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Fisica del discreto. — 7%¢ Lorentz Group over a finite field, and
related properties of Dirac Spinors. Nota di ENrico G. BELTRAMETTI
e ALBERTO Brasi, presentata ® dal Socio B. SEGRE.

SUNTO. — Si esaminano le rappresentazioni del gruppo di Lorentz proprio ed impro-
prio, si introducono gli spinori di Dirac e le forme sesquilineari associate con speciale riguardo
alle correnti vettoriali e vettoriali-assiali: tutto cid in relazione ad una geometria di Galois
d’ordine p primo e = 3 (mod. 4). Le dimostrazioni verranno date assieme ad ulteriori svi-
luppi in due lavori di prossima pubblicazione.

1. — INTRODUCTION.

In the present note we report, omitting details and explicit proofs, some
new results in the description of physical schemes within a Galois geometry.
For a treatment of old and new results on these geometries, as well as for
an extensive bibliography on them, we refer to a recent paper by B. Segre [1].
The way to approximate (with arbitrary accuracy) the ordinary continuous
geometry has been examined in the literature [2] and in the field of physics
some attractive consequences of interpreting the space-time manifold as a
Galois geometry have been pointed out [3, 4, 5]. Apart from the absence of
divergences in field theories, there appear a number of symmetry properties due
to the very fact of finiteness of space and independent of the number of points in
it. We deal here with such symmetry properties, obtaining results which exhibit
some connections with the papers of H. R. Coish [3] and I.S. Shapiro [4].

2. — ROTATION AND LORENTZ GROUPS IN A GALOIS GEOMETRY.

Let GF () be the primitive Galois field of prime order p: as usual the
‘“zero” element under addition will be denoted by o, and the integral
marks of GF (p) will be denoted by the corresponding integer number symbol.
The element — 1, defined by — 1 + (1) = 0, is a non-square element for
suitable choices [2] of p, and precisely for p = 3 (mod. 4), as we here assume.
When the space-time coordinates take values in GF (), one is led to define

the finite version L. (4, p) of the proper Lorentz group as the group of inverti-
ble linear substitutions

X=Xl ; W,v=0,1,2,3 ; %,y €GF(p) ; det =419

. 2 2 2 2 . . .
which leave xj— x] — x5 — x5 invariant; its order turns out to be [6]

Qrp =P (P —1).

(*) Nella seduta del 9 marzo 1968.
(**) / stands for the 4 X 4 matrix whose elements are the Juy coefficients.
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Similarly, the proper three-dimensional rotation -subgroup R (3, p) is
formed by the substitutions

x;'=27’ijxj ;»Z.}j:I’Z;\% > xi’)rz'jEGF(p) 5 det7‘=+1,
7

leaving x? -+ xg -+ xgz, invariant.

To classify the representations of these groups it is useful to study the
homomorphism with the linear group of 2 X 2 matrices with complex ele-
ments (x + 2y) € GF (p?), with x, y € GF (p),7 € GF (p?),:2 = — 1.

Let us introduce the group SL® (2, p?) of 2 X 2 matrices over GF (p?)

“=($ g)ESL(i)(Z,PZ) ;oa, By, 3€GF () ; det @ =41

it is a finite group of order 2 Qr( . Setting x = E"u x,, where oy, o5,

w
o3 are the usual Pauli matrices and 65 = 1, one can verify that
(1) ' = (deta) a % at, (¢" = hermitian conjugate of a)

induces a proper Lorentz transformation “/” on the coordinates x,. Clearly a
and — @ correspond to the same /€L (4, ) and it may be shown that the
correspondence may be inverted, thus determining a 1 to 2 homomorphism
of L(4,p) onto SL® (2, #%. This homomorphism carries R (3, p) onto
the subgroup SU™® (2| %) of matrices

”:<—g*i*>ESU(i)(2,ﬁz> ;o BEGF(#) ; detw= 1,
wut = (detw) 1.

