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Matematica. — Quasi—Steiner Systems. Nota di J o n a t h a n  D e a n  

S w i f t  (#), presentata (* (**)#) dal Socio B. S e g r e .

R iassunto. — Si risolvono i problemi di trovare il numero massimo (risp. minimo) 
di terne su n lettere, tali che nessuna coppia compaia in più di una terna (risp. ogni coppia 
compaia in almeno una terna). Inoltre si stabilisce un limite per un problema più generale, 
proposto da B. Segre.

i .  I n t r o d u c t io n .

T he problem  of the existence of sets of triples on n letters such th a t 
every pair of letters appears in one and only one triple was raised by Steiner [5] 
m ore th an  a century  ago. It now appears [2] th a t the problem  had been 
resolved by  K irkm an [3] some years before Steiner posed it but the sets of 
triples m eeting this condition are called Steiner Triple Systems. A  num ber 
of constructions of these systems for the possible values of n are known, 
see, e.g. [1] and [2].

In  1958, F ort and H edlund [1] solved a generalization of the Steiner 
problem  which we indicate in this paper as p r o b l e m  1 :

To f in d  the m inim um  number of triples on n letters such that every pair 
of letters appears in at least one triple.

In  his Lectures on H igher Geometry, Segre has proposed a general problem  
w ith applications to the existence of certain types of nets [4], p. 245, which, 
for the case t  =  4 of the problem  as stated, reduces to our p r o b l e m  2: 

To f in d  the maximum number of triples on n letters such that no pair of 
letters appears in more than one triple.

T he purposes of this note are to indicate the solution to problem  2 and 
its very close connection w ith problem  1. W e cannot speak an of exact duality  
since problem  2 requires a parity  argum ent which problem  1 does not, but 
the essential equivalence of the solutions, this one argum ent apart, will be 
apparen t in the sequel. For this reason, we solve both problem s in parallel. 
T he solution of problem  1 simplifies and, perhaps, clarifies th a t given in (1). 
W e shall use the results of (1) directly only for the case n =  6 k +  5.

2. T h e  b o u n d s . S p e c ia l  c a s e  o f  p r o b le m  2 f o r  n =  6 k +  5.

P r o b l e m  2: No letter m ay occur in more th an triples
(where [x] is the greatest integer <  x) since it m ust always appear with

(*) The research of Professor Swift is supported, in part, by a grant from the National 
Science Foundation. GP 5497.

(**) Nella seduta del 13 gennaio 1968.
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disjoint pairs of other letters. Since there are n  letters.

triple, there cannot be m ore th an triples.

three pairs to a

P r o b l e m  1 : E very  letter m ust appear w ith the n  —  1 other letters.

This will require each letter to appear in at least | n ~ 1 | triples (where {x } 

is the least integer > x , { x }  = — [— x]). Thus there m ust be at least

If  n  =  5 (mod. 6) the  lim it above would give 1) 2 triples for

problem  2. Each triple includes three pairs so th a t ” J- —  1 pairs would 
be included if th a t lim it is reached, or all pairs except one. This situation 
cannot happen. Perhaps the simplest w ay to see this is to use ordered pairs. 
A  system  of triples, m axim al or not, has an incidence m atrix , an n X n  
m atrix  in which the elem ent in the z’th  row and jth. column is 1 if the ordered 
p a ir (i , f )  , i =j=y, occurs in a triple of the system  and zero otherwise. 
A  th ird  symbol, say —  1, m ay be used to fill in the diagonal entries. A ny 
triple produces 6 entries of 1, two in each of three rows and each of three 
columns. In  the conditions of problem  2 no overlap of these entries can occur. 
Therefore, each row and each column has an even num ber of entries of zero 
and of one. I f  a single pair (a , h) rem ained uncovered, there would be a single 
zero in the positions (a , b) and (b , a) of the m atrix  and the  tfth and bt\x rows 
would have an odd num ber (1) of zero entries.

