Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali RENDICONTI

Roy R. Douglas, François Sigrist

Sphere bundles over spheres which are H -spaces

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 44 (1968), n.4, p. 502-505.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLINA_1968_8_44_4_502_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Matematica. - Sphere bundles over spheres which are H -spaces. Nota di Roy R. Douglas e François Sigrist, presentata ${ }^{(\text {() }}$ dal Socio B. Segre.

Riassunto. - Si completa un recente risultato di J. F. Adams, mostrando che nessun H -spazio può essere spazio totale in una fibrazione avente per fibra una 7 -sfera e base una ir-sfera oppure una ${ }^{15}$-sfera.

i. Introduction.

The Lie groups $\mathrm{SO}(3)$ and $\mathrm{SU}(3)$ provide examples of H -spaces which are sphere bundles over spheres. More generally, if an H -space G is a q-sphere bundle over the n-sphere (q and n positive), it follows from a theorem of J. F. Adams [I] that either both q and n belong to the set $\{\mathrm{I}, 3,7\}$, or (q, n) is one of the following four pairs:

$$
(\mathrm{I}, 2),(3,5),(7, \mathrm{II}),(7,15) .
$$

Examples of such H -spaces G are known for each of the above pairs (q, n), with the exception of the pairs ($7, \mathrm{II}$) and ($7, \mathrm{I} 5$). It follows from the theorem below that the remaining two pairs of dimensions, (7, II) and (7,15), are not possible.

2. Main Result.

Suppose the integral cohomology ring $\mathrm{H}^{*}(\mathrm{G})$ is a torsion-free, exterior algebra on two generators, and the dimensions of the generators are q and n, respectively.

Theorem. If $(q, n)=(7$, II $)$ or $(7,15)$, then G can not be an H -space.
The two cases (7, II) and (7, I 5) require separate, though similar, proofs. However, we will present only a brief summary of the proof in case ($7, \mathrm{II}$) in this note, because the argument in case (7,15) is significantly simpler than in case (7, II), and details of both proofs will appear elsewhere ${ }^{(1)}$.

3. Outline of proof.

Let G be an H -space with torsion-free integral cohomology ring, $\mathrm{H}^{*}(\mathrm{G})$, an exterior algebra on two generators, in dimensions seven and eleven, respectively. We will obtain a contradiction.
(*) Nella seduta del 20 aprile 1968 .
(1) J. R. Hubbuck, informs us that he has independently obtained this result.

Let X be the projective plane of (some H -space multiplication on) G . $\mathrm{H}^{*}(\mathrm{X})$ is torsion-free. Let x and y be generators of $\mathrm{H}^{8}(\mathrm{X})$ and $\mathrm{H}^{12}(\mathrm{X})$, respectively. Then x and y generate a truncated polynomial algebra, truncated at height 3 (i.e., $x^{3}=x^{2} y=x y^{2}=y^{3}=0$). (See [3]).

If $w \in \mathrm{H}^{*}(\mathrm{X})$, we will also denote the $\bmod 2$ reduction of w by $w \in \mathrm{H}^{*}\left(\mathrm{X} ; \mathrm{Z}_{2}\right)$. The Steenrod algebra $(\bmod 2)$ operates on the reduced truncated polynomial algebra in the following way.

$$
\begin{aligned}
& \mathrm{S} q(x)=x+y+x^{2} \\
& \mathrm{~S} q(y)=y+x y+y^{2} \\
& \mathrm{~S} q\left(x^{2}\right)=x^{2}+y^{2} \\
& \mathrm{~S} q(x y)=x y+y^{2} \\
& \mathrm{~S} q\left(y^{2}\right)=y^{2} .
\end{aligned}
$$

By the usual spectral sequence argument, we know we can choose elements $\alpha, \beta \in \overrightarrow{\mathrm{K}}(\mathrm{X})$ such that their images under the Chern character

$$
c h: \stackrel{\mathrm{K}}{ }(\mathrm{X}) \rightarrow \stackrel{\rightharpoonup}{\mathrm{H}}^{*}(\mathrm{X} ; \mathrm{Q})
$$

(a ring monomorphism) are of the form (in dimensions $\leqq 24$):

$$
\begin{aligned}
& \operatorname{ch}(\boldsymbol{\alpha})=x+\lambda_{1} y+\lambda_{2} x^{2}+\lambda_{3} x y+\lambda_{4} y^{2} \\
& \operatorname{ch}(\boldsymbol{\beta})=y+\mu_{1} x^{2}+\mu_{2} x y+\mu_{3} y^{2} .
\end{aligned}
$$

Let our choice of $\alpha, \beta \in \stackrel{\mathrm{K}}{(\mathrm{X}})$ define the rational number $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$, $\mu_{1}, \mu_{2}, \mu_{3}$.

