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A n a lis i n u m e r ic a . — A n  analog method fo r  computing the con­
strained m inimum of a convex quadratic function. N ota di G i u s e p p e  

B a s i l e  e G i o v a n n i  M a r r o ,  p resen ta ta0  dalC orrisp . G. E v a n g e l i s t i .

RIASSUNTO. — Argomento del presente lavoro è una possibile soluzione mediante 
calcolatore analogico del problema della ricerca del minimo di una funzione convessa di più 
variabili in presenza di vincoli di tipo saturazione.

Viene descritto dapprima un semplice modello in retroazione per la realizzazione delle 
condizioni necessarie e sufficienti di Kuhn e Tucker.

La stabilità del modello proposto viene quindi analizzata e provata applicando il 
metodo diretto di Liapounoffi

Viene infine presentata una possibile applicazione del procedimento alla soluzione 
mediante calcolatore ibrido di un particolare problema di ottimizzazione dinamica.

i. I n t r o d u c t io n .

By m eans of Pon tryag in ’s m axim um  principle or other variational m ethods 
m any dynam ic optim ization problem s are reduced to two-point boundary 
value problems, which usually are solved by iterative procedures [1-5].

A  m echanization of these procedures can be obtained both by  m eans 
of digital and hybrid  com puters: when a digital com puter is used, the com­
putation of the m inim um  of the ham iltonian function is perform ed at each 
step of the integration by  the well known techniques of nonlinear program ­
ing or by especially developed iterative procedures [6]; on the other hand, 
when the problem  is solved by an hybrid  com puter, it is necessary to m ini­
mize the halm iltonian at every instant of tim e by m eans of a proper analog 
circuit, which is requested to be sufficiently prom pt in response and versatile 
enough to allow for tim e dependency of some coefficients of the ham iltonian.

T he aim of the present paper is to study a possible realization of an 
analog circuit for the instantaneous search of the m inim um  of a quadratic 
cop vex function (i.e. the ham iltonian in m inim um -energy problems) in pres­
ence of saturation bounds on the variables. In  this case the well known 
K uhn and T ucker theorem  gives necessary and sufficient conditions for the 
m inim um  expressed by  a set of algebraic equations, which m ust be m echanized 
in order to solve the problem: being equations in implicit form, feedback is 
necessary and then  a stability  problem  arises.

As in general it is done for overcoming stability difficulties, it is necessary 
to solve on the analog com puter a set of differential equations whose equilib­
rium  points are the solutions of the given set of algebraic equations and 
whose stability  is a priori ensured [7-9]. (*)

(*) Nella seduta del 13 gennaio 1968.
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In the particular case under consideration, where the algebraic equa­
tions are nonlinear, the stability of the corresponding differential model is 
investigated by means of the Liapounov direct method and it is shown 
that it is always possible to obtain a stable system by a proper choice of a 
set of free parameters.

2. N ecessary and sufficient conditions for the minimum
AND THEIR ANALOG MODEL.

Let

(2.1) f  (x) = - x - A x b - x

be a quadratic function given in R”; the n'An matrix A is assumed to be 
symmetric and positive definite, while the vector b is arbitrary. It is 
required to find the value x* of x which minimizes f  (x) over the hypercubic 
constraint set

(2-2) 9 C =  {* : I Xi I <  I (» =  .1 , 2 ,. • -, n)} U>.

Being function (2.1) convex and set (2.2) convex and compact, in the 
minimum point x* the necessary and sufficient condition

(2.3) — (grad/)*, e (S' (SC — x *')

holds, where ©' (SC — x*) denotes the dual cone of the set SC at the point **, 
defined as

(2.4) ©' (9 C — x*) =  { p : p . ( x  —  x*) <  o V * e 9 C}<2>.

