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Analisi matematica. — Brorthonormal systems in vector spaces .
Nota di MENDEL DAVID e JacoB STEINBERG, presentata ™ dal Socio
G. SANSONE.

RIASSUNTO. — In questa Nota viene definita la nozione di una serie di Appell in uno
spazio vettoriale, la quale costituisce una generalizzazione delle serie di polinomi di Appell.
Una serie di Appell vettoriale viene studiata in connessione con una sequenza di funzionali
lineari, che la completano ad un sistema biortonormale.

1. INTRODUCTION.

Let L. be a (complex) vector space and let A be a linear operator
mapping L into itself. Let us suppose that there exists in L a sequence
%o, %1, %2 - - such that xog=0,Ax; = ;3 for i =1, 2,3, - and Axy= o.

By means of a sequence of complex numbers ay, @1, a3 ,- - - with gy =1
one may construct the ‘set:

;
y,-=Eajx,-.j I=0,1,2---
7=0

This will be called in the sequel an Appell set of vectors relative to the
sequence {x,} and the operator A. When g, are the coefficients of the power
series representation of a complex variable function F (%) analytic about
the origin we say that the Appell set y; is genérated by F (u).

In the case in which L is a space of infinite differentiable functions, A is
the differentiation operator and x; = % the notion of Appell set of vectors

coincides with the well known notion of Appell set of polynomials.
A more general example is that of the polynomials of type £ which is
obtained when A is an operator of the form

00 a*
A= P, (®) —
’g ”(>dl‘”

where P, (#) is a polynomial of the form Z,0 4/, ¢+ - +Z,_1# 1 for
n=1,2, -- and the following two conditions are fulfilled:

(@) nho+nn—n)lor+---+nll, 150

(b) The degrees £, of P, satisfy m;ax by = k< co.
Moreover, it is supposed that L. is a space of infinite differentiable functions
in which A is defined and x; is the (unique) basic set of type £ (see [1] p. 592).

(*) Technion, Israel Institute of Technology, Haifa.
(**) Nella seduta del 13 gennaio 1968.
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Some properties of Appell sets and sets of type zero of polynomials were
discovered in [2] and [3]. We shall deal here with the general case of the
Appell set of vectors and shall prove two theorems.

Theorem 1 is analogous to theorem 3 in [2] and theorem 6 in [3].
Theorem 2 is a generalization of theorem 6 in [2].

2. Before we state the first theorem we recall the definition of a bior-
thonormal system.

A sequence z, ,7=0,1,2,--inL and a sequence of linear functionals
{g.}n=o0,1,2,--- in the dual space of L,L* form a biorthonormal
system if

Zn (2) = O, %, m=0,1,2 -
where
o for m==n

"N form=un

THEOREM 1. Let {y,} be an Appell set relative to x; and the operator A.
Also let L1 be the vector subspace of L formed by the finite linear combinations
of x;. Then there exists at least one functional / in L* such that the sequence
{(A*)" f} completes the sequence {y,} to a biorthonormal system. The
functionals f with this property have a unique restriction fo on Li. If {y,}
is generated by a function F (%) analytic about the origin with F (0) =1
then fo(x;),7=o0,1,2,--- are the coefficients of the power series repre-
sentation of F~1 ().

Proof: Let fbe a linear functional in L* with f (x9) = 1. Since Ax, = x,_4
forw =1,2,--- and Axy = 0 one obtains easily Ay, =y, 1 forn =1,2, .-
and Ay, = o. Therefore, for > m ,A”y, = 0. Hence

A f (Ym) =F (A" y,) =0
in this case. For #» = m
f(A”ym> :f(y0> :f<x0> =1
If n<m

S ) =f )= 3 5 Gonn)-

But the system
%
(1 X aptej =0
;=

where #o = 1, has a unique solution #,%2,%:--

Therefore, in order to complete the proof of the first two parts of the
theorem we must show that there exist linear functionals f in L* satisfying
Jf(x)=¢ for i=o0,1,2,--- and that the restrictions of all functionals f
on L coincide. To prove this it is enough to show that the sequence {x;} is
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a part of a Hamel basis of L. But, by Zorn’s lemma, this will follow if we
show that every finite set of vectors x; is linearly independent. Since xy =<0
and A"x,=ux, for w=o0,1,2,--- every set containing one vector is
linearly independent. Next, we will suppose that every set of z—1 vectors is
linearly independent and we will show that every set of z vectors xi, , %s,,- - -, %:
where 71 < i3 <<- -+ < 7, has the same property. Letai, ag,- - -,«, be z numbers
such that

oqx,-l+ oe Xi, - Uy Xi, = O.

An application of A’ yields «, = 0. This fact together with the assumption
that w;, , %7, - - -x;,_, are linearly independent imply the linear independence
of i, xiy oo, %4 . The first two parts of the theorem are proved.

If a; are the coefficients of the power series representation of an analytic
function F (z) about the origin then the Cauchy multiplication formula and (1)
show that #; = fo(x;),¢7=0,1,2,--- must be the coefficients of the power
series representation of F~! (%) (which is analytic about the origin since F (x)
is analytic and F (0) = 1). Theorem 1 is proved.

