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Matematica. — Quasi—Steiner Systems. Nota di JoNaTHAN DEAN
Swirt O, presentata® dal Socio B. SEGRE.

R1ASSUNTO. — Si risolvono i problemi di trovare il numero massimo (risp. minimo)
di terne su # lettere, tali che nessuna coppia compaia in pilt di una terna (risp. ogni coppia
compaia in almeno una terna). Inoltre si stabilisce un limite per un problema pilt generale,
proposto da B. Segre.

1. INTRODUCTION.

The problem of the existence of sets of triples on 7 letters such that
every pair of letters appears in one and only one triple was raised by Steiner [3]
more than a century ago. It now appears [2] that the problem had been
resolved by Kirkman [3] some years before Steiner posed it but the sets of
triples meeting this condition are called Steiner Triple Systems. A number
of constructions of these systems for the possible values of 7 are known,
see, e.g. [1] and [2].

In 1958, Fort and Hedlund [1] solved a generalization of the Steiner
problem which we indicate in this paper as problem 1:

To find the minimum number of triples on n letters such that every pair
of letters appears in at least one triple.

In his Lectures on Higher Geometry, Segre has proposed a general problem
with applications to the existence of certain types of nets [4], p. 245, which,
for the case #= 4 of the problem as stated, reduces to our problem 2:

To find the maximum number of triples on n letters such that no pair of
letters appears in more than one triple.

The purposes of this note are to indicate the solution to problem 2 and
its very close connection with problem 1. We cannot speak an of exact duality
since problem 2 requires a parity argument which problem 1 does not, but
the essential equivalence of the solutions, this one argument apart, will be
apparent in the sequel. For this reason, we solve both problems in parallel.
The solution of problem 1 simplifies and, perhaps, clarifies that given in (1).
We shall use the results of (1) directly only for the case # = 64 + 5.

2. THE BOUNDS. SPECIAL CASE OF PROBLEM 2 FOR 7 = 6 4 -+ 5.

Problem 2: No letter may occur in more than [n—ji] triples
(where [x] is the greatest integer < x) since it must always appear with

(*) The research of Professor Swift is supported, in part, by a grant from the National
Science Foundation. GP 5497.
(*¥*) Nella seduta del 13 gennaio 1968.
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disjoint pairs of other letters. Since there are 7 letters, three pairs to a
7n—1

diew
triple, there cannot be more than [ 32 }triples,

Problem 1: Every letter must appear with the # — 1 other letters.
j n—1
{ 2

is the least integer >x,{x} = —[—x]). Thus there must be at least

{Zs—ngl—g } triples.

If » =75 (mod. 6) the limit above would give

problem 2. Each triple includes three pairs so that =

This will require each letter to appear in at least

s triples (where {x}

n(n—1)

6
— 1 pairs would

2 triples for

be included if that limit is reached, or all pairs except one. This situation
cannot happen. Perhaps the simplest way to see this is to use ordered pairs.
A system of triples, maximal or not, has an incidence matrix, an 7zX7n
matrix in which the element in the 7th row and jth column is 1 if the ordered
pair (Z,7),7=Fj, occurs in a triple of the system and zero -otherwise.
A third symbol, say — 1, may be used to fill in the diagonal entries. Any
triple produces 6 entries of 1, two in each of three rows and each of three
columns. In the conditions of problem 2 no overlap of these entries can occur.
Therefore, each row and each column has an even number of entries of zero
and of one. If asingle pair (¢, 4) remained uncovered, there would be a single
zero in the positions (, 6) and (4, @) of the matrix and the ath and éth rows
would have an odd number (1) of zero entries.

Thus, when 7 = 5 (mod 6), the largest possible number of triples for

72 —n—238
6
We list the values of the limits for each problem and each residue class

modulo 6. For problem 1, the bounds are lower, for problem 2 they are upper.

problem 2 is one less than the previously calculated limit or

7 (mod 6) Problem 1 Problem 2
o 72 n2—zan
6 6
I n2—n n2—mn
6 6
2 2__
2 7242 7 2n
6 6
n2—mn n2—n
3 6. 6
n2+42 nr—2np—2
4 6 6
m2—n 4 m2—n—8
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3. THE MAIN RESULT.

THEOREM 1. TZhe bounds as defined above can always be attained for
n > 3.

Proof. For n = 1,3 (mod 6) the bounds of both problems are identical
and both problems are solved by the known Steiner Triple Systems for
these orders. We shall not repeat here a construction of such systems.

For n = 5 (mod 6) we use the constructions of Fort and Hedlund [1]
for this case. These constructions, aimed at problem 1, produce (#2 — 7 + 4)/6
triples containing all pairs but one, say (a, ), once and (a, &) three times.
To solve problem 2, we simply reject two of the three triples containing
(@, 6) and have (2 —n 4 4)/6 — 2 = (22 — n — 8)[6 triples satisfying the
requirements of problem 2.

For n = 0,2 (mod 6) of problem 2, we delete from a Steiner Triple
System of order » + 1 all triples containing some one letter which we may
designate by a. Now @ appears with # letters or in /2 triples. From
nitn—3n _ nl-—2n

6 6

For # = 2, 4 (mod 6) of problem 1, we use the Steiner Triple System
on # — 1 letters, adjoin an #th letter, say #», and form triples with » using
pairs of the original # — 1 letters as neatly as we can. (One overlap of the
type (#,a,b), (n,a,c) must occur since #—1 is odd.) There result
(#— 1) (n — 2)/6 + n]2 = (n2 + 2)[6 triples containing every pair at least
once (and #/2 4 1 twice).

