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Algebra lineare. — Normal Partial Isometries Closed under 
Multiplication on Unitary Spaces. Nota di I van E r d e l y i, presen­
tata (*} dal Socio B. S egre .

RIASSUNTO. — Lim itatam ente alle matrici non-singolari, le isometrie godono noto­
riam ente di norm alità e, rispetto al prodotto, formano un gruppo. Fuori dalla non-singola- 
rità, occorrono condizioni supplem entari affinché si conservino e la norm alità e la chiusura; 
alcune fra queste formano l’oggetto della presente Nota.

Introduction.

The isometries on unitary  spaces are invertible operators closed under 
m ultiplication. Their straightforw ard extensions to the non-invertible case 
are the norm al partial isometries. Since the spectral num bers still remain 
extrem e points of the unit circle joined by the isolated origin, and the expo­
nential correspondance with H erm itian operators enjoys a powerful general­
ization [r], the closure under m ultiplication is lost beyond the nonsingular field.

It is the purpose of this paper to extend the isometries to particular 
classes of norm al partial isometries closed under m ultiplication on finite- 
dimensional un itary  spaces, FT.

A partial isom etry V, in term s of M oore-Penrose’s concept of the gener­
alized inverse V + (see e.g. some of the original papers [2, 3, 4]) is expressible by

V* — V + (* for the conjugate transpose), 

and norm ality, in addition, implies

(1) w +  =  v + v .

Some properties are referred to in the following discussion. These include:

-  each of the following four conditions is necessary and sufficient 
th a t a linear transform ation V be a partial isometry:

V =  VV* V , V* =  V* VV*,

V *V  is a projection on the carrier R (V*) of V,
VV* is a projection on the range R (V) of V;

(*) Nella seduta del io  febbraio 1968.
(1) The group-inverse concept for square m atrices [5, pp. 120-123], allows a defining 

the norm al partial isometries on a unitary  space by the sole functional relation: A* =  A +  
(=||= for the group-inverse).
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-  if X is an eigenvalue and x  the corresponding eigenvector of a partial 
isom etry V, then W [6, pp. 459-460]

(2)
V *V * ||

11*11

(3)

for any conformable un itary  U  and V,

(UAV)+ == V *A +U *

A norm al partial isom etry is the direct sum of a un itary  and a zero 
operator. In fact, if V  is norm al its null-space is invariant under both V 
and V*, and therefore so is its orthogonal complement. If moreover, V  is 
a partial isometry then V is isometric on that orthogonal complement, and 
hence, in the finite-dimensional case, the restriction of V  to the initial space 
is unitary.

Furtherm ore, the nonzero eigenvalues of a norm al partial isometry V 
have m odulus 1 and, by property  (2), its eigenvectors can only be located 
on the initial space R (V*) and on the null-space N (V).

A  useful characterization of norm al partial isometries involves the E P r 
m atrices introduced by H. Schwerdtfeger [7], as a generalization of norm ality. 
A square m atrix  A of rank  r  is called E P r if A and A* have the same 
null-spaces. The E P r  matrices are recognizable by an am ount of noticeable 
properties proved by M. H. Pearl and I. J. Katz [8, 9, 10, 11, 12]. It is easy 
to ascertain tha t a norm al partial isometry is equivalent to an E P r partial 
isometry.

Multiplicative Properties.

The product of matrices, in general, preserves neither norm ality, nor 
isometry <2 3>. It is well-known th a t if two norm al m atrices commute their 
product is normal. This condition suffices for transm itting norm al partial 
isom etry through m ultiplication. In fact, A  is norm al if and only if there 
exists a polynomial p  such th a t A* ; =  p  (A). Hence it follows th a t for two 
com m uting norm al operators A  and B, the operators A , A*, B , B* commute 
pairwise. The product P =  AB of two commuting norm al partial isometries, 
besides being normal, is a partial isometry since, by a succession of factor 
perm utations, there follows:

PP* P =  AB • B* A* - AB =  AA* A . BB* B -  AB -  P.

However, this condition is not necessary.

(2) This form ulation was suggested to the author by A. B en-Israel.
(3) Conditions for transm ission of partial isometry through m ultiplication are to be 

found in [6, pp. 464-466; 13].
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When the matrix factors A and B have equal ranks, a more powerful 
condition is available:

Theorem i. The product

: AB

of two normal partial isometries A  and B, both of rank r, is a normal partial 
isometry of rank r i f  and only i f  they have equal ranges

(4) R (A) =  R (B).

Proof, if:
Since A  and B are normal partial isometries, AA* =  A*A and BB* =  B* B 

are idempotent and, in addition, the hypotheses on the equal ranks and 
common range imply

(5) AA*  =  BB*.

We then have successively:

PP* =  A - B B * A *  =  A-AA*-A* =  (AA*)2 — AA*,

P* P =  B*-A* A-B =  B*• B*B • B =  (BB*)2 =-- BB*

and hence PP* =  P* P is a projection. Thus, P is a normal partial isometry 
of rank r.

Only if:  
Let

(6)

(7)

A =  U  

B = V

w

w.

u* ,

V*

be the unitary decompositions of A  and B, where the couples U  , V  and 
W , Wi are n  by n and r  by r  unitary matrices, respectively. If we denote by

(8) U *V [Q Sl1
S2 R

the conformable partitioned form of the unitary U *V , the product P is 
expressible as

P =  U rwQWi
ÒJ V*.

