ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

Placido Cicala

Su una categoria di gusci di traslazione

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **44** (1968), n.1, p. 63–68.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1968_8_44_1_63_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Accademia Nazionale dei Lincei, 1968.

Meccanica. — Su una categoria di gusci di traslazione. Nota ^(*) del Corrisp. Placido Cicala.

SUMMARY. — Concerning translation shells for which the ratio of main curvatures is small an elastic theory is presented which contains, as a special case, the theory for long cylindrical shells. Orders of approximations are defined by means of the thickness parameter. For stress states having sinusoidal lengthwise variation a resolution procedure is suggested.

INTRODUZIONE.

Sono frequentemente impiegate nelle costruzioni, specialmente nelle coperture, strutture formate da un sistema di archi uguali, giustapposti, con sezione variamente profilata, di piccolo spessore. Ciascuno di questi archi, quando se ne raddrizzi l'asse, può essere considerato come guscio cilindrico di lunghezza rilevante rispetto alle dimensioni trasversali, anche se gli elementi adiacenti sono così collegati da costituire un complesso continuo. La trattazione più completa del guscio cilindrico «lungo» fu data da Wlassow (Rif. 1, Cap. XI, XII): le ipotesi semplificative su cui quella si basa trovano sistematica giustificazione nel metodo degli sviluppi parametrici (Rif. 2, Cap. 11). In questa Nota viene presentata una teoria che, nello stesso ordine di approssimazione di quella sopra menzionata, introduce la considerazione della curvatura degli archi, nell'ipotesi che la freccia di questi sia dello stesso ordine delle dimensioni trasversali della sezione.

CONSIDERAZIONI GEOMETRICHE.

Indicando con i, j, k una terna di versori ortogonali, si esprime la coordinata vettoriale del punto della superficie media Σ nella forma

(I)
$$x_m = x i + y j + z k$$
, $z = f - \frac{x^2}{2a}$

con *a* costante e *f* funzione di *y*. Si tratta dunque di una superficie di traslazione, generabile imprimendo la traslazione $x\mathbf{i} - x^2\mathbf{k}/2a$ alla curva *g* rappresentata da $y\mathbf{j} + f\mathbf{k}$.

Si assumono come coordinate ξ_a , ξ_b su Σ gli archi sviluppati delle curve y = cost., x = cost. e si indicano con ',' le derivate $\partial/\partial \xi_a$, $\partial/\partial \xi_b$. Si ha così

(2)
$$\begin{aligned} \mathbf{x}_{m}^{\prime} &= \mathbf{t}_{a} = \left(\mathbf{i} - \frac{x}{a} \, \mathbf{k}\right) / m_{a} \\ \mathbf{x}_{m}^{\prime} &= \mathbf{t}_{b} = (\mathbf{j} + f_{y} \, \mathbf{k}) / m_{b} \end{aligned}$$

(*) Presentata nella seduta del 13 gennaio 1968.

essendo $m_a = \sqrt{1 + x^2/a^2}$, $m_b = \sqrt{1 + f_y^2}$, $f_y = df/dy$ e quindi t_a , t_b i versori tangenti alle linee coordinate. Questi, insieme con il versore n normale a Σ , dato da

(3)
$$\boldsymbol{n} = \left(\frac{x}{a} \, \boldsymbol{i} - f_y \, \boldsymbol{j} + \boldsymbol{k}\right) / m_n \quad , \quad m_n = \sqrt{1 + x^2/a^2 + f_y^2}$$

costituiscono la terna birettangola di riferimento locale. Nella direzione n si misura la coordinata ζ che va da — h/2 a h/2 : h è lo spessore, qui supposto costante.

