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RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 13 gennaio 1968

Presiede 1/ Presidente BENIAMINO SEGRE

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Analisi matematica. — Periodic or almost-periodic solutions of a
non linear jfunctional equation. Nota IV © di Giovanni Prouse,
presentata dal Corrisp. L. AMERIO.

SUNTO. — Si danno le dimostrazioni dei teoremi 2, 3, 4 € 5 enunciati nel § 1 e si studia
una particolare equazione a cui sono applicabili i risultati ottenuti.

4. Let us now give the proofs of Theorems 2, 3, . and 3.

Proof of Theorem 2: Consider the transformation S of the space Vs in itself,
defined by

(4.1) Su (0) = ()

# () being the solution in [0, T] corresponding to the initial value # (o).
By lemma 4, S is weakly continuous in Vs; moreover, by lemma 3, it
maps each sphere of radius R >} K in itself.
The transformation has therefore, by a theorem of Tychonoff (see for
instance Dunford and Schwarz [1]) a fixed point, i.e. there exists a solution
@ () such that

(4-2) i(0)=1u(T).

This solution is obviously periodic with period T.

(*) Pervenuta all’Accademia il 23 settembre 1967.

1. — RENDICONTI 1968, Vol. XLIV, fasc. 1.
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Proof of Theorvemn 3. Let u,(n) be the solution, defined for n = —#,
satisfying the initial condition #, (— 7) = o. Setting #, () = o for 1< —=n
and

SO for n=—n
| o for n<—mn

(4.3) Saln) =

the function #, () is obviously a solution in J of the equation

(4-4) #, () + (A1 + As) u, (n) + BAsw, () =f, () -

By lemma 6, it results

s S fgl? 20 (1) iy, =M} ) %teu]) 220 () a0 15w = M
i Y (A rAl o
( §21§) i JL?‘O’I ) M %g? | Baun(®) IIHB(O,I;D(Ai)) M.

Repeating, without any change, the procedure followed in Theorem 1
to prove the existence of a solution of the Cauchy problem, from relations
(4.5) follows that it is possible to extract from {z, ()} a subsequence (again
denoted by {u, (1)}) which converges, in the topologies introduced in (2.33),
to a solution in J of (1. 24), sat1sfymg relations (1.27). The existence of a bound-
ed solution in J is therefore proved.

Let us now show that, if also hypothesis XI) holds, this solution is unique.

Assume this is not so and let v (/) be another solution L2 (o, 1; Va)-
bounded in J. Setting w () = u () — v (), w (v) is obviously a solution
of the equation

4.6) ' () + (A1 + Ag)w (1) + BAg u (1) — BAg o () = 0

and satisfies the relation, analogous to (2.38),

4.7) 2w (ng) , Agew (ne)) — - (0 () Agew () +

+ﬂ@HAWMwAwm»W+/®MMW—3MMmAw@»ﬂ~0

N1 T
By hypotheses III), VIII), XI), it results therefore, ¥y € J and V3 > o,

n n
* r

(4.8) uw@—a@EMMWJQu/W@@w%a%}W@mmwz
n—>5 n—>%
n n
=[wmE + 22—y / lw@f, dt=lwmf + o / e (2)f 2,
N3 n—3

being 67 = 2 (. —¢5Y%) > O.



[3] GIOVANNI PROUSE, Periodic or almost-periodic solutions, ecc. 3

As the embedding of W in V3 is continuous, we obtain, from (4.8),

4.9) Jwn— ) = |wml, + o f lw @, dt.
n—9

Consequently, the function [w (y)], is decreasing and from (4.9) it
follows that

(4.10) lw(— 8L = (1+ 03) [wm)2, .
Hence
(4.11) tEIIloo ”w (t> “L’(O,l;v,) = 4 oo,

which, for the hypotheses made, is absurd. # (¢) is then the only 1.2 (0, 1 ; Vy)-
bounded solution in J.

By exactly the same procedure it can be proved that (1.28) holds. The
theorem is then completely proved.

Proof of Theorem 4: In the proof of this and of the next theorem, we shall
follow a procedure given by Amerio [2], [3] for linear functional equations.
In order that the theorem be proved, it will be sufficient, by Bochner’s
criterion, to show that it is possible to extract from any real sequence {/,}
a subsequence {/,} such that
(4.12) lima@+72) = 2@

n—>00 L3(0,1; Vy)
uniformly in J.
In view of the hypotheses we have made, we can obviously assume
that, uniformly in J
4-13) im*f(@¢+12) = £(@.
7 —>00 Lp'(O,l ;Y1)
Repeating, without any change, the procedure followed in Theorem T,

we find that it is possible to extract from {/,} a subsequence {/,} such that,
vie ],

Cm** a4+ L) = 20,
7n—>00 L®(0,1;Vy)
lim* 4@+ 24,) = 2@,
7 —>00 L2(0,1; W)

(4-14) (

im*Asit (24 2,) = A2z(?),
#—>00 L?(0,1;Y)
lim Asai(¢+124,) = Asz(@).

| 00 12 (0,1;H)

The function z () is, moreover, a solution in J of the equation

(4.15) Z() + (A4 As)z(n) + BAez(n) =g () .



