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Fisica matematica. — Variational formulation jfor linear equa-
tions of mathematical physics . Nota di Enzo TonT1, presentata @
dal Socio B. Finzr.

RIASSUNTO. — Sono. presentate condizioni necessarie e sufficienti perché uno o pil
sistemi di equazioni differenziali lineari siano deducibili dalla stazionarieta di un funzionale.
Queste condizioni permettono una sistematica rassegna dei principi variazionali nella fisica
matematica, specialmente nelle teorie lineari di campo.

I. INTRODUCTION.

The discovery of variational principles in physics has long been only
a matter of chance, asis shown by the fact that sometimes between the discovery
of two principles, one of which is the hamiltonian form of the other, a half or
even a whole century elapses @). Later some order was introduced by the
discovery that self-adjoint problems admit a variational formulation. More
generally the operator can be symmetric, as may be seen in the wonderful
book by Mikhlin [1]. The symmetry of the operator is, for a differential
operator, a weaker requirement than that of being self-adjoint [2]. But these
conditions are only sufficient and not necessary for deducing a system of
equations from a functional. In fact, as an example, in mechanics from
Hamilton’s principle follow Lagrange’s equations of motion to which initial
conditions are associated: these conditions do not make the operator sym-
metric and thus Hamilton’s principle does not enter the preceding criteria.

We show in this paper the necessary condition for an equation to admit
variational formulation and various kinds of sufficient conditions. With these
conditions a systematic inspection of all known field theories permits to find
again the variational principles already known and to find the new ones
that complete, in a well defined sense, the number of possible variational
principles in each of these theories [6], [7].

2. MATHEMATICAL PRELIMINARIES.

Let us consider systems of linear differential equations, with partial or
total derivatives; as a particular case a single equation. The set of derivation
symbols which form such a system is called formal differential operator [2],

(*¥) This work has been done under the auspices of the Research Group N. 34 of
C. N. R. Istituto Matematico del Politecnico di Milano.

(¥*) Nella seduta del 13 gennaio 1968.

(1) This is the case of the principles of elastostatics and of electromagnetism: [6], [7].
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and in the sequel we shall indicate it with an italic capital letter. So in the
following - systems of equations @:

— — —
(1) Af=g V,ut =f — Ay — A+ W Vo =/
S F aply = O _;‘ <<Pa/B T (PB/a> = Faﬁ et VY,V e =0
the formal differential operators are:
(2) & =A 8=V, A = —pA—( -+ p)VV-

R — oBre v, R = % <guyvﬁ —gﬂyva) T =Ml chmy,V, .

Each formal differential operator maps a tensor into another, in general
of different order. Let 7 denote the order of the tensor on which the formal
operator works, 7 that of the transformed tensor.

Let H,, denote the Hilbert space formed by the tensors of order =, H,
that of the tensors of order . As a scalar product of two elements %~ and /%
of the Hilbert space H,, let us take the following: ! ?

3) /w}z/de
. 12
Q

as w is a symmetric and positive definite tensor called * weight ” tensor.
So in elasticity, if ¢,, is the strain tensor, p* = c#~¢, the stress tensor,
where ¢# is Hooke’s tensor, the following scalar product is useful [1]:

@ [c i e a2 = [ 4 a0
f’} 1 2 P 1 2

In electrostatics if E, is the electric field vector, D= ¢# E, the electric
induction vector and <* the dielectric permeability tensor, the following
scalar product is useful:

() /shé E, E,dQ —_—JDkEde.
g 1 2 1 1

A formal differential operator & cannot operate on all the elements % of the
space H,, but only on those which have sufficient derivability requirements.
Let us consider only those tensors that have derivatives of all orders: these
conditions can be considered weakened, but for our purposes this enlargement
is not essential. U,, denotes the subspace formed by the tensors of order
m satisfying these derivability requirements.