Nell'analisi strutturale intervengono i parametri geometrici c definiti dalle relazioni

(4)
$$\begin{aligned} \mathbf{t}_{a} &= c_{11} \, \mathbf{t}_{a} + c_{12} \, \mathbf{t}_{b} + c_{13} \, \mathbf{n} \\ \mathbf{t}_{b} &= c_{21} \, \mathbf{t}_{a} + c_{22} \, \mathbf{t}_{b} + c_{23} \, \mathbf{n} \\ \mathbf{n} &= c_{1} \, \mathbf{t}_{a} + c_{2} \, \mathbf{t}_{b} \quad , \quad \mathbf{n}' = c_{3} \, \mathbf{t}_{a} + c_{4} \, \mathbf{t}_{b} \end{aligned}$$

essendo nel caso in esame $t_b = t_a = 0$. Con facile calcolo si ha

$$c_{11} a^{2} m_{a}^{3} m_{n}^{2} = -x f_{y}^{2} \qquad c_{21} a m_{b}^{2} m_{n}^{2} = -m_{a} x f_{yy}$$

$$c_{12} a m_{a}^{2} m_{n}^{2} = -m_{b} f_{y} \qquad c_{22} a^{2} m_{b}^{3} m_{n}^{2} = -x^{2} f_{y} f_{yy}$$

$$(5) \qquad c_{13} a m_{a}^{2} m_{n} = -1 \qquad c_{23} m_{b}^{2} m_{n} = f_{yy}$$

$$c_{1} a m_{n}^{3} = m_{b}^{2} \qquad c_{2} a^{2} m_{a} m_{n}^{3} = m_{b} x f_{y}$$

$$c_{3} a m_{b} m_{n}^{3} = -m_{a} x f_{y} f_{yy} \qquad c_{4} m_{n}^{3} = -m_{a}^{2} f_{yy}.$$

APPROSSIMAZIONI DELLA PARETE SOTTILE.

Per un ordinamento sistematico delle semplificazioni adottabili nel calcolo della parete sottile è vantaggioso introdurre un paramentro δ proporzionale allo spessore e studiare il comportamento delle incognite per $\delta \rightarrow 0$. Per questo è possibile usare i metodi dell'integrazione asintotica o più semplicemente valersi di sviluppi in serie di potenze di δ , previa introduzione delle «lunghezze di variazione », a misura degli intervalli di coordinate in cui le incognite subiscono variazioni dello stesso ordine dei valori di partenza. In particolare, per il guscio cilindrico definito dalla (I) per I/a = 0 detti L, l gli intervalli di variazione nelle coordinate x, y, ove si ponga L/l = 0 ($\delta^{-1/2}$), ossia per un'incognita V generica

$$V = o \left(V' \, \delta^{1/2} \right)$$

si ottiene, in prima approssimazione, la menzionata teoria di Wlassow: in seconda approssimazione si giunge ad un affinamento (Rif. 3) che contiene e completa le correzioni suggerite da Novozhilof (Rif. 4). Il metodo citato (Rif. 2) conduce a ricavare dalla teoria elastica tridimensionale una successione di sistemi differenziali che permettono di spingere il calcolo fino alla voluta potenza di δ . Lo stesso metodo venne usato per l'analisi del guscio la cui Σ è data dalla (1), nell'ipotesi che oltre alla (6) sussista la relazione

$$L^2 = o(al)$$

Saranno qui presentate le relazioni corrispondenti al primo passo di approssimazione, omettendone la deduzione per necessità di spazio. In queste intervengono solo tre parametri di curvatura, che si indicano con $\rho_a = -c_{13}$, $\rho_b = -c_{23}$, $\rho_g = -c_{12}$. Per essi dalle (5), tenendo presente che è x/a = o ($\delta^{1/2}$), si ottiene

(8)
$$c_{13} = - 1/am_b \cdots c_{23} = f_{yy}/m_b^3 \cdots = -c_4$$

 $c_{12} = -f_y/am_b \cdots$

In queste relazioni, come nel seguito, si usa il simbolo \cdots a separare gruppi di termini di ordine relativo δ^d : il segno, posto alla fine di un'equazione, indica l'omissione di un residuo o (δ^d) rispetto all'ultimo addendo esplicito.

IL SISTEMA DIFFERENZIALE.