Due to the appearance of both signs in the determinant of the 2 X 2
matrices, a new two-valued label is needed, besides the usual quantum numbers,
to specify the representations of the corresponding groups. In fact, all irreduc-
ible inequivalent representations of SL™ (2, #?) have the explicit form:

(2) D(J':/?;e) (d) — (det d)'* DY (d) ® (D(k) <a>>*’ {]v k=o0, I/2 y Ly Py
) e=0,1
denoting by D’ (2) a matri¥ of order (27 + 1) with elements
() Min (i, j—m) 4

. N . .
D (@) = —2 (H’”)‘ I,
(3) wim (@) NG k:Max%m_m,) b k/e +m'—m

J—m'—k qjtm—k b k—m-fm’
X ) By :

where N € GF (#?) is a normalization factor to be specified later. We remark
that the range of the integer or half integer labels j, % is bounded by the
p—1

value

: a larger value of 7 or %4 would give rise to reducible representa-

tions; the number of representations given by Egs. (2), (3) is thus 2 p2 and,
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besides them, no other irreducible inequivalent representation can exist,
since 2 p? is just the number of equivalent classes of SL™ (2, p?).

All irreducible inequivalent representation of SU® (2, ?) may now
be written as DY"* (), putting § = «*, y = — B* in Eq. (3): DY () is
equivalent to D@77 (4).

As in the classical case, we require, on physical grounds, the irreducible
representations of the Lorentz group to become unitary when restricted
to the three-dimensional rotation group. One has thus to check the uni-
tary character of D09 (). Choosing N in (3) such that NY . N =

(2/)!
J+ml (j—m)!

it is easily found
@ OV @)t = (det )’ DV ()™t = (det w)*/ DV (7)),

so that DY%? () is unitary for integer 7, but it is not for half-integer ;.

At first sight one could guess that, owing to the finite order of the group,
the non unitary representations could be made unitary by a suitable equiva-
lence transformation; this is not the case since the classical theorem ensuring
this possibility is no longer valid for representations built over a finite field
(modular representations).

However, this problem has here an easy solution since unitarity may
be recovered by letting the representation become a ray representation [7],
(actually, to describe the transformation laws of physical states in quantum
mechanics, one only needs ray representations). In fact, replacing DY (2)

in Eq. (2) by
(s) DP9 (@) = (det @) - DV (1, a),
where y, is a solution of

(6) Tada=deta , y,€GF (p?),

one obtains a ray representation, with multiplication rule

S e, Sy N . 105 e , ; \27
D09 () DY (5 = ), DY) 2y | oY) = ( x; La ) ,
aa

By allowing yx, to assume different solutions of (6), one obtains ray repre-
sentations of the same equivalence class; the same happens going from
e¢=0 to ¢ = I: one may thus assume, as a representative of the equivalence
class,

DY (@) = DY (1, )
where the label ¢ has been omitted, y, is a fixed solution of (6) and DY is

given by Eq. (3). The ray representations so defined exhibit the correct
unitarity properties, when restricted to SU™® (2, p2) (see Eq. (4)).
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3. — SPINOR REPRESENTATIONS OF THE EXTENDED LORENTZ GROUP £ (4, p).

We now want to adjoin the space reflection operation P to the proper
group L (4, p), thus obtaining the extended Lorentz group € (4, ). Acting
with P on the coordinates, % is transformed non linearly into

o I
#® = ¢ (56)* et e= (_‘ . o>‘
To have a (linear) representation of P we need to adopt the 4 X 4 basis
R X o
@) X = (0 %(P)>,
on which P induces the transformation
~ @
X»X'=<§() ;):YOXYO

with

o I
Yo—(l o]

We have now to examine how the proper group L (4, p) is represented
on the new basis (7).

Hereinafter we shall consider only the case j = 1/2, and we remark
that Eq. (1) may be rewritten as 2’ = D% (5) & DM ().

The transformation induced on X will then have the form

X = X' =S (a) XS (a)*
| DI G o
with S (@) = (o ( -)6 . ﬁ(0’1/2>(a) e

Due to the fact that S (@) is required to be a ray representation as a
whole, the relative phase 0, can assume two values

09 = (det aY’, e=o0,1,

which give inequivalent ray representations.

Hence the spinor representations of the extended group £ (4, p) can
be written as (yo, S“ (2)) with e =0, 1, depending on the choice of the
phase 0,; accordingly two kinds of “Dirac fields” ¢ and ¢ are possible.

