ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GIOVANNI PROUSE

Periodic or almost-periodic solutions of a non linear functional equation. Nota IV

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 44 (1968), n.1, p. 1–8. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1968_8_44_1_1_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

RENDICONTI

DELLE SEDUTE

DELLA ACCADEMIA NAZIONALE DEI LINCEI

Classe di Scienze fisiche, matematiche e naturali

Seduta del 13 gennaio 1968
Presiede il Presidente Beniamino Segre

SEZIONE I

(Matematica, meccanica, astronomia, geodesia e geofisica)

Analisi matematica. — Periodic or almost-periodic solutions of a non linear functional equation. Nota IV (*) di Giovanni Prouse, presentata dal Corrisp. L. Amerio.

SUNTO. — Si danno le dimostrazioni dei teoremi 2, 3, 4 e 5 enunciati nel § I e si studia una particolare equazione a cui sono applicabili i risultati ottenuti.

4. Let us now give the proofs of Theorems 2, 3, 4 and 5.

Proof of Theorem 2: Consider the transformation S of the space V_2 in itself, defined by

$$(4.1)$$
 Su (o) = u (T)

 $u(\eta)$ being the solution in [0,T] corresponding to the initial value u(0).

By lemma 4, S is weakly continuous in V_2 ; moreover, by lemma 5, it maps each sphere of radius $R \ge \sqrt{K}$ in itself.

The transformation has therefore, by a theorem of Tychonoff (see for instance Dunford and Schwarz [1]) a fixed point, i.e. there exists a solution $\tilde{u}(\eta)$ such that

$$\tilde{u}(0) = \tilde{u}(T).$$

This solution is obviously periodic with period T.

- (*) Pervenuta all'Accademia il 23 settembre 1967.
- 1. RENDICONTI 1968, Vol. XLIV, fasc. 1.

Proof of Theorem 3: Let $u_n(\eta)$ be the solution, defined for $\eta \ge -n$, satisfying the initial condition $u_n(-n) = 0$. Setting $u_n(\eta) = 0$ for $\eta < -n$ and

(4.3)
$$f_n(\eta) = \begin{cases} f(\eta) & \text{for } \eta \ge -n \\ 0 & \text{for } \eta < -n \end{cases}$$

the function $u_n(\eta)$ is obviously a solution in J of the equation

(4.4)
$$u'_{n}(\eta) + (A_{1} + A_{3}) u_{n}(\eta) + BA_{2} u_{n}(\eta) = f_{n}(\eta)$$

By lemma 6, it results

$$(4.5) \begin{array}{lll} & \sup_{\eta \in J} \| u_{n}(\eta) \|_{V_{s}} = M_{1}' &, & \sup_{t \in J} \| u_{n}(t) \|_{L^{2}(0,1;W)} = M_{2}', \\ & \sup_{t \in J} \| A_{2} u_{n}(t) \|_{L^{p}(0,1;Y)} = M_{3}', & \sup_{t \in J} \| A_{2} u_{n}(t) \|_{H^{\epsilon}(0,1;D(A_{1}^{\epsilon}))} = M_{4}'. \end{array}$$

Repeating, without any change, the procedure followed in Theorem 1 to prove the existence of a solution of the Cauchy problem, from relations (4.5) follows that it is possible to extract from $\{u_n(\eta)\}$ a subsequence (again denoted by $\{u_n(\eta)\}$) which converges, in the topologies introduced in (2.33), to a solution in J of (1.24), satisfying relations (1.27). The existence of a bounded solution in J is therefore proved.

Let us now show that, if also hypothesis XI) holds, this solution is unique. Assume this is not so and let v(t) be another solution $L^2(0, 1; V_2)$ -bounded in J. Setting $w(\eta) = u(\eta) - v(\eta)$, $w(\eta)$ is obviously a solution of the equation

