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Fisica m atem atica. — Variational formulation fo r  linear equa
tions of mathematical physics (*K Nota di E n zo  T o n t i ,  presentata ('*) 
dal Socio B. F in z i.

R iassunto. — Sono presentate condizioni necessarie e sufficienti perchè uno o più 
sistemi di equazioni differenziali lineari siano deducibili dalla stazionarietà di un funzionale. 
Queste condizioni permettono una sistematica rassegna dei principi variazionali nella fisica 
matematica, specialmente nelle teorie lineari di campo.

i .  In t r o d u c t io n .

The discovery of variational principles in physics has long been only 
a m atter of chance, as is shown by  the fact th a t sometimes between the discovery 
of two principles, one of which is the ham iltonian form  of the other, a half or 
even a whole century  elapses L ater some order was introduced by  the 
discovery th a t self-adjoint problem s adm it a variational form ulation. M ore 
generally  the operator can be sym m etric, as m ay be seen in the wonderful 
book by M ikhlin [i ]. T he sym m etry  of the operator is, for a differential 
operator, a w eaker requirem ent th an  th a t of being self-adjoint [2]. B ut these 
conditions are only sufficient and not necessary for deducing a system  of 
equations from a functional. In  fact, as an example, in m echanics from 
H am ilton’s principle follow L agrange’s equations of m otion to which initial 
conditions are associated: these conditions do not m ake the operator sym 
m etric and thus H am ilton’s principle does not enter the preceding criteria.

W e show in this paper the necessary condition for an equation to adm it 
variational form ulation and various kinds of sufficient conditions. W ith these 
conditions a system atic inspection of all known field theories perm its to find 
again the variational principles already known and to find the new ones 
th a t complete, in a well defined sense, the num ber of possible variational 
principles in each of these theories [6], [7].

2. M a t h e m a t ic a l  p r e l im in a r ie s .

L et us consider system s of linear differential equations, w ith partia l or 
to tal derivatives; as a particu lar case a single equation. The set of derivation 
symbols w hich form  such a system  is called fo rm al differential operator [2],

(*) This work has been done under the auspices of the Research Group N. 34 of 
C. N. R. Istituto Matematico del Politecnico di Milano.

(**) Nella seduta del 13 gennaio 1968.
(1) This is the case of the principles of elastostatics and of electromagnetism: [6], [7].

6. — RENDICONTI 1968, Voi. XLIV, fase. 1.
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and in the sequel we shall indicate it with an italic capital letter. So in the 
following system s of equations
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the form al differential operators are:

(2) ê =  À s  =  V , a  =  —  [xA —  (x +  4) v v -

® =  eaPTOVv *  =  { ( ^ V r ^ . (V J

Each formal differential operator m aps a tensor into another, in general 
of different order. L et m  denote the order of the tensor on which the formal 
operator works, n th a t of the transform ed tensor.

Let H m denote the H ilbert space formed by the tensors of order m , 
th a t of the tensors of order n. As a scalar product of two elements h and h 
of the H ilbert space H m let us take the following: 1 2

(3) \ w h h  dO
./ 1 2
Q

as w  is a sym m etric and positive definite tensor called “ weight ” tensor. 
So in elasticity, if ehk is the strain tensor, p hk =  chkrs ers the stress tensor, 
where chkrs is H ooke’s tensor, the following scalar product is useful [1]:

(4) f c Urseu e„ dQ  =  / phk ehk dO  .
J 1 2  J 1 2
Q Q

In  electrostatics if is the electric field vector, D Ä=  e^E ^ the electric 
induction vector and zhk the dielectric perm eability  tensor, the following 
scalar p roduct is useful:

( 5) f  zhk E* E4 dO  =  f  Di Ei dD  .
J 1 2  J i i

Q Q

A  formal differential operator % cannot operate on all the elements h of the 
space H m bu t only on those which have sufficient derivability requirem ents. 
L et us consider only those tensors th a t have derivatives of all orders: these 
conditions can be considered weakened, bu t for our purposes this enlargem ent 
is not essential. U m denotes the subspace form ed by  the tensors of order 
m  satisfying these derivability  requirem ents. 2

(2) We make use of tensor notations and speak of tensors because they are the most 
common sets of functions in mathematical physics, but the tensor nature is inessential for 
what follows: every set of functions, of non tensorial nature, as Cristoffel’s symbols or spi
nors can be used.
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The tensors transform ed by % do not fill all H w but go into the subspace Vw 
of all the tensors with derivatives of all orders. U m represents the ambient 
space for the formal differential operator %. We call form al adjoint of a 
form al differential operator % th a t form al operator % which realizes the con
dition:

where if u is a tensor with Sume sym m etry, i.e. sym m etric or skew-symmetric, 
we m ust m ake the integration by parts and consider the sym m etrical or 
skew-sym m etrical p a rt of the so obtained tensor.