Since P is supposed to have rank r , Q is nonsingular. Then, by property (3), 
the generalized inverse of the product P is given by

P+ =  V (W Q W 1)-1 ■
. 0 . U *.

The normality condition (1) for P , PP+ =  P+ P, gives

U \lr 1 }

>II*£ 'ir !
Ö Ó V*,
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or

(9) \ l r
Ö J

u *  V =  U* V \ l r
ÖJ

where \ r is the rth order identity m atrix.
Now, we introduce the partitioned form (8) for U* V  into the foregoing 

relation (9) and, after some elem entary algebra, we obtain

Si , S2 O,—r, r •

Thus U * V  is block diagonal

(10) u * v  = f Q R

and, necessarily, Q and R are un itary  of appropriate sizes, 
derive

V = U Q
R

From  (10), we

and hence by (7),

B = U r w i

Ö J
U* =  U QWiQ*

O u *

or

( i o B = U rw2
Ö. U*

where W2 =  QWi Q* is unitary.
Condition (5) follows from (6) and (n ) ,

A A * = B B * ,=  U U*

and this leads to the equality (4) of the ranges.
We note th a t in the hypotheses of Theorem  1,

R  (A) ■= R (B) == R  (AB).

C oro llary . I f  A, B and  AB are normal partial isometries of rank r, 
then BA is a normal partial isometry of rank r. Moreover, R  (AB) =  R  (BA).

The transm ission of norm al partial isometry through m ultiplication adm its 
a straightforw ard extension for any finite num ber of factors, in term s of the 
following

Theorem 2 . Let A i , A2 , • • •, Am be m normal partial isometries of rank r. 
A ny partial product

Pfy At-A/+i j * • * t Aj  , I ^  5̂  'tfty

is à normal partial isometry of rank r  i f  and only i f  each factor has the same 
range:

(12) R (A 0  =  R ( A 2) - . . . =  R (A w).
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Proof. W hen m — 2, it reduces to Theorem  1. Assume that the statements 
of Theorem  2 are true for m — q, and consider

P/,^+i =  P iq A^+1

where A g+i is a norm al partial isometry of rank r.
By Theorem  1, P,-^+1 is a norm al partial isometry of rank r if and only if

p  p ? ___A A *
r  ig r tq -‘V+l -̂ V+l •

On the other hand, the range equalities (12) equivalent to

Ai Ai =  A2 A2 =  ■ • • =  Am A* ,

lead us to the following sequence of relations:

P iq P iq ^  ^ i , q - 2  ( A g - A g )  A q_ l  P^_2 — P/, -̂2 A g ^ l  ( A g  -  1 A^_l) A^_l P i , g — 2

~  Pfi -̂2 A^_l)2 P Z)g - 2  =  P z , q - 2  A q _ i  ■ A g _ l  P j }g _ 2  =  P? Ĵ _1 P,'}̂ _1 ,

and, further on

p ,> P,v =  P,-„-i P ^ - i =  Py„-2 p L -2  ^  • * • .=• A,- A * .

Thus, by induction, the proof is complete.

Acknowledgement. This study has been carried out as part of the research 
program  of the Kansas State University, in M anhattan, Kansas.

R e f e r e n c e s .

[1] A. B e n - I s r a e l ,  A  note on the Cayley transform, «Notices Amer. M ath. Soc», 13, 599
(1966).

[2] E. H. M oore , General Analysis, Part I, «Mem. Amer. Phil. Soc. », 1 (1935).
[3] R- PENROSE, A  generalized inverse fo r  matrices, « Proc. Camb. Phil. Soc», 31, 406-413

(1955)-
[4] R. PENROSE, On best approximate solutions o f linear matrix equations, « Proc. Camb. 

Phil. Soc. », 52, 17-19 (1956).
[5] I. E r d e ly i ,  On the matrix equation A x  =  IBx,  « J .M ath . Anal. Appi. », 17, 119-132 (1967).
[6] I. E r d e ly i ,  On partial isometries in finite-dimensional Euclidean spaces, « J. SIAM 

Appi. M ath.», 14, 453-467 (1966).
[7] H. S c h w e rd tf e g e r ,  *Introduction to Linear Algebra and the Theory o f Matrices, Gro­

ningen 1950.
[8] M. P e a r l ,  On normal and E P r matrices, «Michigan M ath. J. », 6, 1-5 (1959).
[9] k  J- K a tz  and M. H. P e a r l ,  On E P r and normal E P r matrices, « J. Research Nat. 

Bureau Standards -  B. Math, and M ath. Phys. », yoB ,  47-77 (1966).
[10] k  J- K a tz , Wiegmann type theoremsfor E P r matrices, «D ukeM ath. J. », 32, 423-427 (1965).
[11] M. H. Pearl, On generalized inverses o f matrices, «Proc. Camb. Phil. Soc.», 62, 673-

677 (1966).
[12] I. J. K a tz , On the generalized inverse o f a product and EPr matrices, to be published.
[13] I. E r d e ly i ,  Partial isometries closed under multiplication on Hilbert spaces, « J. M ath. 

Anal. Appi. », in press.