Let $m(2)=2^{2} \cdot 3, \quad m(4)=2^{4} \cdot 3^{2 \cdot 5}, \quad m(6)=2^{6} \cdot 3^{3 \cdot 5 \cdot 7}$ and $m(8)=$ $=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7$. Then, by Theorem $3 \cdot 5$ of [4], it follows that

$$
\begin{array}{ll}
\mathrm{L}_{1}=m(2) \cdot \lambda_{1} & , \quad \mathrm{~L}_{2}=m(4) \cdot \lambda_{2} \\
\mathrm{~L}_{3}=m(6) \cdot \lambda_{3} & , \quad \mathrm{~L}_{4}=m(8) \cdot \lambda_{4}
\end{array}
$$

and

$$
\mathrm{M}_{2}=m(4) \cdot \mu_{2} \quad \text { are odd integers; }
$$

while

$$
\mathrm{M}_{1}=\frac{\mathrm{I}}{2} \cdot m(2) \cdot \mu_{1} \quad \text { and } \quad \mathrm{M}_{3}=\frac{\mathrm{I}}{2} \cdot m(6) \cdot \mu_{3} \quad \text { are integers. }
$$

If $\theta \in \overrightarrow{\mathrm{K}}(\mathrm{X}), c h_{q}(\theta)$ is the $2 q$-dimensional component of $\operatorname{ch}(\theta)$, and $\psi^{k}: \mathrm{K}(\mathrm{X}) \rightarrow \mathrm{K}(\mathrm{X})$ are the Adams operation introduced in [2] (for each integer k), then

$$
\begin{equation*}
c h_{q}\left(\psi^{k}(\theta)\right)=k^{q} \cdot c h_{q}(\theta) \tag{A}
\end{equation*}
$$

(Theorem 5.I, [2]) and
(B)

$$
\psi^{p}(\theta)-\theta^{p} \equiv 0 \quad(\bmod p)
$$

if p is a prime (Proposition 3.2.2, [5]).

Computing with (A), we obtain the following three lemmas. ($p=2$ or 3).
Lemma 1. The coefficient of β^{2} in $\psi^{\phi}(\alpha)$ is an integral multiple of p and equals

$$
\begin{aligned}
p^{4}\left[\left(p^{8}-\mathrm{I}\right) \lambda_{4}-\right. & \left(p^{2}-\mathrm{I}\right) \lambda_{1} \mu_{3}+\left(p^{4}-\mathrm{I}\right) \lambda_{1}^{2} \lambda_{2}-\left(p^{2}-\mathrm{I}\right) \lambda_{1}^{3} \mu_{1} \\
& \left.-\left(p^{6}-\mathrm{I}\right) \lambda_{1} \lambda_{3}+\left(p^{2}-\mathrm{I}\right) \lambda_{1}^{2} \mu_{2}\right] .
\end{aligned}
$$

Lemma 2. The coefficient of $\alpha \beta$ in $\psi^{p}(\alpha)$ is an integral multiple of p and equals

$$
p^{4}\left[\left(p^{6}-\mathrm{I}\right) \lambda_{3}-\left(p^{2}-\mathrm{I}\right) \lambda_{1} \mu_{2}-2\left(p^{4}-\mathrm{I}\right) \lambda_{1} \lambda_{2}+2\left(p^{2}-\mathrm{I}\right) \lambda_{1}^{2} \mu_{1}\right] .
$$

Lemma 3. The coefficient of β^{2} in $\psi^{3}(\beta)$ is an integral multiple of 3 and equals

$$
3^{6}\left[\left(3^{6}-\text { I) } \mu_{3}-\left(3^{4}-\text { I) } \mu_{2} \lambda_{1}+\left(3^{2}-\text { I) } \mu_{1} \lambda_{1}^{2}\right] .\right.\right.\right.
$$

