 
the m anifold?

W e shall find such a connection and prove th a t it is not unique. N ever­
theless the am biguity  is physically unim portant, for our set of phenom ena. 
Based on the fact th a t the space-time curvature has no influence on the 
constancy of the universal constants c and h we shall dem onstrate tha t this 
connection is the R iem annian one.

2. Mathematical preliminaries and  usual hypotheses.

L et us consider a four-dimensional differentiable m anifold V4: In  every 
point of V4, where we call t  the tangent space and, as we have just said 
based on H . 3, the m etric tensor t @ t  exists (signature + ,  +  , +  , —).

(1) The “ strong ” principle of equivalence, as stated by Pauli (cf. [13]) says: “ For 
every infinitely small world region (i.e. a world region which is so small that the space-time 
variation of gravity can be neglected in it) there always exists a coordinate system. K0 (Xi , 
X a, X3,X4) in which gravitation has no influence either on the motion of particles or any 
other physical process ”.

H. 3 is a little different, we have changed the small region by the tangent space, in 
order to avoid the problem of the region’s size (cf. [6], [7] and [8]).

We must also establish a criterion to know how to choose between two different laws,
* • • ' . / id? \of Special Relativity, regarding to a physical phenomena, \e.g. {a) —3— =  o, (̂ ) ——  = 0 )\ dv dT2 /

which will lead us to contradictory laws in General Relativity. We shall always choose the 
law that yields to a better approximation between Special Relativity and General Relatiyity* 
in the local inertial frame (e. g. Law (a) leads to:

X * = X q u * t  -}- O ( t 2),

law (b) conduces to
. T H' l l1

X i  == Xq -J- U* T +  —  T2 +  O ( t 3), 

the laws of Special Relativity both yield to:

x i  — Xq -F u { t ,

so law (a) is the right one. A less trivial example: in electromagnetic theory we must trans- 
form the laws — Jk and d; Yik =  o and not the law ÀA* =  Jk, i. e. the law that
contains the connection coefficient and not its derivatives). Of course this criterion coincides 
with the usual choice, and can be regarded as a more precise statement about the size of 
the region.
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W e shall call g ij the inverse m atrix  of g u , Iy* the coefficients of the most

general linear connection and j ^  j those of the R iem annian connection. The 
difference

( 0  rj* j j k j

is a tensor; Tjk* is the sym m etric part of Such a tensor and

(2)

is the antisym m etric part, i.e. the torsion. The derivative of the m etric 
tensor, with respect to the linear connection Yjkl is:

(3) ^ ig jk  =  ^igjk T#  ghk —  ri* gj h .

By a rotation of indices we obtain two equivalent equations. I f  we add the 
first equation to the second and subtract the th ird  one we get (cfr. [14]):

(4)

where

hk■ \ k )
ij +  S A + S / .  +  S ,/ ,

' k
ij- is a “ Christoffel symbol ” written with co variant derivatives:

(S)

So we have:

i j . ~ g kh (Vi gjh +  Vjgth — Vhgtf).

(6) +  s/,- +  s / , .

We shall prove tha t the connection is a R iem annian one; if we reach to:

(7) V  =  o ;; S ;/ =  o.

The geometric assum ptions usually stated are suggested by the E quival­
ence Principle. In  fact, it is assumed tha t in a neighborhood of a given point, 
where we can consider space-time as approxim ately flat, everything happens 
as in, Special Relativity. Hence inertial frames are small carthesian triads 
in “ uniform  motion ” , so the space-time path  of a free particle is locally a 
straight line; and the m etric tensor, in the inertial frame, is constant. I t follows 
th a t this path  is a geodesic and th a t T ijk — o; furtherm ore the existence of 
parallelogram s, in the locally flat space, assure th a t the torsion vanishes, 
the qonnection is then a R iem annian one. But, as we have said, all these 
conjectures, and also some others th a t are frequently used, have a geometric 
charac ter, they are stated in an unprecise way, and do not lead us to rigorous 
deductions and can be substituted by a set of more precise physical hypotheses 
as follows.
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3. F ir s t  c o n se q u e n c e  of t h e  E q u iv a l e n c e  P r in c ip l e .
T h e  l a w  of m o tio n  of a  f r e e  p a r t ic l e .