For the particular problem here considered, from equations (2.3) and (2.4) 
can be deduced the simpler necessary and sufficient condition

(2.5) -  Ax* b ----- p ,

where p  is an «-vector such that

I A  <  0 if xf =  — I ,

(1 2-6) j A  =  0 if I xf I <  I ,

( Pi >  o if xf =  I (f =  I , 2 , • • •, n ) .

(1) The more general case when the constraint set is an hyperparallelepiped

== { X  * X," min ^  X i X, max it — I , 2 , * • •, ti) }

can be easily reduced to the above stated problem using a simple linear transformation.
(2) Condition (2.3) is substantially equivalent to Kuhn-Tucker condition for the mini­

mum of a convex function with convex inequality constraints.
A proof of (2.3) can be found in [10],
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R em ark th a t a solution of the stated m inim ization problem  exists because 
the set 9C is com pact and it is unique because the function f  (x) is strictly 
convex.

A  possible analog com puter im plem entation for the autom atic solution 
of the problem  is shown in fig. i. A indicates an arb itra ry  positive definite 
diagonal nXn  m atrix , which can be properly chosen in order to assure 
the stability  of the feedback system, as will be shown in the next section.

A’f- A

----------- — > A  _____________ >

1 ‘

b  ^  ä  y * -1 / 1
- 1

X *

Fig. I.  -  An algebraic feedback model for the minimization problem.

Note th a t the input vector b can be tim e dependent and therefore the 
proposed circuit is particu larly  useful in dynam ic optim ization problems, 
where it is required to m axim ize a tim e dependent ham iltonian function 
(see section 4).

T he nonlinear block which appears in fig. i corresponds to a set of satu­
rations. If  by

(2.7) x  =  sat (;y)

it is m eant th a t

( =  —  1 if y% <  — g

(2-8) j Xf = y { if J y,-\ <  I,

( xi =  I if V i>  I (i — I , 2 , • • •, n),

an equilibrium point of the system is defined by

(2.9) x* =  sat ((I —  AA) x* — A&),

where I is the unit matrix of order n.
The equivalence of (2.9) and (2.5), (2.6) is easily proved remarking 

that, if x* =  sat (y*), it is true that y * — x* =  p', where p' is an «-vector 
which satisfies conditions (2.6); therefore (2.9) leads to

(2.10) — Ax* — b =  A '1/,',

which is just the same as (2.5) because, if p' satisfies (2.6), also A p' does.
From the uniqueness of the solution of the stated minimization problem 

and sufficiency of (2.5) and (2.6) it follows that the analog model has an 
unique equilibrium  point.
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Being the analog im plem entation shown in fig. 1 a feedback system, 
a stability  investigation is necessary in order to be sure th a t the above m en­
tioned equilibrium  point will be actually reached.

3. T h e  s t a b il it y  of t h e  m o d e l .

In  order to investigate the stability, it is necessary to m ake assumptions 
on the dynam ics of the system.

In  light of the uncertain ty  in the dynam ic behaviour of algebraic com put­
ing units, it is convenient to place somewhere in the loop a diagonal m atrix  
of properly dim ensioned lags.

Assum ing equal values for all the lags, their position in the loop becomes 
im m aterial, so th a t they  can be placed as it is shown in fig. 2, where the 
added block represents a diagonal m atrix  of transfer functions, which is 
supposed to be the sole responsible for system  dynamics.

Fig. 2. -  The feedback model modified in order to take into account 
the dynamic behaviour.

The evolution of the system is then described by the vector differential 
equation

(3.1) Ty =  — y  +  (I — AA) sat (y )—  A6,

where y  is the input vector of the nonlinear block.
T he equilibrium  point jy* is obviously the solution of the steady-state 

equation corresponding to (3.1):

(3.2) o =  —  y* +  (I — A A) sat (;y*) —■ Ab.

Let

(3.3) U = y — y*

denote the variation about the equilibrium  point, which satisfies the differ­
ential equation

(3 4 ) Tti =  —  u  +  (I —  AA) (sat (u 4- y *) —  sat (y*)).

obtained by subtracting  (3.2) from (3.1), every solution of which is required 
to tend  to the origin as tim e increases indefinitely, in order for the equilib­
rium  point y* to be asym ptotically stable.