(4.6)
$$w'(\eta) + (A_1 + A_3) w(\eta) + BA_2 u(\eta) - BA_2 v(\eta) = 0$$

and satisfies the relation, analogous to (2.38),

$$(4.7) \qquad \frac{1}{2} \langle w(\eta_2), A_2 w(\eta_2) \rangle - \frac{1}{2} \langle w(\eta_1), A_2 w(\eta_1) \rangle +$$

$$+\int\limits_{\eta_{1}}^{\eta_{2}}\!\!\left\langle \left(\mathbf{A}_{1}+\mathbf{A}_{3}\right)w\left(\boldsymbol{\eta}\right),\,\mathbf{A}_{2}w\left(\boldsymbol{\eta}\right)\right\rangle d\boldsymbol{\eta}+\int\limits_{\eta_{1}}^{\eta_{2}}\!\!\left\langle \mathbf{B}\mathbf{A}_{2}\,u\left(\boldsymbol{\eta}\right)-\mathbf{B}\mathbf{A}_{2}\,v\left(\boldsymbol{\eta}\right),\,\mathbf{A}_{2}w\left(\boldsymbol{\eta}\right)\right\rangle d\boldsymbol{\eta}=0\;.$$

By hypotheses III), VIII), XI), it results therefore, $\forall \eta \in J$ and $\forall \delta > 0$,

$$\begin{aligned} (4.8) \qquad & \|w(\eta-\delta)\|_{\mathrm{V}_{2}}^{2} \geq \|w(\eta)\|_{\mathrm{V}_{2}}^{2} + 2\alpha \int_{\eta-\delta}^{\eta} \|w(t)\|_{\mathrm{W}}^{2} dt - 2c_{5} \int_{\eta-\delta}^{\eta} \|w(t)\|_{\mathrm{D}(\mathrm{A}_{2})}^{2} dt \geq \\ & \geq & \|w(\eta)\|_{\mathrm{V}_{2}}^{2} + 2(\alpha - c_{5}\gamma^{2}) \int_{\eta-\delta}^{\eta} \|w(t)\|_{\mathrm{W}}^{2} dt = & \|w(\eta)\|_{\mathrm{V}_{2}}^{2} + \sigma_{1} \int_{\eta-\delta}^{\eta} \|w(t)\|_{\mathrm{W}}^{2} dt, \end{aligned}$$

being $\sigma_1 = 2 (\alpha - c_5 \gamma^2) > 0$.

As the embedding of W in V2 is continuous, we obtain, from (4.8),

$$\|w(\eta - \delta)\|_{\mathbf{V}_{\mathbf{z}}}^{2} \ge \|w(\eta)\|_{\mathbf{V}_{\mathbf{z}}}^{2} + \sigma_{2} \int_{\eta - \delta}^{\eta} \|w(t)\|_{\mathbf{V}_{\mathbf{z}}}^{2} dt.$$

Consequently, the function $\|w\left(\eta\right)\|_{V_{\mathbf{z}}}$ is decreasing and from (4.9) it follows that

Hence

(4.11)
$$\lim_{t \to -\infty} \|w(t)\|_{L^{2}(0,1;V_{\bullet})} = +\infty,$$

which, for the hypotheses made, is absurd. u(t) is then the only L² (o, I; V₂)-bounded solution in J.

By exactly the same procedure it can be proved that (1.28) holds. The theorem is then completely proved.

Proof of Theorem 4: In the proof of this and of the next theorem, we shall follow a procedure given by Amerio [2], [3] for linear functional equations.

In order that the theorem be proved, it will be sufficient, by Bochner's criterion, to show that it is possible to extract from any real sequence $\{l_n\}$ a subsequence $\{l_n'\}$ such that

$$\lim_{n \to \infty} \tilde{u}\left(t + l_n'\right) = z\left(t\right)$$

uniformly in J.

In view of the hypotheses we have made, we can obviously assume that, uniformly in J

(4.13)
$$\lim_{n \to \infty} f(t + l'_n) = g(t).$$

Repeating, without any change, the procedure followed in Theorem 1, we find that it is possible to extract from $\{l_n\}$ a subsequence $\{l'_n\}$ such that, $\forall t \in J$,