(2) We make use of tensor notations and speak of tensors because they are the most
common sets of functions in mathematical physics, but the tensor nature is inessential for
what follows: every set of functions, of non tensorial nature, as Cristoffel’s symbols or spi-
nors can be used.
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The tensors transformed by % do not fill all H, but go into the subspace V,,
of all the tensors with derivatives of all orders. U,, represents the amébient
space for the formal differential operator . We call formal adjoint of a
formal differential operator © that formal operator T which realizes the con-
dition:

6) /v CudQ = / 2%y dQ + {boundary terms}
Q Q
where if 7 is a tensor with soue symmetry, i.e. symmetric or skew-symmetric,
we must make the integration by parts and consider the symmetrical or
skew-symmetrical part of the so obtained tensor.
Thus the formal operator & in (2) is the adjoint of the formal operator
— V, applied to the skew-symmetric tensor Fo8, If T = % the formal differ-

ential operator is said to be formally symmetric and for it the following
condition holds:

@) [zz&u dQ = [u@v dQ -+ {boundary terms}.
Q

8

We note that the symmetry of a formal operator in the case of systems
of differential equations can be destroyed by merely changing the order of
the equations or making linear combinations with constants or known func-
tions [4]. In particular every ordinary differential equation of second order
can always be transformed in order to have a formal symmetric operator,
multiplying it by a suitable function.

A formally symmetric operator generates necessarily functions of the
same tensorial order than those on which it operates and therefore transforms
elements of the space U,, into elements of the same space.

3. VARIATIONAL FORMULATION OF A SYSTEM OF DIFFERENTIAL EQUATIONS.

THEOREM 1.—To deduce a system of linear differential equations:
(8 du=o0

from' the stationarity of a functional it is necessary that § be formally sym-
metric, that is:

(©) § =3,

Proof: if a system of linear differential equations can be deduced from
a functional, its lagrangian can be supposed to be quadratic ®.

(3) In fact if a system of linear differential equations follows from a lagrangian it can
also contain some non quadratic terms but, as can be shown, this term is a divergence so
that it can be confined, by the divergence theorem, in the boundary integral and so does
not affect the resulting equation. ‘
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If « denotes a tensor, the most general quadratic lagrangian is:
(10) L () = - oaem + — B (Vy0) 0+ — " (V) (V20) +
+ 5 M VaVen) (V) + 5 A (VVaVi) - -
which has the form:
(11) L () = 3, % w0, (8, 4) (5, 1)

where @, are tensors, &, and G, are formal differential operators or the
identity operators possibly. The functional is:

(12) 3[u] =/ %, L w, (%,1) (%,4) dQ
Q
and then:
(19 Bl = [ 5L 8,50 (5,0) + w, () (5,591 dQ =
Q

= [Zs Su% (&, w0, %, %) + (%, 20, K,2)] dQ + {boundary terms}.
Q

If we put 83[«#] = o0 and 3z = 0 on the boundary with its derivatives
we obtain the equation:

(14) Z — [Rew, % +ZwR]u=o0.
The operator appearing in it is formally symmetric. In fact

(13) /7; [z:g (&, 0,% 1+ Z‘wﬁ%)} #dQ =

)

s e
=j % [Zx % (6w, K, + R, w, %Q} vdQ + {boundary terms}.
o]

We enumerate here a few examples: the equations

[ V,] o, = f* (rot v = £)
[— V] " [V, =f scalar field equation
(16) [—e"e*” V,V,] e =0 Saint Venant compatibility
‘ conditions

[V,] C*Pre [% gywVo — ~;— ZovVy| o7 =3 electromagnetic wave
equation
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have their operators formally symmetric and their corresponding functionals
are:

f’ g N Y % — [ (L o7
1 J1v] = (—2—7/,13 V,v,—ka>d§2= (—2~ v-rotv—v~f>dQ
Q Q
Jo[u] = [(% WY, Vyu — uf) dQ generalized Dirichlet prin-
8 ciple
(17)
Iz [e] :f(% M e Y, e, V, e,,k> dQ see [6]
ol

o] = [(—;— cvey g Vy P — gP <Pﬁ> dQ classic action principle of
L\ a electromagnetism: see [7].

This theorem permits us to obtain the decomposition of a formally symmetric
operator & as follows:

<18> S = Zk _;' [ﬁsw:%‘: _I_ %sw.\'gﬁ“:]

where &#, and %, are formal operators, w, a symmetric tensor, X, means
that § can be broken down into the sum of terms indicated between brackets.
The proof is as follows: from the fact that 8 is formally symmetric we can
obtain a functional containing necessarily a quadratic lagrangian. But the
most general quadratic lagrangian is given by (11) and the formal operator
that we obtain from it is of the kind given by (14): thus the breakdown is
demonstrated. In particular if $ is an even order formal operator it is easy
to see that it admits the decomposition:

(19), § =3, K, &, .

We give some examples:

V=5 A1 (V)] + [— Vil #[1]}

— A = [—V,] g™ [V,]

(20) { ey, V, = [—V,] ¥ et [V,]
— A — Q@ +NVV: =[V- ] [—V]+ [—=V]IQ+wI[V]
A+ o = [—V,] " [V,] + [1] &2 [].