Example 1. Let L be the vector space of infinitely differentiable functions
in (—oo, + o0); A :dit —¢ and z, =—;Tz‘k e %2-

Suppose that y, is an Appell set relative to this sequence, generated by
a function F (2). Suppose also that F~! (zy) as a real variable function and
its derivatives are defined, for — co < y < oo, and vanish more rapidly than
any negative power of y at infinity. In the present case, as in the case

treated in [2], section 3, the functional fo has an integral form

+00
fo (%) = J 5(&)x (@) de

where
“+7Zo0 —o0
1 —f<u+%> 1 I —!(iy+ %) -1 ,.
PO =5]¢ Fo(ydu=—_—|¢ F7 @) dy.
— 700 —o0
In fact, by Fourier’s integral theorem we have
+00
U P
F (z'y)=/e 2) p(x) dr
and therefore
2 Lyl —f@), fork=o,1,2,.-
&l duk 0 k) ’ ’ 3

We remark also that the sequence of linear functionals g, is here

2 (1) = (A% fo (%) = ] ' [(— s z)” » (z)} x (¢) dz.

2. — RENDICONTI 1968, Vol. XLIV, fasc. 1.
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Example 2. Let x, = O, () where ¢ is complex #== 0, and

o0

Oulty =% [e=l0 + VEF 17 + 0 — 1 F 7] do,

0

which is a polynomial of degree # + 1 in ¢ (the Laplace integral being con-
vergent for Rez > o).
It is well known that, if J, (#) is Bessel’s function of order e,

j Jn (@O, (£)dt = o; m==n,

on a circle around the origin (see [4], pp. 262-264).
Let

K (J‘ , l‘) =TT ;0 Jn-}-l (S) On (t> ’

then the series converges absolutely and uniformly for |#|>|s| 4 ¢ (e> 0),
the proof being the same as for the series with ], replacing J,.1 (see [4],
pp. 263—264). Thus

/K(s,z‘)OnH(s)ds:O,,(z‘); (m=o0,1,--)
Is|=|t]—e

and

r
K (s,£ 00 (s)ds = [ =0 ds = K (0,7) = 0.
| S=1t]—e | Fl=lt1—e

Thus A is an integral operator with kernel K (s, #), and the adjoint A*
defined by

A*x ()= | K (s, ) x (¢) dz.
l£]=1s]+e
We have indeed A* J, = J,p1,(m=0,1,--:).

In the sequel we will need the following definition:
Let {x,;} be a sequence in L with #y==0 and A a linear operator such

that Axg =0 and Ax; =x; 4 for i=1,2,3, --. A sequence of vectors

of the form

(2> J’;:E()é;;x; Z.:O)I;Z;-"'
=

is called a standard set relative to the set {#x;} and the operator A.

An Appell set is obviously a speciai case of a standard set. Moreover,
we remark that this notion of standard set generalizes the notion of standard
set of polynomials introduced in [2] p. 197.
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Now we will prove the following

THEOREM 2. Let {x;} and A be as above and let f be a linear functional
in L* satisfying f (xy) = 1. Then there exists a unique standard set relative
to x; and A, namely an Appell set y, which completes the sequence (A*)"f
to a biorthonormal system. Moreover, if f (x;) are the coefficients of the power
series representing an analytic function F (2) about the origin then the
Appell set is generated by F~1(z).

Proof: First we will show that there exists a unique Appell set {y;} such
that

<3) (\A*>nf<ym>:8nm 7n,m=0,1,2, - -

We see from the proof of theorem 1 that (1) holds if and only if the
sequence {a;} corresponding to {y;} satisfies the system

)
]Z;) aif (%) =o.

Since this system has a unique solution @, a; , @3, -+ with @y = 1, the
existence and the uniqueness of the Appell set {y;} is proved.

The proof of the last part of this theorem is analogous to that of the
last part of theorem 1. It remains therefore to show that every standard
set {y, } satisfying (3) is an Appell set. This means that we have to prove that
the coefficients 4,; from (2) satisfy the conditions

(4) by =1 for i=o0,1,2, --
(5) biip= bit1,iv1-2 for i=1,2,-5k=1,2, -

(4) follows substituting in (3) m = » = ¢. In fact, this substitution gives
biz = biif (x0) = F (bi; xo) = F (A'y;) = (A f(y) = 1.

Let us prove now (5) for #= 1. Subtracting the equality which is obtained
by substituting # = 7—1 and » = 7 in (3) from that obtained for # = ¢
and m =7 4 1 we get

f(Aiyz'+l _'Aiﬁlyi,) = 0.
Hence

S i1 iv1 21 + biy1,i 20) — (b;; %1 + 64,521 %9)] = O.

Since b;y1,:41 = b; = 1 and f(xg) = 1 this equality implies &;1,; = b;;_1.

Let us now suppose that (5) holds for £#=12,---,p; p<Ci. We prove
that this implies (5) with 2= p 4 1. Subtracting the equality. obtained by
the substitution 7 = i— p—1,m = ¢ from that obtained for #» =7 — p,
m =174 1 we get

FA Ty — ATy =0
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This implies
J (i1 Hprt + bigr,i 25 - A binr,impr1 X1 biya,imp %o) —
— Gi Xpt1 + bijimr 2y o biip 21 by x0)) = O

Since (4) and (5) with 2= 1,2,-.-, p — 1 hold, this equality may be written
in the form

J (big1,imp %9 — biyim1-p %) = O

Hence b;11,i~p = b;;-1—5. Theorem 2 is proved.

Remark. We see that the existence of the sequence x; implies the existence
of an infinite number of Appell sets relative to the opérator A. Furthermore,
one can show that there exists a unique standard set z; relative to x; and A,
such that

boo=1 , by=Fo0 and f;p=o0 for i=1,2, -

and Bg; = 2._1,i=1,2,---, Bz = 0 where B is an operator of the form

B=Y¢A, cL==o.
=

Hence, the existence of the set {x,;} implies also the existence of an infinite
number of Appell sets relative to B and to {z}.
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