Supposto il materiale elastico e isotropo (di modulo E e coefficiente di Poisson v), sulla base delle ipotesi formulate, dalle equazioni della monografia citata (Rif. 2, Chap. 4) con le stesse notazioni salvo le varianti S_b per $S_b + c_4 B_b e h_n^2 = h^2/12 (1 - v^2)$, in presenza del carico $p_a t_a + p_b t_b + p_n n$ riferito all'area di Σ , si ha il sistema

(9)
$$S_a = Eh \left(\dot{u_a} + \rho_g \, u_b + \rho_a \, w \right) \cdots$$

(IO), (II)
$$u'_{b} + \rho_{b} w = \cdots$$
, $u'_{a} + u'_{b} = \cdots$

(12), (13)
$$\beta_b = -w' + \rho_b u_b \cdots$$
, $B_b = Ehh_n^2 \beta_b \cdots$

(14), (15)
$$p_a + S'_a + S'_{ab} = \cdots$$
, $S_{bc} = B'_b \cdots$

(16)
$$p_b + S'_b + S'_{ab} + \rho_b S_{bc} - \rho_g S_a = \cdots$$

(17)
$$p_n + S'_{bc} = \rho_a S_a + \rho_b S_b \cdots$$

Nel caso del cilindro (I/a = 0 e quindi $\rho_a = \rho_g = 0$) può farsi, nella stessa approssimazione, il ragguaglio con la notazione di Flügge (Rif. 5)

1

$$\begin{split} u_a &= u \quad , \quad u_b = v \quad , \quad w = w \quad , \quad \mathbf{S}_a = \mathbf{N}_x \quad , \quad \mathbf{S}_{ab} = \mathbf{N}_{x\varphi} \; , \\ \mathbf{S}_b &= \mathbf{N}_{\varphi} \quad , \quad \mathbf{S}_{bc} = -\mathbf{Q}_{\varphi} \quad , \quad \mathbf{B}_b = -\mathbf{M}_{\varphi} \; . \end{split}$$

5. - RENDICONTI 1968, Vol. XLIV, fasc. 1.

Nel caso generale, per la definizione degli spostamenti valgono le relazioni seguenti

(18)
$$\boldsymbol{u} \cdot \boldsymbol{t}_a = \boldsymbol{u}_a \cdot \boldsymbol{\cdot} \cdot \boldsymbol{\cdot} , \quad \boldsymbol{u} \cdot \boldsymbol{t}_b = \boldsymbol{u}_b \cdot \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\zeta} \boldsymbol{\beta}_b \cdot \boldsymbol{\cdot} \boldsymbol{\cdot} \boldsymbol{\cdot} , \quad \boldsymbol{u} \cdot \boldsymbol{n} = \boldsymbol{w} \cdot \boldsymbol{\cdot} \boldsymbol{\cdot}$$

essendo u il vettore spostamento in un punto generico del corpo.

Per la definizione degli sforzi, detta $\mathbf{S}_{b} d\xi_{a}$ la risultante delle tensioni sull'elemento di sezione coperto dalle normali a Σ nel tratto $d\xi_{a}$ di linea $\xi_{b} = \text{cost.}$, si ha

(19)
$$\mathbf{S}_{\boldsymbol{b}} = (\mathbf{S}_{ab} \cdots) \boldsymbol{t}_{a} \cdots + (\mathbf{S}_{b} \cdots) \boldsymbol{t}_{b} + \mathbf{S}_{bc} \boldsymbol{n}$$

La tensione preponderante su tale sezione è rappresentata dal vettore 12 B_b $\zeta t_b/\hbar^3$. Con analoga definizione di S_a si trova

(20)
$$\mathbf{S}_{a} = (\mathbf{S}_{a} \cdot \cdot \cdot) \mathbf{t}_{a} \cdot \cdot \cdot + (\mathbf{S}_{ab} \cdot \cdot \cdot) \mathbf{t}_{b} \cdot \cdot \cdot \cdot$$

Gli ordini di grandezza delle incognite sono precisati dalle medesime (9)-(17), tenuto conto della (6): essi sono determinati dalle componenti di carico p_b , p_n a meno che sia p_b , $p_n = o (p_a \delta^{1/2})$, nel qual caso predomina l'azione di p_a .

Soluzioni sinusoidali in x.