(4.14)
$$\lim_{n \to \infty}^{**} \tilde{u}(t + l'_{n}) = z(t),$$

$$\lim_{n \to \infty}^{*} \tilde{u}(t + l'_{n}) = z(t),$$

$$\lim_{n \to \infty}^{*} \tilde{u}(t + l'_{n}) = z(t),$$

$$\lim_{n \to \infty}^{*} A_{2}\tilde{u}(t + l'_{n}) = A_{2}z(t),$$

$$\lim_{n \to \infty}^{*} A_{2}\tilde{u}(t + l'_{n}) = A_{2}z(t).$$

$$\lim_{n \to \infty} A_{2}\tilde{u}(t + l'_{n}) = A_{2}z(t).$$

The function $z(\eta)$ is, moreover, a solution in J of the equation

$$(4.15) z'(\eta) + (A_1 + A_3) z(\eta) + BA_2 z(\eta) = g(\eta).$$

Assume that (4.12) does not hold uniformly in J. There exist then a number $\sigma > 0$ and three sequences $\{t_n\}$, $\{\alpha'_n\} \subseteq \{l'_n\}$, $\{\alpha''_n\} \subseteq \{l'_n\}$ such that

(4.16)
$$\|\tilde{u}(t_n + \alpha'_n) - \tilde{u}(t_n + \alpha''_n)\|_{L^2(0, 1 \cdot V_n)} \ge \sigma.$$

It is, on the other hand, possible to extract from $\{t_n + \alpha'_n\}$ and $\{t_n + \alpha''_n\}$ two subsequences (again denoted by $\{t_n + \alpha'_n\}$ and $\{t_n + \alpha''_n\}$) for which it results, in the various topologies introduced in (4.14),

(4.17)
$$\lim_{n \to \infty} \tilde{u} (t + t_n + \alpha'_n) = z_1(t),$$

$$\lim_{n \to \infty} \tilde{u} (t + t_n + \alpha''_n) = z_2(t).$$

By the hypotheses made, it is however

(4.18)
$$\lim_{n \to \infty} f(t + t_n + \alpha'_n) = \lim_{n \to \infty} f(t + t_n + \alpha''_n) = g(t),$$

uniformly in J.

The functions $z_1(\eta)$ and $z_2(\eta)$ are therefore V₂-bounded solutions in J of equation (4.15). By theorem 3 it must then be $z_1(\eta) = z_2(\eta)$, which is in contrast with (4.16). Consequently, (4.12) holds uniformly in J and the theorem is proved.

Proof of Theorem 5: Let us prove at first that $\tilde{u}(\eta)$ is V_2 -a.p.

Let $\{l_n\}$ be any real sequence; we shall show that it is possible to extract a subsequence $\{l'_n\} \subseteq \{l_n\}$ such that

(4.19)
$$\lim_{n\to\infty} \tilde{u}\left(\eta + l_n'\right) = z\left(\eta\right)$$

uniformly in J.

We may obviously assume that

(4.20)
$$\lim_{n \to \infty} f(t + l'_n) = g(t)$$

and also, by Theorem 4,

(4.21)
$$\lim_{n \to \infty} \tilde{u}(t + l'_n) = z(t)$$

uniformly in J.

Suppose that (4.19) does not hold uniformly in J; there exist then a number $\sigma > 0$ and three sequences $\{\eta_n\}$, $\{\alpha'_n\} \subseteq \{l'_n\}$, $\{\alpha''_n\} \subseteq \{l'_n\}$ such that

$$\left\| \tilde{u} \left(\eta_n + \alpha'_n \right) - \tilde{u} \left(\eta_n + \alpha''_n \right) \right\|_{V_{\alpha}} \geq \sigma.$$

Setting $w_n(\eta) = \tilde{u}(\eta + \eta_n + \alpha'_n) - \tilde{u}(\eta + \eta_n + \alpha''_n)$, the function $w_n(\eta)$ satisfies the equation

(4.23)
$$w'_{n}(\eta) + (A_{1} + A_{3}) w_{n}(\eta) + BA_{2} \tilde{u} (\eta + \eta_{n} + \alpha'_{n}) - BA_{2} \tilde{u} (\eta + \eta_{n} + \alpha''_{n}) = f (\eta + \eta_{n} + \alpha'_{n}) - f (\eta + \eta_{n} + \alpha''_{n})$$

and, $\forall \eta < 0$, the relation, analogous to (4.7),

$$\begin{split} \|w_{n}(\eta)\|_{\mathbf{V}_{a}}^{2} \geq \|w_{n}(0)\|_{\mathbf{V}_{a}}^{2} + \\ + 2 \int_{\eta}^{0} \langle \mathrm{BA}_{2} \, \tilde{u} \, (t + \eta_{n} + \alpha'_{n}) - \mathrm{BA}_{2} \, \tilde{u} \, (t + \eta_{n} + \alpha''_{n}) \,, \, \mathrm{A}_{2} \, w_{n}(t) \rangle \, dt \, + \\ + 2 \, \alpha \int_{\eta}^{0} \|w_{n}(t)\|_{\mathbf{W}}^{2} \, dt - 2 \int_{\eta}^{0} \langle f(t + \eta_{n} + \alpha'_{n}) - f(t + \eta_{n} + \alpha''_{n}) \,, \, \mathrm{A}_{2} \, w_{n}(t) \rangle \, dt \,. \end{split}$$