Thus, when n  =  5 (mod 6), the largest possible num ber of triples for 
problem  2 is one less th an  the previously calculated lim it or A2~ ” ~~8 . 
W e list the values of the limits for each problem  and each residue class 
m odulo 6. For problem  1, the bounds are lower, for p ro b lem s they  are upper.

n (mod 6)

0

1

2

3

4

Problem i Problem 2

n2 n2— 2 n
~6~ 6

n2— n n2-— n
6 6

n2-\- 2 n2— 2 n
6 6

n2— n n2— n
6. 6

n2 +  2 n2 — 2 n ■— 2
6 6

S
n 2— n -f- 4_ _ n2— n — i

6
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3. T h e  m a in  r e s u l t .

THEOREM i . The bounds as defined above can always be attained fo r
n >  3.

Proof. For n =  1 ,3  (mod 6) the bounds of both problem s are identical 
and both problem s are solved by the known Steiner Triple Systems for 
these orders. We shall not repeat here a construction of such systems.

For n  =• 5 (mod 6) we use the constructions of Fort and H edlund [1] 
for this case. These constructions, aim ed at problem  1, produce (n2 —  n fi- 4)/6 
triples containing all pairs but one, say (a , b), once and (,a , b) three times. 
To solve problem  2, we simply reject two of the three triples containing 
(a , b) and have (n2 —  n +  4)/6 —  2 — (n2 —  n —  8)/6 triples satisfying the 
requirem ents of problem  2.

For n ^  0 , 2  (mod 6) of problem  2, we delete from  a Steiner Triple 
System  of order n 1 all triples containing some one letter which we m ay 
designate by a. Now a appears with n  letters or in n \2 triples. From  
(n fi- I) n[6 triples we have elim inated n j2, leaving n- —~ •

For ^ = . 2 , 4  (mod 6) of problem  1, we use the S teiner Triple System  
on ^ —  1 letters, adjoin an nth. letter, say n, and form  triples w ith n  using 
pairs of the original n  —  1 letters as neatly  as we can. (One overlap of the 
type (n y a , b)y (n , a , c) m ust occur since n —  1 is odd.) There result 
(n —  I) (n —  2)\6 +  n \2 =  (n2 +  2)/6 triples containing every pair at least 
once (and n\2 fi~ 1 twice).

For n  =  4 (mod 6) of problem  2, let (a , b) be the pair occurring three 
tim es in the Fort-H edlund construction for n fi- 1. Then, when two of the 
triples containing (a , b) are elim inated to solve problem  2, a appears with only 
n  —  2 other elements, or in (n —  2)/2 triples. Delete these triples. We have

(«4-  i)2,— («4-1)  — 8 (n — 2)   n2 — 2 n — 2
6 2 6

triples on n  letters satisfying problem  2.
For n ^ o  (mod 6) of problem  1, use once more the Fort-H edlund construc

tion, this tim e for n  —  1 letters. A djoin an nth  letter which we designate n. 
Let the triples which contained the pair appearing three tim e be (a , b , c), 
(a , b , d)y (a , b , e).

Replace these by (a , b , c), (n , b y d), (n , b , e), (a , d , e). All pairs 
appearing before still appear and there are three pairs including n. D ivide 
the n —  I —  3 =  n —  4 letters which have not appeared with n  into (n —- 4)12 
disjoint pairs and complete them  to triples with n. There are

(.n ■ i )2 iyi 1) T  4 „ , , , (» — 4) n1------------- 6------------  — 3 +  4 +  =  X

triples and all pairs are included.
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4. C a n o n ic i t à  o f  t h e  C o n s t r u c t io n s .

In  [1] it is proved th a t in any m inimal construction for problem  1 the 
pattern  of repeated pairs is the same. We have already m entioned this pattern  
for n =  5 (mod 6), one pair repeated three times, and for n =  2,4 (mod 6), 
n \2 + 1  pairs appear twice. For n =  o (mod 6) an inspection will show th a t 
n \2 pairs appear twice (the ( n — f)Ì2  last adjoined and (b , n) and ( d , e)). 
For n =  I ,3  (mod 6) there are, of course, no repeated pairs.

A sim ilar situation applies to problem  2.