To know if the condition of formal symmetry is also sufficient we must
decide what conditions must satisfy 8z and its derivatives on the boundary.
Precisely, if p is the maximum order of the derivatives appearing in the formal
operator §, the formal symmetry becomes also swuffscient when considering 8u
and its derivatives up to the order p — 1 vanishing on the boundary.
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These requirements on the variation 3« and on its derivatives can be
weakened in the following cases:

1) if the formal operator is of even order, say 2 p, or of odd order,
say 2 p + 1, the condition of formal symmetry is sujfficient provided that du
and its derivatives up to the order p vanish on the boundary;

2) if with the formal operator are associated boundary conditions that
make the operator symmetric then the sole condition that z belongs to the
domain of the operator is sufficient to assure the existence of the variational
formulation [1]; that is, we need not impose supplementary requirements on
du at the boundary. In particular the same condition is valid if the operator
is self-adjoint that is if boundary conditions for the operator S are the same
than those for the operator S, so D S)=D (g),

3) when natural boundary conditions are associated with a formal
operator, on a piece of the boundary, then 3z need not satisfy conditions on
the piece for deducing the equation from a functional.

Hamilton’s principle belongs to case 1); Dirichlet’s problem for the
potential equation belongs to case 2); Neumann’s problem for the potential
equation belongs to case 3).

We show here that the condition of formal symmetry is sufficient if 3z
and its derivatives, up to the order p — 1, vanish on the boundary. The less
pretentious cases I), 2), 3) can be easily deduced from this case: see [1], if &
is formally symmetric of order p, multiplying the equation (8) by 8z and
integrating we obtain:

(21) o= f 32 (S2) dQ = 3[—2—% Su dQ -+ {boundary terms }.
et !

Sut boundary terms contain linearly 8z and its derivatives up to the
order p — 1, which vanish on the boundary by hypothesis. Then the equa-
tion (8) comes from the functional:

(22) Iw] = | 5 wdndQ
J

with the condition 89 [#] = o and 3« and its derivatives up to the order p — 1
vanish on the boundary. With these conditions the formal symmetry becomes
sufficient.

4. VARIATIONAL FORMULATION FOR TWO SYSTEMS
OF DIFFERENTIAL EQUATIONS.

We pose the following question: what are the conditions for two systems
of differential equations to be deduced from the stationarity of the same
functional? The following theorem holds:

THEOREM II.—The necessary condition for deducing two systems of
linear differential equations:

(23) Su=o0 v =0
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from the stationarity of a single functional with respect to arbitrary variations
of the two tensors # and v is that the two formal operators & and % be one
the formal adjoint of the other:

o

(24) ° =

Proof: If two systems of equations follow from a single functional the
lagrangian must be linear in # and ». The most general bilinear lagrangian is:

(25) L(u,v) = Z,w, (R, n) (T, v)
where &, and %, are two formal operators and =, tensors. Now

(26) 33[ae,v] = f Z, [w, (R, 8%) (T, 0) + w, (R, 2) (T, 80] dQ =

Q

= f [82 (2, R, w, ,v) + dv (I, T, w,R, #)] dQ 4 { boundary terms}.

Then if we put 83 = o for the arbitrariness of 8 and dv it follows that:
(27) [Z, T w, K] =0 [Z, &, T,]v =o0.

The formal adjoint of the first operator is just the second one, as can be
seen with an integration by parts.

The condition (24) becomes also sufficient if 3% and 8z vanish with their
derivatives up to a certain order on the boundary. In fact multiplying the
first of (23) by 3o, the second by 8%, integrating on Q and adding we obtain:

(28) I(Sv Su + 3u%0)3Q =o.

Q

Being 8z = 82 = o on the boundary with its derivatives up to the order
that appears in the boundary integrals, the equation (28) becomes:

(29) vaé’)’udﬂzo.
a

As an example, let us consider the two systems:

—

(30) diva = e —gradv=ys.

Because div and —grad are formally adjoint we have the variational
formulation

(31) BJ (v div—;———vp —% —;) dQ=o
o

from which the two systems (30) follow, assuming 8z = 0 on the boundary.
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Thus we have shown that the variational formulation of one or more
systems of differential equations only requires a particular structure of the
Jormal differential operator whatever the boundary conditions may be. To in-
vestigate the minimum or the maximum of the functional we must consider
also the boundary conditions [3].
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