There exist integers x, y, z, t, u, v, such that

$$
\begin{aligned}
& \mathrm{L}_{4}=2 x+\mathrm{I} \quad, \quad \mathrm{~L}_{1} \mathrm{~L}_{3}=2 y+\mathrm{I}, \\
& \mathrm{~L}_{1}^{2} \mathrm{~L}_{2}=2 z+\mathrm{I} \quad, \quad \\
& \mathrm{~L}_{1}^{2} \mathrm{M}_{2}=2 t+\mathrm{I}, \\
& \mathrm{~L}_{1}^{3} \mathrm{M}_{1}=u \quad \text { and } \quad \\
& \mathrm{L}_{1} \mathrm{M}_{3}=v .
\end{aligned}
$$

(N.B. Do not confuse integers x, y with cohomology classes x, y).

Proposition. The integers x, y, z, t, u, v satisfy:

$$
\begin{equation*}
4 x+5 y+6 z+7 t-3 u-v \equiv 5 \tag{C}
\end{equation*}
$$

$$
\begin{equation*}
x-5 y+3 z+7 t-3 u-v \equiv-3 \tag{D}
\end{equation*}
$$

E)

$$
\begin{equation*}
-y+4 z-3 t+2 u \equiv 0 \tag{E}
\end{equation*}
$$

$$
(\bmod 4)
$$

$$
\begin{equation*}
3 y-2 z-t+2 u \equiv 0 \tag{F}
\end{equation*}
$$

$$
(\bmod 4)
$$

$$
\begin{equation*}
-2 t+u+v \equiv \mathrm{I} \tag{G}
\end{equation*}
$$

$(\bmod 4)$.
Proof of Proposition.
(C). Let $p=3$ in Lemma I. and multiply coefficient of β^{2} by $2^{5} \cdot 5 \cdot 7$ to get a congruence mod 32 . This can be rewritten to give (C).
(D). Let $p=2$ in Lemma I and multiply coefficient of β^{2} by $2^{4} \cdot 3^{3} \cdot 5 \cdot 7$ to get a congruence mod 32 . This can be rewritten as (D).
(E). Let $p=3$ in Lemma 2. and multiply the coefficient of $\alpha \beta$ by $2^{3} \cdot 5 \cdot \mathrm{~L}_{1}$ to get a congruence $\bmod 8$, which is the same as (E).
(F). Let $p=2$ in Lemma 2. and multiply the coefficient of $\alpha \beta$ by $2^{2} \cdot 3^{2} \cdot 5 \cdot \mathrm{~L}_{1}$ to obtain a congruence $\bmod 8$, which is equivalent to (F).
(G). Multiply the coefficient of β^{2} in $\psi^{3}(\beta)$ (see Lemma 3.) by $2^{2} \cdot 5 \cdot \mathrm{~L}_{1}$. This gives the congruence $\bmod 4$ which we refer to as (G). q.e.d.

A computational argument (involving determinants) shows that the five congruences in the six variables do not have a set of simultaneous solutions (x, y, z, t, u, v) in the integers. This is a contradiction ${ }^{(2)}$, and the theorem's proof is complete.

Remark. An interesting consequence of the above result concerns Stiefel manifolds. The manifold $\mathrm{W}_{3,2}$ of (3×2) orthogonal quaternionic matrices, and the manifold $\mathrm{Y}_{2,2}$ of square (2×2) orthogonal matrices over the Cayley numbers are q-sphere bundles over the n-sphere with $(q, n)=(7, I I)$ and (7,15), respectively. These two Stiefel manifolds are therefore not H-spaces.

References.

[I] J. F. Adams, H-spaces with few cells, "Topology» I, 67-72 (1962).
[2] J. F. Adams, Vector fields on spheres, "Ann. Math.», 75, 603-632 (1962).
[3] W. Browder and E. Thomas, On the projective plane of an H-space, "Ill. J. of Math.», 7, 492-502 (1963).
[4] R. R. Douglas, Homotopy-commutativity in H-spaces, "Quart. J. of Math. », I8, 263-283 (1967).
[5] M. Ativah, K-Theory (W. A. Benjamin 1967).
(2) We obtain a contradiction at once by adding the three congruences (C), (F) and (G).