Posto che le espressioni di p_a , p_b , p_n contengano a fattore la funzione $\sin(\pi x/L)$ e che i vincoli nei piani x = 0 e x = L impediscano gli spostamenti u_b ma lascino liberi gli u_a , si ottiene una soluzione in cui u_a , u_b , w, β_b , S_a , S_b , S_{ab} , S_{bc} , B_b variano proporzionalmente a sin ($\pi x/L$). Per queste variabili, derivando rispetto a ξ_a le (11) e (14) e sostituendo $u_b = -\pi^2 u_b/L^2$, $S_a^{..} = -\pi^2 S_a/L^2$ si ha un sistema di ottavo ordine, nella sola indipendente ξ_a . Le condizioni a ciascun estremo del profilo potranno stabilire, ad esempio, una relazione lineare fra $u_a \in S_{ab}$, una fra $u_b \in S_b$, una fra $w \in S_{bc} \in$ una fra β_b e B_b (vincoli elastici indipendenti); l'integrazione potrà effettuarsi per passi e, aggiungendo ad una soluzione particolare, con 4 condizioni arbitrariamente poste all'inizio, 4 soluzioni omogenee, si imporrà alla combinazione il rispetto delle 4 condizioni all'altro estremo del profilo. In alternativa si propone un procedimento che presenta il vantaggio di contenere nei suoi primi passi la soluzione del guscio-trave, nota generalmente dal trattato di Lundgren (Rif. 6) ma anteriormente presentata da H. Wagner (Rif. 7) e da Wlassow. Nelle relazioni che seguono si ometterà l'indicazione dei residui o (δ) . Introducendo l'angolo φ con tang $\varphi = f_{\gamma}$ risulta

(21)
$$y' = \cos \varphi$$
 , $z' = \sin \varphi$, $\varphi' = -\rho_b$, $\rho_a = y'/a$, $\rho_g = z'/a$

Poniamo inoltre

(22)
$$u_{b} = u_{y} y' + u_{z} z' , \quad w = u_{z} y' - u_{y} z' S_{b} = S_{y} y' + S_{z} z' , \quad S_{bc} = S_{z} y' - S_{y} z'.$$

Con le variabili u_y , u_z , S_y , S_z il sistema (9)–(17) assume la forma

$$\begin{split} S_{a} &= Eh (u_{a}^{'} + u_{z}^{'} a) , \quad u_{y}^{'} = \beta_{b} z^{\prime} , \quad u_{z}^{'} = -\beta_{b} y^{\prime} \\ u_{a}^{'} &= \pi^{2} (u_{y} y^{\prime} + u_{z} z^{\prime}) / L^{2} , \quad \beta_{b}^{'} = B_{b} / Ehh_{n}^{2} \\ B_{b}^{'} &= S_{z} y^{\prime} - S_{y} z^{\prime} \qquad S_{y}^{'} = p_{n} z^{\prime} - (p_{b} + S_{ab}^{'}) y^{\prime} \\ S_{z}^{'} &= S_{a} / a - p_{n} y^{\prime} - (p_{b} + S_{ab}^{'}) z^{\prime} , \qquad S_{ab}^{'} = \pi^{2} S_{a} / L^{2}. \end{split}$$

Integrando lungo la linea g dall'estremo $\xi_b = o$ del profilo si ha

(24), (25)
$$u_y = \int \beta_b \, dz + k_1$$
, $u_z = -\int \beta_b \, dy + k_2$

(26)
$$\frac{\mathrm{L}^2}{\pi^2} \left(\frac{\mathrm{S}_a}{\mathrm{E}\hbar} - \frac{u_z}{a} \right) = k_1 y + k_2 z + k_3 + \int \beta_b \left(\bar{z} \mathrm{d}y - \bar{y} \mathrm{d}z \right)$$

(27)
$$\mathbf{S}_{ab}^{\cdot} = \frac{\pi^2}{\mathbf{L}^2} \int \mathbf{S}_a \, \mathrm{d}\boldsymbol{\xi}_b + k_4$$

(28)
$$S_y = \int [p_n dz - (p_b + S_{ab}) dy] + k_5$$

(29)
$$S_{z} = \frac{1}{a} \int S_{a} d\xi_{b} - \int [p_{n} dy + (p_{b} + S_{ab}) dz] + k_{6}$$

(30)
$$B_{b} = k_{7} + k_{6} y - k_{5} z - \frac{1}{a} \int S_{a} \bar{y} d\xi_{b} + \int p_{n} (\bar{y} dy + \bar{z} dz) + \int (p_{b} + S_{ab}) (\bar{y} dz - \bar{z} dy)$$

(31) $\beta_b = \int B_b d\xi_b / Ehh_n^2 + k_8$

dove con k sono indicate le costanti di integrazione: il limite inferiore è fissato nello stesso estremo per tutti gli integrali. In questo sistema, come nelle (23) è trascurato il termine p_a . Con \bar{y}, \bar{z} si indica la differenza fra la variabile di integrazione e il valore al limite superiore dell'integrale.