L et us re tu rn  to H . 3. The Principle of Equivalence, by itself only, 
allows us to find the law of motion of a free particle. In  fact, in the local inertial 
fram e S° the law of m otion of such a particle is:

(8)
d ir
dr

where the vector U* is the absolute velocity and t  the proper time. In  an 
arb itra ry  fram e S the absolute velocity is:

(9) ir W A ’o ir0,

so in th a t system  the law of motion is:

dU!(10)

bu t we know that:

( i o

dT

a:-o9,a :-  =

(a ; ^ a } ) u * U ' =  o ,

Substituting in (11) we get: 

dU*

k j - A-o AÇ  A f

(12) dr + * I A* AJ'° Ak° t i0 \ \ j k j — A f A y  A, U kXJJ= o .

But we realize th a t AJo A?y A kk | ^  | is a sym m etric tensor in j  , k so we

can define a linear connection:

(13)

where

(14)

j k +  Ty/ +  Sy/,

Ty/ =  ---Ay» Ay* A f ' 2i°
jOJP ( ’

and where Sy/ is an a rb itra ry  torsion. From  now on we shall study this 
particu lar connection* i.e. the connection r % w ith the im portant property 
th a t the law of m otion of a free particle (12) can be written:

(15)
DU* _  dtV
dT dT r ; * u 'u *  =  o.

(2) Incidentally, the usual hypothesis d - o g - o , o  =  o yields to \  * I =  o, i. e. T -/ =  o.I J R I J 0  ̂ JR
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We have proved th a t the law of m otion of a free particle, in the connec­
tion Tjk  is, (15). Thus the inertial fram e is characterized for the vanishing 
of the sym m etric p art of the coefficients of the connection:

( l6 ) r'U) =  I j  k I +  T jk =  °.

i.e. the vanish of the inertial-gravitational “ forces

4. T h e  “ S c h r ö d in g e r  H y p o t h e s is

W e know th a t in Special R elativity  the norm  of the absolute velocity 
of a particle is a constant:

(17) UJ =  —  c2 — const. ; U* == •

L et us suppose th a t this is also the case in General R elativ ity  and let us 
postulate:

H. 4. In  General Relativity the law of motion of a free particle (15) 
agrees with (17).

D eriving (17), w ith respect to Y)h and having in m ind (15) we have:

i.e.

(19) u* (Skgij) U'U7 =  o,

where U* has an arb itra ry  time-like direction so the m etric tensor m ust satisfy 
the equations:

(2° )  S ig jk  +  V jg ki +  V kgij =  o  .

From  (6) we can deduce:

(2 0  S i g j i  +  Vyfe — W i g ÿ  =  2  g k h

Subtracting (21) from  (20) we get:

(22) Vkgij =  gkh ••L v

h'
if.

hence, by (7) we can write T , /  as:

(2 3) T ijk — V kgij +  S ikj  +  Sjk i.

T aking  again into account (20) and the antisym m etry of it results:

(24) T̂ ijk +  rYjki Jr  T&y =  ° ,

On the contrary  (24) implies (20).
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The equation (24) was introduced by Schrôdinger, m aking use of differ­
ent argum ents, so we can call H. 4 the Schrôdinger Hypothesis (cfr. [15]). 
All connections where H. 4 is valid have the following geom etric property: 
“ I f  a vector is parallely  transferred along a curve, in such a way th a t it is 
always tangent to the curve, it has a constant norm  ” <3>.

T he hypothesis has also a clear physical meaning: if (17) is valid, along 
the space-tim e path  of a particle, its proper tim e is:

(25) d r2 =  —  —  gij dx* dxJ' ,

i.e. (17) is the chrom etric hypothesis of proper time (cfr. [12] and [16]): 
“ A  clock th a t follows the motion of the  test particle m arks a dT proportional 
to — (/— g {jdxl dx j  , th a t is to say, proportional to the w orld-interval

5. T h e  constancy of Planck’s h.

It is known th a t Planck's h is considered a constant in the theories where 
the space-tim e has a structure of R iem annian M anifold. (Cfr. [17]) (4). Let 
us now take this fact as a postulate:

H. 5. The connection must be such a one that we can consider the h 
of Planck as a constant.

In  special R elativ ity  the linear 4-m om entum  of a photon is:

(26) p i _ h» dx*
~  ~dP’

where t is the coordinate time, x* =  ct, and its law of motion is:

(27)
dP‘
~dT O.