Thus the form al operator ell in (2) is the adjoint of the formal operator 
— Va applied to the skew-symm etric tensor Fa6. If  % == % the formal differ
ential operator is said to be form ally symmetric and for it the following 
condition holds:

(7) / v§u  dO  =  / u&v d£2 -f- {boundary te rm s}.

We note th a t the sym m etry  of a formal operator in the case of systems 
of differential equations can be destroyed by m erely changing the order of 
the equations or m aking linear com binations with constants or known fune- 
tions [4]. In  particu lar every ordinary  differential equation of second order 
can always be transform ed in order to have a formal sym m etric operator, 
m ultiplying it by  a suitable function.

A  form ally sym m etric operator generates necessarily functions of the 
sam e tensorial order th an  those on which it operates and therefore transform s 
elements of the space U m into elements of the same space.

3. Variational formulation of a system of differential equations.

Theorem i .—To deduce a system of linear differential equations:

(8) %u =  o

from the stationarity  of a functional it is necessary tha t 8 be formally sym
metric, th a t is:

(9) 8 =  8 .

Proof: if a system  of linear differential equations can be deduced from 
a functional, its lagrangian can be supposed to be quadratic <3>.

(3) In fact if a system of linear differential equations follows from a lagrangian it can 
also contain some non quadratic terms but, as can be shown, this term is a divergence so 
that it can be confined, by the divergence theorem, in the boundary integral and so does 
not affect the resulting equation.

Q Q

Q Q
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If  ^ d e n o te s  a tensor, the most general quadratic lagrangian is:

(io) L (*) =  -  < m u  +  -  ß* (V*« ) « +  -  y*4 (VÄ u )  (V, *) +

+  -  ®*"(VA Va.«) (V, «) +  -  V, V,«) « +  • • •

which has the form:

C11) L (u) =  2 , — w, (SI, «) (“£, k)

where ze/, are tensors, oil,, and V, are formal differential operators or the 
identity  operators possibly. The functional is:

(12) 3[u] =  J  2 , — ws (3 1su) (%su) dQ
Q

and then:

(13) S3 [«] =  p t -  [«/, (Si, 8«) (Ç, «) +  w, (Si, «) (ST, 8*)] dO =
fì

=  j' S , 8u — [(oil,ws%su) -f- (^sws c&su)'\ dQ  -j- {boundary  term s}.
Q

If  we pu t 83 [u] =  0 and 8u =  o on the boundary  w ith its derivatives 
we obtain the equation:

(14) 2 ,  -  +  ■?,«/;& ,] u =  o  .

The operator appearing in it is form ally sym m etric. In  fact

OS) (dO  =

=  / »  [s, | ( W ,  +  W , ) ]  »dQ +  { boundary tern»}.

We enum erate here a few examples: the equations

[ z M  V;] V r =  f h

[— V4] ^ [ V , ] « = /

( l6 ) ' [---Zhr! Vr V,] e!m = 0

[V„]CaßyQ
^yv Vq ^v.Vy DV :== 3 ß

(rot z r = / )

scalar field equation

Saint V enant com patibility 
conditions

electrom agnetic wave 
equation
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have their operators form ally sym m etric and their corresponding functionals 
are:

$i[v]

(17) <

I ^z[u]

3 3 [e] =

I ^4 [<p] =  I
\ Q

~  — vkf^ j  dQ  =  I (—■ v • rot v —  v -
Q

~r Vhu  V\ u —  uf  ) d û  generalized D irichlet prin-
' ciple

y  zhrl zksm etm Vj eĥ  dQ  see [6]

J_ QaßYQ (pp cpe —  £|ß <ppj dQ  classic action principle of
electromagnetism: see [7].

This theorem  perm its us to obtain the decomposition of a form ally sym m etric 
operator 8 as follows:

(18) S =  [& ,« > ,* ,+  % ,w t 3lt ]

where 8ls and %s are formal operators, ws a sym m etric tensor, m eans 
th a t § can be broken down into the sum of term s indicated between brackets. 
The proof is as follows: from  the fact th a t § is form ally sym m etric we can 
obtain a functional containing necessarily a quadratic lagrangian. B ut the 
m ost general quadratic lagrangian is given by (11) and the form al operator 
th a t we obtain from  it is of the kind given by (14): thus the breakdow n is 
dem onstrated. In particu lar if § is an even order formal operator it is easy 
to see th a t it adm its the decomposition:

(1 9 )  , $ =  2 ,  .

We give some examples:

s*" v , = -  {[ï ] tv ,] +  [ -  v>] * n i ] }

A =  [— Vi] g hk [V>sl
— &hrl eism y^ =  [---. y r] SM  zksm [y j

— (lA — (ji +  X) V V • =  [V • ] 11' [— V] +  [— V] (X +  fl) [V • ]
A +  co2 =  [—  v ,]  g» [V*] +  [I] co2 [ I ] .