4 Lincei — Rend. Sc. fis. mat. e nat. — Vol. XLIV — gennaio 1968 (4]

Assume that (4.12) does not hold uniformly in J. There exist then a
number ¢ >0 and three sequences {z#,},{o,} C{Z,},{on} C{Z} such
that

(4'16) H i (tn + 0(;1) — 1 (tn + a;)”]}({),l;vﬁ) =0G.

It is, on the other hand, possible to extract from {#, + a,} and {¢#, + o, }
two subsequences (again denoted by {#,+ «,} and {#, + «,}) for which
it results, in the various topologies introduced in (4.14),

'\ lima (@42, + o) = 2,(8),
(4-17) P ,
( lim @ (¢ + 2, + o)) = 2, (7).

7 —>00

By the hypotheses made, it is however

(4-18) lim* f@+ ¢, + o) =lm* f@E+ ¢, +a) = g©@),

n —>00 7 —>00 L?(0,1;Y%)
uniformly in J.
The functions 21 () and 2 (y) are therefore Ve—bounded solutions in J
of equation (4.15). By theorem 3 it must then be 21 () = 22 (), which is

in contrast with (4.16). Consequently, (4.12) holds uniformly in ] and the
theorem is proved.

Proof of Theorem 5. let us prove at first that # () is Vo—a.p.
Let {/,} be any real sequence; we shall show that it is possible to extract
a subsequence {/,} C{Z,} such that

(4.10) lim 7 n -+ 4) = 2 (o)
uniformly in J.
We may obviously assume that
(4.20) lim f(t+ L) = g@)
7 —>00 LP’(O,I;YI)
and also, by Theorem 4,
(4.21) lima@+72,) = 2@
7 —>00 L2(0,1;Vy)
uniformly in J.
Suppose that (4.19) does not hold uniformly in J; there exist then a number
¢ >o0 and three sequences {u,}, {o,} C{Z}, {o,} C{Z} such that

(4'22) H Z (nn + “;1) — it (7)'1 + O(;;) “VE =0.

Setting w, () =a(n + 0, + o) — it (n + 7, + o), the function w, (n)
satisfies the equation

(4.23) w, () + (A1 + As) w,(n) 4+ BAs it (n + 0, + ) —
—BAsa (g 4+, + o) =0+ N+ o) —f (0, + o)
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and, Vn<<o, the relation, analogous to (4.7),

(4.24) Jaon () B, = [0, ) 12, +
0

—[—2] (BAg it (¢4 1, + o) — BAo (¢ + 1, + o), Ao, () dt +

n
0 0

20 [ Jwa Oy dr—2 [ (FC i) —Fn o), Asw, ) de.
n n

As f(#) is L” (0, 1; Y)-a.p. and Asw,(?) is L?(0, 1; Y)-bounded, it
is possible to choose 7# > 7, so large that, when — 1 <% <o,

0
@2 | [t ant ) —f o), Ava () | < T
n

On the other hand, by (1.23) and condition XI),

0
(4.26) f<BA2 (-, + o) — BAg @i (£ 4 n,+ o)) , Asw, (2)) dt >
n

0

2_[:5 /-“wn@>“2])(A2) 412_55-\{2 Hu}n@)“%vdt2__“'[\‘10%(;)”%&/ dt.

Hence, introducing (4.22), (4.25); (4.26) into (4.24),

(4.27) lwa ()}, = 2 Vne[—1,0],

and, consequently,
0
1 " o2
(4.28) 100 (= D0y = [ 1w GO n =2
21

Relation (4.28) contradicts (4.21) and (4.19) holds therefore uniformly in J.

As it () is Ve—continuous, it follows, by Bochner’s criterion, that @ ()
is Vie—a.p.

Finally, we prove that @ (¢) is L2 (o, 1; W)-a.p.

Setting, in fact, w; (n) = & (n+ ;) — i (M + fz), it results (see (4.24))

(4.29) |2 () [}, = lwwutn + 0§, +
n+1
42 f (BAs @ (¢ + ) — BAsi (¢ 4 1p) , Aswy (8)) dt +
n
n+1

n+1 t
t2a f e ()8, dt— 2 f (FUrD) —fG+ B Asay(2) de.