4. — COVARIANT CURRENTS.

Consider the bi-spinor sesquilinear currents

) LIJ@+ B ¢“

where ¢, ¢® are Dirac spinors which transform according to the repre-

sentation (v, , S® (2)), and Bw is a 4 X4 matrix whose tensor nature is
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specified by a set of indices shortly denoted by (r). We shall now examine
whether B(;) matrices exist which make the current (8) covariant with respect
to £(4,p). As a guide, let us recall that in the classical continuous case
the analogous question leads to the construction of five covariant currents,
i.e., a scalar, a pseudo-scalar, a vector and an axial-vector, a second order
tensor.

The general transformation law for the current (8) is:

OM ¢ O e oM P G

U9 By 09 = 49 v By 10 02 = ¢ B ¢, under P, and

oM e ot T € e ot (L G

49" B 9 > ¢ S? () By S? (@) 9 = ¥ B ¢ under L (4, p).

The covariance requirements for (8) give relations between Bg)) , BEI;)) » By
in which the label ¢ appears explicitly; this accounts for differences between
the present and the classical case. Actually we get:

(i) Scalar—In this case B, is a scalar matrix B, and the current (8)
is required to be invariant both for P and L (4, p): hence B® = B = B™.
The equations must be verified identically with respect to ¢, and the only
solution is given by

e=0 B=4/tsy, , ésEGF(pZ).

(ii) Pseudo-scalar—The current (8) is now required to be invariant
for L (4, p) while it should change sign under the operation P, i.e.,
—B® =B =B".
As a unique solution we find

e=0 ; B=tesvoys , 4ps€GF(p?,

[—1 o
Y5 =? o 1)

(iii) Vector—In this case B, is a four-vector, (7) labels its components
and -will be replaced by pw=0,1,2,3. The current (8) is required to
transform like the coordinates x, both for P and L (4, p), i.e.

where we have set

BY? = — (— )™ By,
3
B{? = - (deta) X Sp (o, ac, a¥) B,.
v=0

For both ¢ =0 and ¢ = 1 we obtain the solution

¢ =0,1 y BuszYOYH ’ éVEGFQﬁZ)»
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where we have set

o —g P
(; = 5, O’ _—152’3'

(iv) Axial-vector—The current (8) is now required to transform like the
coordinates for L (4, p) while for the operation P we get BJY = (— PRI B,..
For both ¢ =0 and ¢ =1 we arrive at the solution ¢ = o, 1;

Bu = éA Yo Y5 Yo s éA €GF <p2)

(v) Tensor—In this case B, is a 27d-order tensor, (7) will be replaced
by two indices w,v=o0,1,2,3. The current (8) then transforms under P
according to

B(P) — I>50p,+§0v B

o = )

while for L (4, p) the transformation law is

3
L 1
B = T ;0 Sp (6, acy at) Sp (6, acy, at) By, .
o
In this case the solution is:
e=0

i Buw=‘frvovuys . AEGF (2.

The vy matrices we have defined above obey the relations

i 'I“ — 5 I (@] (6] (@]
\ Yo Yv Yo Yo = 28 o —1 o o
| s MyVZO,I;Z,S, g = o 0 —1 o ;
(Y5=Y0Y1Y2Y3 o o 0 —1

thus they provide a realization of Dirac matrices which coincides, up to a
factor (— 7), with Weyl’s representation.

Summarizing, spinors of the kind ¢ = o allow the construction of all
usual covariant currents, while, with spinors of the kind ¢ = 1, only vector
(V) and axial-vector (A) currents are possible.

Currents of the type ap(”)+ B 9“7 with ¢==¢' need not be taken into
account for it can be easily proved that matrices B(,y, making them covariant
do not exist. _

Referring to the construction of hamiltonians which occur in weak
interaction theory, the problem arises of multiplying two currents to obtain
a scalar or a pseudo-scalar quantity.

If one tentatively associates the leptons to the choice ¢ = 1, the V, A
currents appearing in weak interactions would be the unique possibility in
the framework of a' finite geometry.
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