ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

SERGIS BRUNO, MARIO CASTAGNINO

Una proprietà caratteristica per la linearità delle connessioni di Kawaguchi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 44 (1968), n.1, p. 54–57. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1968_8_44_1_54_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria. — Una proprietà caratteristica per la linearità delle connessioni di Kawaguchi. Nota di Sergis Bruno e Mario Castagnino, presentata (*) dal Socio B. Segre.

SUMMARY. — In a differentiable manifold, endowed with a Kawaguchi connection, the derivative of a tensor (of rank ≥ 2) is a tensor if, and only if, the connection is a linear one.

- 1. È noto che, su una varietà differenziabile V_n di classe $C'(r \geq 2)$, a connessione lineare, i derivati covarianti dei tensori risultano tensori; inoltre, la derivazione covariante soddisfa la regola ordinaria della derivazione di un prodotto e per gli scalari si riduce alla derivata ordinaria. Queste proprietà non sono soddisfatte, in generale, per le connessioni non-lineari di Kawaguchi. Lo scopo del presente Lavoro è quello di provare che le suddette proprietà sono caratteristiche per la linearità delle connessioni di Kawaguchi.
- 2. Ricordiamo la definizione e le principali proprietà di una connessione non-lineare secondo A. Kawaguchi [1]. Se U è un intorno coordinato della varietà V_n , v un vettore contravariante dello spazio tangente τ_n , nel punto x; una connessione non-lineare viene definita da un insieme di n forme differenziali di grado uno $\omega(x, U, v)$ in U, dove $x \in U$, tali che:
- (I) I coefficienti delle forme $\omega\left(x\;,\;\mathrm{U}\;,\;v\right)$ sono funzioni scalari di classe $r-\mathrm{I}$ in $\mathrm{U}\times\tau_n$.
- (II) Ognuna delle forme ω (x , U , v) è omogenea, di grado uno, rispetto al vettore v, ossia, $\forall \rho$,

$$\omega(x, U, \rho v) = \rho \omega(x, U, v).$$

(III) Per x = x', $x \in U \cap U'$ si ha:

$$\omega(x, U, v) = A\omega'(x', U', v') - dAv',$$

ove ogni elemento della matrice A, del cambiamento di carta, è una funzione differenziabile del punto in $U \cap U'$.

In una base naturale le n forme differenziali possono essere rappresentate da:

$$\omega_i^j(x, v) dx^i$$
, per $x \in U$, $j = 1, 2, \dots, n$.

La (III) ci fornisce il cambiamento dei coefficienti della connessione di fronte a un cambiamento di carta. Precisamente si ha:

(I)
$$\omega_{i}^{j}(x, v) dx^{i} = a_{k'}^{j}(x') \omega_{l'}^{k'}(x', v') dx^{l'} - da_{k'}^{j} v^{k'},$$

(*) Nella seduta del 13 gennaio 1968.

ossia, posto $a_{k'h'}^{j} = \partial_{h'} a_{k'}^{i}$, risulta:

(2)
$$\omega_i^j(x, v) = a_{k'}^i(x') \omega_{l'}^{k'}(x', v') a_i^{l'}(x') - a_{k'h'}^j(x') a_i^{h'}(x') v^{k'},$$

(3)
$$\omega_{i'}^{j'}(x',v') = a_k^{j'}(x) \omega_l^k(x,v) a_{i'}^l(x) - a_{kh}^{j'}(x) a_{i'}^h(x) v^k.$$

Una connessione non-lineare permette di definire, nel modo seguente, il differenziale assoluto:

$$\delta f = \mathrm{d}f \ (f \ \mathrm{scalare}),$$

(5)
$$\delta v^{j} = dv^{j} + \omega_{i}^{j}(x, v) dx^{i},$$

(6)
$$\delta \mathbf{T}^{ij} = d\mathbf{T}^{ij} + \boldsymbol{\omega}_{l}^{ij}(x, \mathbf{T}^{**}) dx^{l},$$

ove è:

(7)
$$\omega_l^{ij}(x, \mathbf{T}^{**}) = \omega_l^i(x, \mathbf{T}^{*j}) + \omega_l^j(x, \mathbf{T}^{i*}),$$

e gli asterischi vanno al posto degli indici muti. Per le componenti dei derivati del vettore (v^i) e del tensore (T^{ij}) si ha allora:

(8)
$$\delta_k v^j = \partial_k v^j + \omega_k^j(x_i, v),$$

(9)
$$\delta_k T^{ij} = \delta_k T^{ij} + \omega_k^{ij} (x, T^{**}).$$

Queste definizioni sono date in maniera tale che si soddisfi la regola del prodotto:

$$\delta_{k}\left(v^{j}\,\omega^{i}\right)=\left(\delta_{k}\,v^{j}\right)\omega^{i}+v^{j}\left(\delta_{k}\,\omega^{i}\right),$$

la proprietà (II) ci permette di asserire che la regola del prodotto è soddisfatta anche nel caso di uno scalare per un vettore.