As f(t) is $L^{p'}(o, I; Y')$ -a.p. and $A_2 w_n(t)$ is $L^p(o, I; Y)$ -bounded, it is possible to choose $n \geq n_\sigma$ so large that, when $-I \leq \eta < o$,

$$(4.25) \qquad \left| \int_{\eta}^{0} \langle f(t+\eta_{n}+\alpha_{n}') - f(t+\eta_{n}+\alpha_{n}''), A_{2}w_{n}(t) \rangle dt \right| \leq \frac{\sigma^{2}}{4}.$$

On the other hand, by (1.23) and condition XI),

$$\begin{aligned} &(4.26) \quad \int\limits_{\eta}^{0} \left\langle \mathrm{BA}_{2} \, \bar{u} \left(t + \eta_{n} + \alpha_{n}' \right) - \mathrm{BA}_{2} \, \bar{u} \left(t + \eta_{n} + \alpha_{n}'' \right), \, \mathrm{A}_{2} \, w_{n}(t) \right\rangle \, dt \geq \\ & \geq - c_{5} \int\limits_{\eta}^{0} \| w_{n}(t) \|_{\mathrm{D}(\mathrm{A}_{2})}^{2} \, dt \geq - c_{5} \gamma^{2} \int\limits_{\eta}^{0} \| w_{n}(t) \|_{\mathrm{W}}^{2} \, dt \geq - \alpha \int\limits_{\eta}^{0} \| w_{n}(t) \|_{\mathrm{W}}^{2} \, dt \, . \end{aligned}$$

Hence, introducing (4.22), (4.25), (4.26) into (4.24),

$$\|w_n(\eta)\|_{V_2}^2 \ge \frac{\sigma^2}{2} \qquad \forall \eta \in [-1, 0],$$

and, consequently,

(4.28)
$$\|w_n(-1)\|_{L^2(0,1;V_2)}^2 = \int_1^0 \|w_n(\eta)\|_{V_2}^2 d\eta \ge \frac{\sigma^2}{2}$$

Relation (4.28) contradicts (4.21) and (4.19) holds therefore uniformly in J. As \tilde{u} (η) is V₂-continuous, it follows, by Bochner's criterion, that \tilde{u} (η) is V₂-a.p.

Finally, we prove that $\tilde{u}(t)$ is L² (0, 1; W)-a.p.

Setting, in fact, $w_{ik}(\eta) = \tilde{u}(\eta + l_i) - \tilde{u}(\eta + l_k)$, it results (see (4.24))

$$\begin{aligned} \|w_{jk}\left(\eta\right)\|_{\mathbf{V}_{a}}^{2} &\geq \|w_{jk}\left(\eta+1\right)\|_{\mathbf{V}_{a}}^{2} + \\ &+ 2\int_{\eta}^{\eta+1} \left\langle \mathrm{BA}_{2}\,\tilde{u}\left(t+l_{j}^{\prime}\right) - \mathrm{BA}_{2}\tilde{u}\left(t+l_{k}^{\prime}\right),\,\mathrm{A}_{2}\,w_{jk}\left(t\right)\right\rangle dt + \\ &+ 2\,\alpha\int_{\eta}^{\eta+1} \|w_{jk}\left(t\right)\|_{\mathbf{W}}^{2}\,dt - 2\int_{\eta}^{\eta+1} \left\langle f\left(t+l_{j}^{\prime}\right) - f\left(t+l_{k}^{\prime}\right),\,\mathrm{A}_{2}\,w_{jk}\left(t\right)\right\rangle dt \,. \end{aligned}$$

By (1.23) and hypothesis XI), it follows from (4.29), setting $\sigma_1=2$ ($\alpha-c_5$ γ^2) > 0,

$$(4.30) \quad \sigma_{1} \int\limits_{\eta}^{\eta+1} \|w_{jk}(t)\|_{W}^{2} dt \leq \|w_{jk}(\eta)\|_{V_{z}}^{2} + 2 \int\limits_{\eta}^{\eta+1} \langle f(t+l'_{j}) - f(t+l'_{k}), A_{2} w_{jk}(t) \rangle dt.$$

By what has been proved above, the right hand side of (4.30) converges to zero, when j, $k \to \infty$, uniformly in J; u(t) is therefore L² (0, 1; W)-a.p. and the theorem is completely proved.