'Yl
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By (1.23) and hypothesis XI), it follows from (4.29), setting o, =
=2 (e —c572) > 0,

n+1 n+1
(4-30) o / | Oy 2t <|wpm, + 2 / JO+ L) —F@E+0), Apwy (1)) dr .

By what has been proved above, the right hand side of (4.30) converges
to zero, when ;, £ > oo, uniformly in J; & (¢) is therefore 12 (o, 1 ; W)-a.p.
and the theorem is completely proved.

5. We now want to show that, under the assumptions made at the end
of § 1, equation (1.33) satisfies hypotheses I)...X); the theorems and lemmas
given in the preceding §§ will therefore hold for the solutions of this equation.

We observe, first of all, that the operators A; and Az defined by (1.29),
(1.30) are obviously linear, positive, self adjoint and permutable (having
constant coefﬁc1ents) and therefore satisfy condition II). Moreover, if T' is
of class C? it results, by a theorem of Nirenberg [4],

(5.1) D (A;) = D (E) = H*(Q) n H}(Q).
Hence, Va € [0, 1],

(5-2) D (AP =D (E%.
As Ag = Eo, it is then

(5-3) D (A7) = D (Ag)

so that hypothesis I) is verified.

Being, in the case we are now considering, Vi = D (A} = H} (Q),
Ve =D@A/H =D@A), W=D@AM"?), AW= D (AP™D2), AW =
=D (A, it is obviously, by the second of (1.29),

(5.4) AsW C As Hj (Q) C L(Q) C A;W,

that is hypothesis IV).
Setting v = Sup [aj (®)|], it results, by (1.29), (1.30),
j—()xle Q
(55) (Al?j sz)L’(Q) + <A37j sz)]}(g) = HZ/]‘D(A(1+.5)/2 H A37}}!L’(Q) H \D (A :
Hence, if ¢ is the embedding constant of D (A{**%) in ~D(A1),

(5‘6) (<A1+ A3) v, Ag Z’>L=(g) = “ vl;i) (A§1+ o)z T ¢ !i Azv HLE(Q) “ v ”D(Aﬁl""’)/z) :
For hypothesis III) to be verified, it is therefore sufficient that

(5.7) |As vHL,(g) < H v ”D(A?—;_o)/z) with d< 1,

which is obviously true then v is small enough.
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Setting Y = L?(Q), from the hypotheses made on the function B (§)
it follows that conditions V), VI), VIII) are satisfied.

Let us prove that also condition VII) holds. Let{w,(x,%)} be a sequence
such that, setting Q = QX [o, T],

(5.8) lim*y, = v , limuo,=uwv.
7 —>00 Lﬁ(Q) n-—>o00 L2(Q)

From (1.31) and the first of (5.8) it follows that it is possible to extract
from {z,} a subsequence (again denoted by {z,}) such that

(5.9) lim* B (v,) = ¢ ).
We shall show that
(510) Y =8@).

Let us observe that, by the second of (5.8), it is possible to extract from
{v,} a subsequence (again denoted by {z,}) such that

(5.11) lim v, (x,m) =2 (x, ") almost everywhere in Q.
Hence
(5.12) lim B (v, (x, ) =8 @ (x,n)) almost everywhere in Q.
7 —>00

If ¢ is an arbitrary positive number, there exists a closed set Q,, with
m (Q—Q,) <e, such that in Q. the convergence is uniform and all the
functions v, are continuous. It is then, VA€ L?(Q), with 2= o0 in Q —Q,,

G lim (B ) A a0 = [$6e ) b, m 0 =
Q Qe
— (B e maQ.
Q

Consequently, being % arbitrary, ¢ (x,n) = B (v (x, 7)) almost everywhere in
Q. and hence also in Q. Relation (5.10) is therefore proved and hypothesis VII)
verified.

Let us finally show that also conditions IX) and X) hold.

If T is of class C*°, with s= m(p—2) —+1, it follows from a theorem of

Nirenberg [4] and an embedding theorem of Sobolev (see Gagliardo [3]) that
(5.14) D (A;) CH?* (Q)n HI(Q) CL Q).

Being D(A]) dense in L?(Q), we obtain, from (5.14),
(5-15) L”(Q) C D(AY,

i.e. hypothesis X). On the other hand, D(A{""?*)1#(Q) is separable, as it
is contained in H'7°(Q) n L?(Q), which is separable, being isometric to a
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direct sum of L?(Q) spaces, with various separable measures. Moreover,
being DA™ ") N LA(Q D Hi(Q) NL (DD (Q) and D(Q) dense in
D (A{™?) and in L?(Q), the space D (A{~"*AL*(Q) is dense in D (A=)
and in L?(Q). Also hypothesis IX) is therefore verified.
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