Inoltre posto:

$$\left(\text{II} \right)^{i} \qquad \qquad \omega^{j}_{ik} = rac{\partial}{\partial \sigma^{k}} \, \omega^{j}_{i} \, ,$$

risulta, per la (II);

$$\mathbf{\omega}_{i}^{j} = \mathbf{\omega}_{ik}^{j} \, v^{k} \,.$$

Notiamo che la (I) è tale che, per ogni vettore (v^i) , $(\delta_k v^j)$ risulta un tensore. Infatti, cambiando carta, si ha:

$$\partial_{k'} v^{j'} = a_h^{j'} a_{k'}^l \partial_l v^h + a_{hl}^{j'} a_{k'}^h v^l,$$

e per le (3):

$$\mathbf{w}_{k'}^{j'}(x',v') = a_{k}^{j'} \mathbf{w}_{l}^{k}(x,v) a_{k'}^{l} - a_{kl}^{j'} a_{k'}^{k} v^{l},$$

e quindi da:

$$\delta_{k'} v^{j'} = \partial_{k'} v^{j'} + \omega_{k'}^{j'} (x', v'),$$

si ottiene:

$$\delta_{k'} v^{j'} = \alpha_h^{j'} \alpha_{k'}^l (\partial_l v^h + \omega_l^h (x, v)) = \alpha_h^{j'} \alpha_{k'}^l \delta_l v^h,$$

Inversamente, le proprietà (II) e (III) si desumono dalla regola del prodotto e dal fatto che $(\delta_k v^i)$ sia un tensore.

3. – Ci rimane da esaminare qual'è la condizione perché $(\delta_k \, T^{ij})$ sia anche esso un tensore. All'uopo ci proponiamo di provare il seguente:

TEOREMA. Condizione necessaria è sufficiente perché, per ogni tensore (T^{ij}) , le $\delta_k T^{ij}$, date dalla (9), siano le componenti di un tensore è che:

$$\omega_i^j(x,v) = \Gamma_{ik}^j v^k$$

dove Γ^{j}_{ki} sono le componenti di una connessione lineare.

Dimostrazione. La condizione è ovviamente sufficiente. Proviamone la necessità.

Effettuiamo un cambiamento di carta. Nella prima carta sussiste la (9), nella seconda sussiste la:

(13)
$$\delta_{k'} T^{i'j'} = \partial_{k'} T^{i'j'} + \omega_{k'}^{i'j'} (x', T^{*'*'}),$$

Risulta:

$$(14) \qquad \partial_{k'} \operatorname{T}^{i'j'} = a_m^{i'} a_n^{j'} a_{k'}^h \partial_h \operatorname{T}^{mn} + a_{mh}^{i'} a_{k'}^h a_n^{j'} \operatorname{T}^{mn} + a_{nl}^{j'} a_m^{i'} a_{k'}^{i'} \operatorname{T}^{mn}.$$

Se per ogni tensore (T^{ij}) , le $\delta_k T^{ij}$, date dalle (9), sono le componenti di un tensore, dev'essere:

$$\delta_{k'} \operatorname{T}^{i'j'} = a_m^{i'} a_n^{j'} a_{k'}^k \delta_k \operatorname{T}^{mn},$$

pertanto dalle (13) e (14) si ha

$$\begin{split} \omega_{k'}^{i'j'}(x', \mathbf{T}^{*'*'}) &= a_{m}^{i'} a_{n}^{j'} a_{k'}^{k} \, \delta_{k} \, \mathbf{T}^{mn} - a_{m}^{i'} a_{n}^{j'} a_{k'}^{h} \, \partial_{h} \mathbf{T}^{mn} - a_{mh}^{i'} a_{k'}^{h} a_{n}^{j'} \mathbf{T}^{mn} - a_{nl}^{j'} a_{m}^{i'} a_{k'}^{i'} \, \mathbf{T}^{mn} = \\ &= a_{m}^{i'} \, a_{n}^{j'} a_{k'}^{h} \, \left[\delta_{h} \, \mathbf{T}^{mn} - \partial_{h} \, \mathbf{T}^{mn} \right] - a_{mh}^{i'} \, a_{k'}^{h} \, a_{n}^{j'} \mathbf{T}^{mn} - a_{nl}^{j'} a_{m}^{i'} a_{k'}^{j'} \, \mathbf{T}^{mn}, \end{split}$$

e quindi, in forza delle (9):

$$(15) \quad \omega_{k'}^{i'j'}(x', \mathbf{T}^{*'*'}) = a_m^{i'} a_n^{j'} a_{k'}^{h} \omega_h^{mn}(x, \mathbf{T}^{**}) - a_{mh}^{i'} a_{k'}^{h} a_n^{j'} \mathbf{T}^{mn} - a_{nl}^{j'} a_m^{i'} a_{k'}^{l'} \mathbf{T}^{mn}.$$