5. We now want to show that, under the assumptions made at the end of \S I, equation (I.33) satisfies hypotheses I)...X); the theorems and lemmas given in the preceding $\S\S$ will therefore hold for the solutions of this equation.

We observe, first of all, that the operators A_1 and A_2 defined by (1.29), (1.30) are obviously linear, positive, self adjoint and permutable (having constant coefficients) and therefore satisfy condition II). Moreover, if Γ is of class \mathbb{C}^2 , it results, by a theorem of Nirenberg [4],

$$(5.1) D(A_1) = D(E) = H^2(\Omega) \cap H_0^1(\Omega).$$

Hence, $\forall \alpha \in [0, 1]$,

$$\mathrm{D}\left(\mathrm{A}_{1}^{\alpha}\right)=\mathrm{D}\left(\mathrm{E}^{\alpha}\right).$$

As $A_2 = E^{\sigma}$, it is then

$$(5.3) D(A_1^{\sigma}) = D(A_2)$$

so that hypothesis I) is verified.

Being, in the case we are now considering, $V_1=D\,(A_1^{1/2})=H_0^1\,(\Omega)$, $V_2=D\,(A_2^{1/2})=D\,(A_1^{\sigma/2})$, $W=D\,(A_1^{(1+\sigma)/2})$, $A_1\,W=D\,(A_1^{(\sigma-1)/2})$, $A_2\,W=D\,(A_1^{(1-\sigma)/2})$, it is obviously, by the second of (1.29),

(5.4)
$$A_3W \subset A_3 H_0^1(\Omega) \subset L^2(\Omega) \subset A_1W,$$

that is hypothesis IV).

Setting $v = \sup_{\substack{x \in \Omega \\ j=0,1,\dots,m}} |a_j(x)|$, it results, by (1.29), (1.30),

$$(5.5) \quad \left(\mathbf{A}_{1}v \,,\, \mathbf{A}_{2}v \right)_{\mathbf{L}^{2}(\Omega)} + \left(\mathbf{A}_{3}v \,,\, \mathbf{A}_{2}v \right)_{\mathbf{L}^{2}(\Omega)} \geq \left\| v \right\|_{\mathbf{D}(\mathbf{A}_{1}^{(1+\sigma)/2})}^{2} - \left\| \mathbf{A}_{3}v \right\|_{\mathbf{L}^{2}(\Omega)} \left\| v \right\|_{\mathbf{D}(\mathbf{A}_{2}^{\sigma})}.$$

Hence, if c is the embedding constant of $D(A_1^{(1+\sigma)/2})$ in $D(A_1^{\sigma})$,

$$(5.6) \qquad ((A_1 + A_3) \, v \,, A_2 \, v)_{L^2(\Omega)} \ge \| \, v \, \|_{D \, (A_1^{(1+\sigma)/2})}^2 - c \, \| \, A_3 \, v \, \|_{L^2(\Omega)} \, \| \, v \, \|_{D \, (A_1^{(1+\sigma)/2})} \,.$$

For hypothesis III) to be verified, it is therefore sufficient that

(5.7)
$$\|\mathbf{A}_3 v\|_{\mathbf{L}^2(\Omega)} \leq \frac{\delta}{c} \|v\|_{\mathbf{D}(\mathbf{A}_{r}^{(1+\sigma)/2})} \quad \text{with } \delta < 1,$$

which is obviously true then v is small enough.

Setting $Y = L^p(\Omega)$, from the hypotheses made on the function $\beta(\xi)$ it follows that conditions V), VII), VIII) are satisfied.