A com ponent of the vector function sat (y), i.e. the scalar function 
sat (y), is plotted in fig 3, it is easy to verify that the graph of sat (u +  y*) — 
— sat (y*), which is a scalar function of uy can be obtained from the graph 
of sat (y)  by moving the origin of axes into the point (y* , sat (y*)). as is shown 
in fig. 3, b. The sam e holds, of course, also for the corresponding vector func­
tion, which appears in the right side m em ber of equation (3.4).
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Fig. 3 a, b. -  Some particular properties of the function x  — sat (y).

In view of applying L iapounouv’s direct m ethod it is convenient to 
re-write equation (3.4) in the form

(3 5) TM =  — u +  (I — ÀA) Gu ,

where G is a diagonal m atrix  whose elements are functions of u and y* not 
less than  zero and not greater than  one for every couple of values of u and y*. 
This condition requires th a t every com ponent of the nonlinear function in 
the right side m em ber of equation (3.4) lies in the shaded sector shown in 
fig. 3, b and it is clearly satisfied in the problem  considered, but it is more 
general: in fact it corresponds to an A izerm an absolute stability problem 
for fnany nonlinearities.

L et us assum e the L iapounouv function

(3.6) V (u) =  -—• « • A~xu.

whose tim e derivative along a trajecto ry  of equation (3.5) is

(S-7) v  (u) =■ t “ 1 (A“ 1 u) ' (— u +  (I — AA) Gtt) =

— T 1 (—  u • A""1 u u* (A-1 — A) Gm) .

Now to prove the stability it will be shown th a t such a quadratic form 
is negative definite for a proper choice of A and for every G satisfying the 
ab o te  m entioned conditions.

In fact, by the nonsingular transform ation

(3.8) u =  VA ar.

4. — R E N D IC O N T I 1958, Vol. XLTV, fare. 1.
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quadratic form (3.7) becomes

(3.9) T1 _  (---- Z - z  - f i  Z  • (I   ]/AA y  A) Gs),

which clearly has the same sign definition as (3.7).
Neglecting the positive factor t- 1, (3.9) can be w ritten

(3.10) — z - z  -fi z -Bz ,

where B =  (I — fAA y A) G- 
Being

(3-i i )  z - g  =  \ g f ,

(3.12) \ z - B z \  <  12T ]| [ B s J <  Il B I J z  I2,

quadratic form (3.10) is certainly negative definite if |j B || <  1; on the other 
hand

(3.13) il b  I <  11— yÄA yÄ 11 g  I

and, since || G || <  1, it is sufficient to prove that, by  a proper choice of A. 
also 11 —  yAA yA I can be m ade less th an  1.

As is well known, the norm  of a linear transform ation expressed by 
a m atrix  Q is the square root of the largest eigenvalue of th e  m atrix  QT Q: 
it is obvious th a t the norm  of a sym m etric m atrix  is the largest absolute 
value of its eigenvalues.

L et \  (i — I , 2 , • • •, n) be the eigenvalues of yAA yA, which are all 
real and positive, being A sym m etric and positive definite; then the eigenvalue ■ 
of I —  YAA yA are =  1 —  \ ( i =  1 , 2 , • • •, n), so th a t if X,- <  2, all 
satisfy the inequality | ^  j <  1 and therefore 11 — yAA yA IJ <  1.

W hatever the positive definite m atrix  A is, it is possible to m ake the 
elements on the m ain diagonal of equal to a rb itra ry  real positive
num bers by a proper choice of the elements of A. On the other hand it is 
well known th a t the sum of the eigenvalues of an arb itra ry  square m atrix  
is equal to the trace of the m atrix, i.e. the sum  of the elements on the m ain 
diagonal. Therefore, in order to secure the stability  of the feedback analog 
model, it is sufficient to choose the positive definite diagonal m atrix  A in 
such a way th a t the trace of yAA yA is less than  2.