In  General Relativity, if we adopt a physically admissible fram e of reference 
defined by a family of time-like curves, with tangent vector y*, and we 
introduce the relative standard  time (cfr. [2]):

(28) dT =  —  — gij y ‘ dxy,

the linear m om entum  of the photon is (cfr, [3]):

(29)
dxi
d T  ‘

(3) Of course this curve is an “ affine ’’ geodesic i.e. wit a parallely transported tangent 
vector. The equation commonly accepted in place of (20): V^gjk =  o leads to the stronger 
property “ Vectors which are parallely transferred have a constant norm ”.

(4) L. Infeld reach to a different conclusion, but his arguments are based in the choice 
of a coordinate time, instead of the standard physical time. (cf. [9] and [10]).
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We can find the law of m otion of the photon repeating the arguments, th a t 
lead us from  equation (8) to equation (15)- In  this way if we start from  (27), 
w ritten under the form:

using H. 3 we reach to:

(30) DP* _
T T  ~~

The w orld-path o f a photon is then a null geodetic. This curve adm its an 
alfine param eter u, characterized by the following property:

(31)
DU»
du ~  °  ’

• • dx*U* being the tangent vector •

From  (29) and (30) we have:

(32)
D P*   d / h) \ dx* ( h» \ D / dxl \ _
dT — dT \ c* ) dT +  V1? ) "dT V“d T I ~  °  ’

but

where

D / d x * \_ D / dx* du
dT V dT ) ~  d T  V~dT ' dT

dxl
dT

d / dT 
dT \ du 

I dT \
Id  u

dT _ I { dxJ
du c ^ du

I

c h a Y  Uy .

Replacing the last equation in (32) we have:

i.e.

(33), =  K ^yY ’ u ; ',

where K  is a constant.
On the other hand we can compute the variation of the frequency, in 

different points of the manifold, m easured in the fram e y \  Let us consider 
a set of oo3 photons whose space-time paths constitute a congruence of 
curves:

(34) X*  =  X* ( u  , V  , v ’ , v") ,
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where u is the affine param eter of each curve and v , v' and v"  are three para­
m eters which define each curve. L et us choose these param eters in such a 
way th a t calling:

(35) U ‘ = ~  ; V ’ =  >ou dv

V* would be parallel to y*, in every point. L et us call

(36) V =  (— ^ y V 'V ^ i /2 ,

so V  is the standard  time, m easured in the fram e y*, between the passages 
of two rays separated by a difference àv =  i, of the param eter v; hence 
the frequency is proportional to the inverse of V:

(37) H
V

where H is a constant. From  (36) and (37) we have:

H

gÿ V * \J J = * r A.

du {gii V‘U-0 =  o ,

(38)

and by (36):

(39)

W e have postulate th a t h is a constant, thus:

(40) d 

so:

(41)

B ut from (34) we have:

/ \ DV* DU*
T  =  ^ - + 2 V Vy u*.

but gtfU* UJ =  o, so we have:

(43) ( ^ -  gÿj U ,'U jr +  2g ÿ \Jf DU'

hence from  (41), (42) and (43):

dv

(44) D W TT.
■ga-— U' = D

d* - -  T A d ^ ) u ' uy  +  2S w v * U 'U '= o ,

substitu ting the last one in (41) we have:

(45) (V,g ji —  -  Vjgik +  2 =  o .

Thus W  being arb itrary , it follows:

(46) 2 (y  i g  ft  4“ v kgjt v jg a ) 4~ s JM -f- s.-fa U ‘ U* =  o .
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H aving in m ind (6) and (J) we have:

(47) Tw U«‘U* =  o.
But U* is an arb itra ry  null vector:

(48) *«.U'U* =  o,
so the hypothesis h = ' const, yields <5k

(49) =  \ jg ik ,
where Xy is a vector.