Let us prove that also condition VII) holds. Let $\{v_n(x, \eta)\}$ be a sequence such that, setting $Q = \Omega \times [0, T]$,

(5.8)
$$\lim_{n \to \infty} v_n = v \quad , \quad \lim_{n \to \infty} v_n = v .$$

From (1.31) and the first of (5.8) it follows that it is possible to extract from $\{v_n\}$ a subsequence (again denoted by $\{v_n\}$) such that

(5.9)
$$\lim_{n \to \infty} \beta \left(v_n \right) = \psi \qquad \left(\frac{1}{p} + \frac{1}{p'} = 1 \right).$$

We shall show that

$$(5.10) \qquad \qquad \psi = \beta(v).$$

Let us observe that, by the second of (5.8), it is possible to extract from $\{v_n\}$ a subsequence (again denoted by $\{v_n\}$) such that

(5.11)
$$\lim_{n \to \infty} v_n(x, \eta) = v(x, \eta) \quad \text{almost everywhere in Q.}$$

Hence

(5.12)
$$\lim_{n \to \infty} \beta(v_n(x, \eta)) = \beta(v(x, \eta)) \quad \text{almost everywhere in } Q.$$

If ε is an arbitrary positive number, there exists a closed set Q_{ε} , with $m(Q-Q_{\varepsilon})<\varepsilon$, such that in Q_{ε} the convergence is uniform and all the functions v_n are continuous. It is then, $\forall h \in L^p(Q)$, with h=0 in $Q-Q_{\varepsilon}$,

(5.13)
$$\lim_{n \to \infty} \int_{Q} \beta(v_{n}(x, \eta)) h(x, \eta) dQ = \int_{Q_{\varepsilon}} \psi(x, \eta) h(x, \eta) dQ =$$
$$= \int_{Q_{\varepsilon}} \beta(v(x, \eta)) h(x, \eta) dQ.$$

Consequently, being h arbitrary, $\psi(x,\eta) = \beta(v(x,\eta))$ almost everywhere in Q_{ϵ} and hence also in Q. Relation (5.10) is therefore proved and hypothesis VII) verified.

Let us finally show that also conditions IX) and X) hold.

If Γ is of class C^{2s} , with $s = \left[\frac{m(p-2)}{4p}\right] + 1$, it follows from a theorem of Nirenberg [4] and an embedding theorem of Sobolev (see Gagliardo [5]) that

$$(5.14) D(A_1^s) \subset H^{2s}(\Omega) \cap H_0^1(\Omega) \subset L^p(\Omega).$$

Being $D(A_1^s)$ dense in $L^p(\Omega)$, we obtain, from (5.14),

i.e. hypothesis X). On the other hand, $D(A_1^{(1-\sigma)/2}) \cap L^{\rho}(\Omega)$ is separable, as it is contained in $H^{1-\sigma}(\Omega) \cap L^{\rho}(\Omega)$, which is separable, being isometric to a

direct sum of $L^{\ell}(\Omega)$ spaces, with various separable measures. Moreover, being $D(A_1^{(1-\sigma)/2}) \cap L^{\ell}(\Omega) \supset H_0^1(\Omega) \cap L^{\ell}(\Omega) \supset \mathfrak{D}(\Omega)$ and $\mathfrak{D}(\Omega)$ dense in $D(A_1^{(1-\sigma)/2})$ and in $L^{\ell}(\Omega)$, the space $D(A_1^{(1-\sigma)/2}) \cap L^{\ell}(\Omega)$ is dense in $D(A_1^{(1-\sigma)/2})$ and in $L^{\ell}(\Omega)$. Also hypothesis IX) is therefore verified.

BIBLIOGRAPHY.

- [1] N. DUNFORD and J. SCHWARZ, *Linear Operators*, part 1 (page 470), «Interscience» (1958).
- [2] L. AMERIO, Sulle equazioni differenziali quasi-periodiche astratte, «Ric. di Mat.», 9 (1960).
- [3] L. AMERIO, Solutions presque-périodiques d'equations fonctionnelles dans les espaces de Hilbert, II Colloque sur l'analyse fonctonnelle, Liège (1964).
- [4] L. NIRENBERG, Remarks on strongly elliptic partial differential equations, «Comm. Pure and Apll. Math. », 8 (1955).
- [5] E. GAGLIARDO, Proprietà di alcune classi di funzioni in più variabili, «Ric. di Mat.», 7 (1958).