Per una risoluzione approssimata si suggerisce un procedimento, immediatamente applicabile se sono note le forze applicate alla sezione x = cost.e quindi le costanti k_4 , k_5 , k_6 , k_7 : un facile calcolo di iperstaticità discreta ne fornisce i valori qualora, invece, siano vincolati gli spostamenti.

Diviso il campo della variabile ξ_{i} in un certo numero di intervalli Δ_{i} , in un punto P_{i} di ciascuno di essi si concentra la deformabilità flessionale Δ_{i}/Ehh_{n}^{2} . In primo luogo, trascurando questa deformabilità, con $\beta_{b} = k_{8}$, dalla (27) con l'aiuto delle (25), (26) si calcola S_{ab} : intervengono in questo calcolo le costanti k_{1} , k_{2} , k_{3} , k_{8} che vengono individuate in base alle condizioni di equilibrio globale della sezione secondo i noti procedimenti del guscio-trave; conseguentemente dalla (30) si determina B_{b} . Successivamente si ripete il calcolo mediante le stesse relazioni, ponendo per β_{b} un valore

(23)

unitario dal punto P_i in avanti determinando k_1 , k_2 , k_3 , k_8 caso per caso in base alle condizioni globali d'equilibrio in assenza di carichi. Sia B_{ij} il valore di B_j che così si calcola nel punto P_j , \tilde{B}_j il valore trovato nel primo calcolo e B_j quello che effettivamente si ha in P_j . Si potrà scrivere per la (31)

(32)
$$B_j = \tilde{B}_j + \sum_i B_i \frac{\Delta_i}{E\hbar k_n^2} B_{ij}$$

e, risolvendo rispetto alle B_j il sistema delle (32) scritte per ciascuno dei punti P, si determina la deformazione del profilo g; quindi dalle (24)–(30) si calcolano successivamente spostamenti e sforzi. Si osserva che la matrice dei coefficienti B_{ij} è simmetrica; per un'assegnata geometria di g, previa introduzione di variabili adimensionali, i coefficienti del sistema (32) a primo membro sono proporzionali a $L^4 \lambda_n^2/l^6$ mentre quelli al secondo dipendono solo, e con legge quadratica, dal parametro L^2/al .

CONCLUSIONI.

Per la categoria considerata di strutture a parete sottile, largamente impiegata nelle costruzioni, la formulazione proposta sviluppa il calcolo su una traccia assai prossima a quella in uso per le volte cilindriche (Rif. 6). Essa isola dai termini fondamentali quelli correttivi e facilita la generalizzazione dei risultati. Applicazioni svolte per voltine di tipo Silberkuhl⁽¹⁾ hanno mostrato che i nuovi termini, relativi alla curvatura longitudinale, e quelli propri del guscio cilindrico danno correzioni della stessa entità.

RIFERIMENTI.

- W. S. WLASSOW, Allgemeine Schalentheorie und ihre Anwendung in der Technik, Akademie-Verlag, Berlin 1958.
- [2] P. CICALA, Systematic approximations approach to linear shell theory, Levrotto e Bella, Torino 1965.
- [3] G. SINISCALCO, Parametric expansions in the linear theory of cylindrical shells. Part II, Long cylinder solutions, «Meccanica», N. 2, vol. II, 1967.
- [4] V. V. NOVOZHILOF, Thin shell theory, Noordhoff, Groningen 1964.
- [5] W. FLÜGGE, Stresses in shells, Springer, Berlin 1962.
- [6] H. LUNDGREN, Cylindrical shells, Danish Tech. Press., Copenhagen 1951.
- [7] H. WAGNER e W. PRETSCHER, Verdrehung und Knickung von offenen Profilen, «Luftf. Forschg.», 1934.

(1) Ved. L. SANPAOLESI, Su una struttura sottile a doppia curvatura, «Atti Ist. Sc. d. Costruzioni», Pisa, N. 77, 1960. Anche se Σ non obbedisce esattamente alla (1) la teoria indicata è valida nell'approssimazione precisata.