If  we impose sim ultaneously H. 4 and H. 5 both the equations (24) 
and (49) stand valid, so we get:

(5°) \g jk  +  \-gki +  ^kgij =  °>
contracting with g*k we get:

(50  ^  =  0,

i.e.

(52) T ^  =  o-

From  now on we shall consider tha t (52) holds.

6 . F in a l  R em ar k s  on t h e  T o r s io n .

I f  we were only interested in gravitational phenom ena our work would also 
be finished. In  fact, the torsion does not appear in the law of m otion of free 
uncharged particles, so we can either choose it arbitrarily  or consider it zero. 
T he problem  of the determ ination of the torsion can also be solved considering 
electrom agnetic phenom ena, w ithout any attem pt at a Unified Theory.

The electrom agnetic laws, in Special Relativity, are:

(53) 3,-F*— y = o  , a , F * = o .

W e can find the corresponding laws in General Relativity, m aking use of 
H. 3, in the following way: let us try  to calculate a vector Ty given by:

(54) T'' =  V,-F ’>■— K
i.e.

(5 5) V  -  a, F* +  m  F« +  j jh j FiA +  S J  FV +  S J  Fih -  J4

i k )In  a local inertial frame, where j . | = 0 ,  the equation (55) becomes (531) so:

(56) T* =  Sa !' F/,y +  S,-;/ F‘A,

(j) In fact, all zeros of the polinomial (48) are also zeros of the four polinomials (47), 
j  — 1,2; 3,4; being all the polinomials of second order. So we have that the coefficients of 
the four polinomials (47) are proportional to the coefficients of the polinomial (48), Xy are 
the constants of proportionality, and obviously they are the coordinates of a vector.
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this is a tensorial equation therefore it is valid in all frames. Substituting 
this equation in (55) we have:

(57) ^ F v + j ^ j F ^ + j i j F * - ] , » » .

W e see th a t the torsion does not appear because it cancels out in both sides 
of the equations. Thus the torsion can be ignored or more simply, can be 
considered null in the electromagnetic phenom ena, whose laws in this case are:

(SB) V ,F *— K = 0 '  , V ,-F *=o.

7. Conclusion,

Based on H . 1, H. 2 and H. 3 we have dem onstrated th a t the law of motion 
of a free particle is (15).' H. 4 and H. 5 prove th a t the connection th a t appears 
in the derivative of (15) has T ijk =  0. H. 4 and H. 5 can be based in the 
Strong Principle of Equivalence (cfr. [5], [6] and [7]). Besides the Marzke- 
Wheller M ethod of M easurem ent (cfr. [11]) suggests us an ideal experience 
to prove the constancy of h. The torsion is irrelevant for gravitational and 
electrom agnetic phenom ena, hence we can take S#k — o. T hus the space- 
time has a structure of a R iem annian M anifold.

W e have actually found a connection, i.e. a covariant derivative, so th a t 
the laws of our set of phenom ena (e.g. (18), (30), (58)) can be obtained by 
the following Rule of Transcription (cfr. [4]).

Every taw of General Relativity (valid in an arb itra ry  frame) is obtained 
by the substitutions

(59) 3,- ^  V,; ,
from  the corresponding law of Special Relativity (valid in a local inertial 
fram e and expressed in cartesian coordinates ^ ) .

(6) It is of interest to note that although the torsion is irrelevant, an arbitrary torsion 
does not satisfy the. transcription rule, and produces non vanishing vectors in the right side 
of (58). It can be proved that the torsion, that satisfies this rule unambiguously, fulfils the 
following 24 equations: *

Fv Ŝ ÿ =  0 , Fv Skij — o 9
F*-7 >̂ìjk ^  o > Fv Sjijk — o,
Fv Sjkk =  o , Fv S\jkk =  o .

The solution of this system of equations is:

SiM =  ai,A M y . .  S. + y  S . . . ) ,
a I yX,(xv vaßy

where are the Pauli matrices, y the fundamental antisymmetric spinor and S. is
 ̂[4 Y?v,|XV

a symmetric spinor, in X , p , v, that satisfies:
F ^S . = 0 ,

Ŷ fxv
where is the electromagnetic symmetric spinor that allows us to write the electromagnetic 
tensor as (cf. [1])

FiJ =  (r F .. + Y .. F V
aß *aß MU*
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