To know if the condition of formal sym m etry  is also sufficient sne m ust 
decide w hat conditions m ust satisfy 8u and its derivatives on the boundary. 
Precisely, if p  is the m axim um  order of the derivatives appearing in the formal 
operator 8, the form al sym m etry becomes also sufficient when considering Su 
and its derivatives up to the order p  —  1 vanishing on the boundary.
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These requirem ents on the variation Su and on its derivatives can be 
weakened in the following cases:

1) if the formal operator is of even order, say 2 p, or of odd order, 
say 2 p  +  I, the condition of formal sym m etry  is sufficient provided th a t Su 
and its derivatives up to the order p  vanish on the boundary;

2) if with the formal operator are associated boundary  conditions that 
m ake the operator symmetric then the sole condition th a t u  belongs to the 
dom ain of the operator is sufficient to assure the existence of the variational 
form ulation [ I ]; th a t is, we need not impose supplem entary requirem ents on 
Su at the boundary. In  particu lar the sam e condition is valid if the operator 
is self-adjoint th a t is if boundary  conditions for the operator S are the same 
th an  those for the operator S, so D (S) =  D ('S);

3) when natural boundary conditions are associated with a formal 
operator, on a piece of the boundary, then Su need not satisfy conditions on 
the piece for deducing the equation from a functional.

H am ilton’s principle belongs to case 1); D irichlet’s problem  for the 
potential equation belongs to case 2); N eum ann’s problem  for the potential 
equation belongs to case 3).

We show here th a t the condition of formal sym m etry  is sufficient if Su 
and its derivatives, up to the order p  —  1, vanish on the boundary. The less 
pretentious cases 1), 2), 3) can be easily deduced from  this case: see [1], if § 
is form ally sym m etric of order p, m ultiplying the equation (8) by Su and 
integrating we obtain:

Su (ßu) d û  =  S j  ~  u §>u d û  -f- { boundary  term s }.
Q Q

But boundary  term s contain linearly Su and its derivatives up to the 
order p  —  1, which vanish on the boundary  by  hypothesis. T hen  the equa
tion (8) comes from  the functional:

(22) 3 [ u ] = J ~ u $ u  d û
Q

w ith the condition [u\ =  o and Su and its derivatives up to the order p  —  1 
vanish on the boundary. W ith these conditions the formal sym m etry becomes 
sufficient.

4. Variational formulation for two systems
OF DIFFERENTIAL EQUATIONS.

We pose the following question: w hat are the conditions for two systems 
of differential equations to be deduced from the stationarity  of the same 
functional? T he following theorem  holds:

Theorem II.— T he necessary condition for deducing two systems of 
linear differential equations:

(23) 8u=* o ~  o
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from the stationarity of a single functional with respect to arb itrary  variations 
of the two tensors u  and v is tha t the two formal operators S and % be one 
the formal adjoint of the other:

(24) % =  8 .

Proof If  two system s of equations follow from  a single functional the 
lagrangian m ust be linear in u and v. The m ost general bilinear lagrangian is:

(2 5 ) L (u , v) =  2 , ws (3t, u) v)

where 9ls and “S’, are two formal operators and ws tensors. Now

(26) S3 [u , v ] = j  2 , K  ( a ,  s u) (%s v) +  w, ( a ,  «) (ç , &/] d a  =
Q

=  j  \8u (Es3lsws<&sv) +  d £ I+  { boundary term s }.
Q

Then if we pu t 8$ — o for the arbitrariness of and 8v it follows that:

(27) [2, ze/x $tx] «  == o [2xIftx =  o .

The formal adjoint of the first operator is just the second one, as can be 
seen with an integration by parts.

The condition (24) becomes also sufficient if 8u and 8v vanish with their 
derivatives up to a certain order on the boundary. In  fact m ultiplying the 
first of (23) by  8v, the second by 8u, integrating on Q and adding we obtain:

(28) j  (8v Su +  ^v) SO =  o .
Q

Being 8^ =  $u =  o on the boundary  with its derivatives up to the order 
th a t appears in the boundary  integrals, the equation (28) becomes:

(29) S J  vSu  dQ  =  o .
Q

As an example, let us consider the two systems:
—> —>-

(30) div u — p —  grad v =  s .

Because div and — grad are form ally adjoint we have the variational 
form ulation

/ —> —> —>
(31) S (v div u —  vp —  u • s )  dO  — o

Q

from  which the two systems (30) follow, assuming 8u == O on the boundary.
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Thus we have shown th a t the variational form ulation of one or more 
systems of differential equations only requires a particu lar structure of the 

form al differential operator whatever the boundary conditions may be. To in
vestigate the m inim um  or the m axim um  of the functional we m ust consider 
also the boundary  conditions [3].
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