Dall'altro canto, per le (7), scritta nella seconda carta, si ha:

$$\omega_{k'}^{i'j'}(x', T^{*'*'}) = \omega_{k'}^{i'}(x', T^{*'j'}) + \omega_{k'}^{j'}(x', T^{i'*'}),$$

e quindi, in forza delle (3), risulta:

$$\omega_{k'}^{i'j'}(x', T^{*'*'}) = a_{m}^{i'} a_{k'}^{h} \omega_{k}^{m} (x, T^{*j'}) - a_{mh}^{i'} a_{k'}^{h} T^{mj'} + a_{m}^{j'} a_{k'}^{h} \omega_{n}^{m} (x, T^{i'*}) - a_{mh}^{j'} a_{k'}^{h} T^{i'm},$$

cioè si ha:

$$\omega_{k'}^{i'j'}(x', \mathbf{T}^{*'*'}) =$$

$$= a_m^{i'} a_{k'}^k \omega_k^m (x , a_i^{j'} \mathbf{T}^{*:}) - a_{mh}^{i'} a_{k'}^h a_l^{j'} \mathbf{T}^{ml} + a_m^{j'} a_{k'}^h \omega_h^m (x , a_i^{i'} \mathbf{T}^{j*}) - a_{mh}^{j'} a_{k'}^h a_l^{i'} \mathbf{T}^{lm}.$$

Dalle (15), (16) e (7) segue:

$$a_{m}^{i'} a_{n}^{j'} a_{k'}^{h} \left[\omega_{h}^{m} (x, T^{*n}) + \omega_{h}^{n} (x, T^{m*}) \right] =$$

$$= a_{m}^{i'} a_{k'}^{h} \omega_{h}^{m} (x, a_{i}^{j'} T^{*i}) + a_{m}^{j'} a_{k'}^{h} \omega_{h}^{m} (x, a_{i}^{i'} T^{j*}),$$

che, in forza delle (11) e (12), diventa:

$$a_{m}^{i'} a_{n}^{j'} a_{k'}^{h} \omega_{hs}^{m}(x, T^{*n}) T^{sn} + a_{m}^{i'} a_{n}^{j'} a_{k'}^{h} \omega_{hs}^{n}(x, T^{m*}) T^{ms} =$$

$$= a_{m}^{i'} a_{k'}^{h} \omega_{hs}^{m}(x, a_{i}^{j'} T^{*i}) a_{n}^{j'} T^{sn} + a_{n}^{j'} a_{k'}^{h} \omega_{hs}^{n}(x, a_{i}^{i'} T^{j*}) a_{m}^{i'} T^{ms}.$$

Dunque si ha:

$$a_{m}^{i'} a_{n}^{j'} a_{k'}^{h} \left[\omega_{hs}^{m}(x, T^{*n}) T^{sn} + \omega_{hs}^{n}(x, T^{m*}) T^{ms} - \omega_{hs}^{m}(x, a_{i}^{j'} T^{*i}) T^{sn} - \omega_{hs}^{n}(x, a_{i}^{j'} T^{j*}) T^{ms} \right] = 0.$$

Dalle precedenti relazioni si ottiene subito che, qualsiasi sia il tensore (T^{ij}) , risulta:

$$(17) \quad T^{sn} \left[\omega_{hs}^{m}(x, T^{*n}) - \omega_{hs}^{m}(x, a_{i}^{j'} T^{*i}) \right] = T^{ms} \left[\omega_{hs}^{n}(x, a_{i}^{i'} T^{j*}) - \omega_{hs}^{n}(x, T^{m*}) \right].$$

La (17) è valida, in particolare, per tensori simmetrici, non singolari, e per m = n. In tal caso la (17) diventa:

$$\mathbf{T}^{ms} \left[\mathbf{\omega}_{hs}^{m} (x, \mathbf{T}^{*m}) - \mathbf{\omega}_{hs}^{m} (x, a_{i}^{j'} \mathbf{T}^{*i}) \right] = 0,$$

ed infine:

$$\omega_{hs}^m(x, T^{*m}) = \omega_{hs}^m(x, a_i^{j'} T^{*i}).$$

Dunque le $\omega_{h_i}^m(x, a_i^{j'} T^{*i})$ sono indipendenti dagli $a_i^{j'}$, ossia dalle variabili (v^i) , ricordando la (12), le ω_k^m risultano lineari in (v^i) . Ne segue l'asserto.

BIBLIOGRAFIA.

- [1] A. KAWAGUCHI, On the theory of non-linear connections. I. Introduction to the theory of general non-linear connections, Tensor (new series), vol. 2, pp. 123–142, August 1952.
- [2] A. KAWAGUCHI, On the theory of non-linear connections. II. Theory of Minkowski space and of non-linear connections in a Finsler space, Tensor (new series), vol. 6, pp. 165-199, December 1956.