THEOREM 2. In  any system of triples solving problem 2, there are n \2 
omitted pairs, all disjoint, i f  n == o , 2 (mod 6); n \2 -|- 1 omitted pairs such 
that n —  I letters appear in only one omitted pair and one letter appears in 
three pairs fo r  n — 4 (mod 6); and 4 omitted pairs involving 4 letters symmet
rically i f  n =  5 (mod 6).

Proof. T h at the to tal num ber of om itted pairs has the value given can 
be calculated sim ply by subtracting three tim es the bound given (each triple 
has three pairs) from the  to tal num ber of pairs, n i n — ,i)/2.

For n =  0,2 (mod 6), each letter m ay appear w ith at m ost n —  2 
others. Thus each letter m ust appear in at least one om itted pair. I f  one 
appeared in m ore th an  one, the bound could not be attained.

For n =  4 (mod 6), again each elem ent m ust appear in an om itted pair. 
A parity  argum ent sim ilar to th a t given for 6 k -j- 5 in § 2 shows th a t each 
element m ust appear in an odd num ber of om itted pairs. Since the are 
only (n fi- 2)/2 om itted pairs, one element and only one can appear in three 
of these pairs.

For n =  5 (mod 6) parity  would perm it an omission of the type {a , b), 
(a , c), (a , d), {a , e). If  this happened, a would appear w ith only n —  5 
letters. If  we om it the ( n — 5)/2 triples containing a, we would have a 
solution for n-— 1 containing (:n2 — n — S)/6 — (n —  5)/2 =  (n2—  4 n +  7) [6 —

(%--  i)2_— 2 (fl ■--  i) -1- A
=  —------------ —------------- triples or one more th an  the m axim um . (We could
also argue th a t the addition of triples (a , b , c), (a , d , e) would yield a 
noncanonical solution for problem  1).

Remark. I t follows from a comparison of these totals that, for n =  o 
(mod 2), n  >  4, no solution of problem  1 can be obtained by adding triples 
to à solution of problem  2 and viceversa. The contrary situation applies 
to n ~  5 (mod 6) where a solution to one problem  m ay always be obtained 
from a solution to the other by adding or deleting triples as the case m ay be.

5. B o u n d s  fo r  t h e  G e n e r a l  P r o b l e m .

In  this concluding section we shall discuss briefly the general problem  
posed by Segre [4]. The rem arks, in a slightly simplified form m ay be tran s
lated directly to the corresponding generalization of problem  1.
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P r o b l e m  2 '. To fin d  the maximum number of k-tuples on n letters 
such that no ( k — i)-uple appears in more than one k-tuple.

If  we have any set of /è-tuples satisfying the conditions of problem  2' 
for n, and if we select all the ^-tup les containing some designated m ark, 
say a, and delete a from  these yè-tuples, the result will be a set of (k —  i)-up les 
satisfying the conditions of problem  2’ for n —  1. Thus, denoting the answer 
to problem  2' by /  (n , k), we have /  (n , k) <   ̂n̂ n 1 ’ ^ ^

In  an im perfect analogy w i t h ^

k >  2 , n >  k ,

dehne

=  I . T hen  f  (n , k) <

' n — i l
' n by n n

k — i  J
k_ _k _ k

for

It m ay be conjectured th a t 

Perhaps f  (n , k) -

is, m some sense, a «good» bound, 

o (nc) where c m ay  depend on k but not on n , c <  k.

inevitably decreases as /è in- 

=  25 which would im ply

The proportion of cases where f  (n , k) —

creases. . For example, when n =  9 , k =  5 , 
only one om itted quadruple. This situation cannot exists for the sam e reason 
we could not have a single om itted pair. However, for n  — 8 , k =  4, there 
is a « perfect » solution where each triple occurs exactly  once. Nevertheless,
it is entirely  reasonable to suppose th a t
for each k. S im ilar conjectures occur for designs [2].

is always attainable for some n

A D D ED  IN PROOF: A  num ber of the results stated also appear (in a 
different form ulation) in a paper by J. SCHÖNHEIM, On M axim al Systems 
of k-tuples , «S tud ia Scientiarum  M ath. H ung.» , J ,  363-368 (1966). The 
au thor thanks prof. Hedlund for calling his attention to this work.
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