4. Maximization of an Hamiltonian function
BY THE OUTLINED METHOD.

L et consider the problem  of fixed-time optim al control of a linear time- 
invariant system  described by the vector differential equation

(4.1) x  —  Ax - f i  B u,

where x  e R ” and u G denote the state and control vectors, from a given 
initial state xa to a given admissible term inal state xb, in presence of bounds
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on controls expressed by the inequalities

(4.2) \ u i \ < i  (i =  I , 2 ,• • -, m)

and the perform ance index

h
I r(4.3) J =  — j (x • Qx +  u • Ru +  2 x  • Mu) d t ,

c

consisting in the integral of a positive definite quadratic function of the state 
and control.

This optim ization problem  is well known and has been treated  for instance 
by A thans and Falb [ 11 ] ; a direct analytic solution is possible when the control 
variables are not bounded (see K alm an [12]), but in the more general case 
when there are bounds on the controls the stated problem, which reduces 
to a nonlinear two-point boundary  value problem, m ust be solved by iterative 
procedures.

By virtue of Pon tryag in ’s necessary conditions, which in the case here 
considered are also sufficient if the term inal state xb is an internal point 
of the reachable set (see Lee, M angasarian and the autors [13-15]), if x* (f) 
is an optim al trajectory , corresponding to the control u* (/), there exists a 
vector p a such th a t the solution of the adjoint system

(4.4) p =  — A r p  +  Qx* +  M m*

with initial condition

(4-5) P ( t . ) = P a

satisfies the m axim um  condition

(4.6) H ( x * , u* , p )  > H  (** ,*#,/>)

for every admissible u and at every instant of time; the ham iltonian function H 
is given by

(4.7) H (**', u , p) =  —  — (x* • Qx* +  u Ru +  2 x* • Mu) +  p  f  Ax* +  Bu) .

Inequality  (4.6) implies th a t at every instant of tim e the convex qu ad ­
ratic function — H is minim ized by u* over the set (4.2). According to 
equation (2.9), in this particu lar case the m axim um  condition is equivalent 
to the relationship

(4.8) m* =  sat ((I —  AR) m* +  A (Bt p  —  MT **)),

where A is an a rb itra ry  positive definite diagonal m atrix  <3b

(3) For this problem Athans and Falb [11, page 479] gave the explicit solving formula 

u* =  sat (R- 1 (BTp  — MT **)),

which is incorrect in the general case when R is not a diagonal matrix.
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E quation (4.8) defines im plicitly the value of the optim al control at every 
instant of tim e and its solution, as it has been previously rem arked, exists 
and is unique; therefore every trajectory  x* (/) , m* (t) which satisfies equa­
tions (4.1), (4.4) and (4.8) is an optim al trajectory , and the optimal control 
problem  can be solved by m eans of the analog model shown in fig. 4, where

Fig. 4. -  Device for the computation of the optimal control law.

the m axim ization block is im plem ented as in fig. 2, and the initial value 
of the adjoint vector p a is adjusted by a tria l and error procedure or a gradient 
m ethod in order to m eet the desired term inal state xb.

5. Conclusion.

It has been shown th a t the problem  of m inim izing a convex function 
given by the sum  of a positive definite quadratic form and linear form with 
independent bounds on every variable can be solved by m eans of a simple 
nonlinear analog feedback model which at the equilibrium  state satisfies 
the K uhn-T ucker necessary and sufficient conditions and can be always 
m ade asym ptotically stable by a proper choice of a set of free param eters.

The m ethod is particularly  useful for solving a class of dynam ic optim i­
zation problem s on analog or hybrid com puters because it allows for a contin­
uous search of the m axim um  of ham iltonian functions where the coefficients 
of the linear term s are tim e dependent.
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