For » = 4 (mod 6) of problem 2, let (a, 6) be the pair occurring three
times in the Fort-Hedlund construction for 7z + 1. Then, when two of the
triples containing (a, 6) are eliminated to solve problem 2, @ appears with only
#n — 2 other elements, or in (z — 2)/2 triples. Delete these triples. We have

(n + 1) #[6 triples we have eliminated #/2, leaving

(r+12—@m+1)—8  (n—2) n—2n—2

6 2 - 6

triples on 7 letters satisfying problem 2.

For #=o0 (mod 6) of problem 1, use once more the Fort-Hedlund construc-
tion, this time for # — 1 letters. Adjoin an #th letter which we designate 7.
Let the triples which contained the pair appearing three time be (@, &, ¢),
(¢,6,d), (a,b,e).

Replace these by (a,6,¢), (n,8,d), (n,b,¢), (a,d,e). All pairs
appearing before still appear and there are three pairs including #. Divide
the # — 1 — 3 = n — 4 letters which have not appeared with # into (z — 4)/2
disjoint pairs and complete them to triples with 7. There are

(r—12—(n—1)+4 (n—4)  7n®
6 —3+4+T——T

triples and all pairs are included.
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4. CANONICITY OF THE CONSTRUCTIONS.

In [1] it is proved that in azy minimal construction for problem 1 the
pattern of repeated pairs is the same. We have already mentioned this pattern
for » = 5 (mod 6), one pair repeated three times, and for # = 2,4 (mod 6),
n[2 + 1 pairs appear twice. For #» = o (mod 6) an inspection will show that
n[2 pairs appear twice (the (z — 4)/2 last adjoined and (6, %) and (&, ¢)).
For #.= 1,3 (mod 6) there are, of course, no repeated pairs.

A similar situation applies to problem 2.

THEOREM 2. [n any system of triples solving problem 2, theve ave nlz
omitted pairs, all disjoint, if n = 0,2 (mod 6); n|2 + 1 omitted pairs such
that m — 1 letters appear in only one omitted pair and one letter appears in
three pairs for n = 4 (mod 6); and 4 omitted pairs involving 4 letters symmet-
rically if n = 5 (mod 6).

Proof. That the total number of omitted pairs has the value given can
be calculated simply by subtracting three times the bound given (each triple
has three pairs) from the total number of pairs, z (7 — 1)/2

For # = 0,2 (mod 6), each letter may appear with at most »—2
others. Thus each letter must appear in at least one omitted pair. If one
appeared in more than one, the bound could not be attained.

For » = 4 (mod 6), again each element must appear in an omitted pair.
A parity argument similar to that given for 64 + 5 in § 2 shows that each
element must appear in an odd number of omitted pairs. Since the are
only (7 4 2)/2 omitted pairs, one element and only one can appear in three
of these pairs.

For » = 5 (mod 6) parity would permit an omission of the type (a, 4),
(@,¢), (a,d), (a,e). If this happened, ¢ would appear with only » — g5
letters. If we omit the (» — 5)/2 triples containing @, we would have a

solution for z— 1 containing (#2 —#n —8)[6 — (n — §)/2 = (W2 — 4n + 7)[6 =
I e

triples or one more than the maximum. (We could
also argue that the addition of triples (a,4,¢), (a,d,e¢) would yield a
noncanonical solution for problem 1).

Remark. It follows from a comparison of these totals that, for » = o
(mod 2), # > 4, no solution of problem 1 can be obtained by adding triples
to a solution of problem 2 and viceversa. The contrary situation applies
to #» = 5 (mod 6) where a solution to one problem may always be obtained
from a solution to the other by adding or deleting triples as the case may be.

5. BOUNDS FOR THE GENERAL PROBLEM.

In this concluding section we shall discuss briefly the general problem
posed by Segre [4]. The remarks, in a slightly simplified form may be trans-
lated directly to the corresponding generalization of problem 1.
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Problem 2. 7o find the maximum number of k—tuples on n letiers
such that no (k— 1)~uple appears in more than one k-tuple.

If we have any set of A-tuples satisfying the conditions of problem 2’
for 7, and if we select all the A-tuples containing some designated mark,
say a, and delete a from these £-tuples, the result will be a set of (# — 1)-uples
satisfying the conditions of problem 2’ for » — 1. Thus, denoting the answer

to problem 2’ by f(z, £), we have f (n, £) < lﬁf(_”_"é'é__lw .

In an imperfect analogy With(Z,), . define {Z} by “ﬂ = [ §
fé_>_2,%2é,{ﬂ_= I. Thenf(%,k)g[ﬁ-
It may be conjectured that

Perhaps f (2, £) = {Z

”n . .
| is, in some sense, a « good » bound.
— o (n*) where ¢ may depend on £ but noton 7, ¢ < 4.

The proportion of cases where f (7, £) = {Z} inevitably decreases as #£ in-

creases. . For example, when #=19,4 =73, [Z] = 25 which would imply

only one omitted quadruple. This situation cannot exists for the same reason
we could not have a single omitted pair. However, for # = 8 , 2 = 4, there

is a « perfect » solution where each triple occurs exactly once. Nevertheless,
”n
‘|
for each 4. Similar conjectures occur for designs [2].

it is entirely reasonable to suppose that{ is always attainable for some 7

ADDED IN PROOF: A number of the results stated also appear (in a
different formulation) in a paper by J. SCHONHEIM, On Maximal Systems
of k-tuples, «Studia Scientiarum Math. Hung.» 1, 363-368 (1966). The
author thanks prof. Hedlund for calling his attention to this work.
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