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Geodesia. — Statistical analysis of models for testing discre-
pancies in high precision levelling. Nota di ARNALDO CHIARINI e
LamBERTO PIERI, presentata @ dal Socio P. Dore.

RI1ASSUNTO. — In un precedente lavoro [1] degli Autori ¢ stata compiuta un’analisi
degli errori della livellazione di precisione e precisamente della variabile aleatoria
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(ove Py ¢ la discrepanza fra le misure in andata e ritorno della differenza di quota di due
caposaldi consecutivi della i-esima linea ed Ry & la loro distanza), come nuovo contributo
all’annoso problema, ancora aperto, degli errori della livellazione di precisione. Il campione
esaminato consta di una rete parziale della livellazione italiana.

La presente Nota approfondisce criticamente tale metodologia dimostrando, sulla base
del campione esaminato (di circa Km. 9oo della livellazione italiana), che la variabile aleatoria
studiata ¢ quella che rende minima la dipendenza delle discrepanze pesate dalla distanza.

In una seconda parte della Nota si studia un modello di regressione che considera la
dipendenza delle discrepanze dalla distanza e dalla differenza di quota  tra due caposaldi
consecutivi. I risultati di questo studio mostrano che il modello:

pz'j = y‘ivRij + eijV'Rz'j

in cui U; € una costante per ogni linea i ed € ¢ una variabile generalmente normale con valore
medio zero, sembra essere il piut adatto.

1. INTRODUCTION.

In a previous work [1] we have shown sowne aspects or nign precision
levelling errors by means of non-parametric statistical methods, choosing a
sample of 15 lines of the Italian high precision levelling net and studying, -
according to classical theory, the behaviour of the random variable

Py
1 X =
& Y VRy

where p,; : discrepancy between the direct and reverse measurements of
the relative height of consecutive bench marks in the /—th line;
R, : distance between consecutive bench marks in the 7~th line.

The purpose of this choice was the study of a variable which is inde-
pendent of the distance and hence the study of homogeneous sets of data.
In this work we examine the consistency of such a hypothesis, also testing
the discrepancies by means of a regression analysis.

(*) Nella seduta del 9 dicembre 1967.
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2. STUDY OF CONSISTENCY.

The choice of model (1) was made by taking into account well known
classical considerations; however, this “a priori ” model needs an adequate
experimental check. The check will be carried out using a model for a
random variable x;; depending on a parameter « the value of which can be
obtained with a maximum likelihood method: the comparison of this new
model with (1) will give us the measure of the consistency of our assumption.

2.1. Choice of x,; ().

The problem we wish to study consists in finding a random variable,
function of discrepancy and distance, which minimizes the dependence on
the distance itself, according to the above-mentioned requirements. Of course
there is something arbitrary in the choice of the form of this function, but
the one which follows (2) seems the most practical for ascertaining whether
the model (1) is to be preferred in comparison with other similar hypotheses.

We assume therefore:

(2) 7y (@) =L

o
Ry

where o is a parameter to be determined together with a convenient interval.

2.2. Procedure.

The procedure we have devised for our study consists of the following
steps.  First we calculate a non-parametric correlation coefficient of an
appropriate function of x;(«) and R;. To be precise, the Spearman [3]
correlation coefficient of the two variates

|2 (0) —%; ()] and Ry

in each line for different values of a around & = 0.3.
The reason for the choice of |y (a) —%;(x)|, where X;(«) is the
average value of x,; («) in the 7-th line, depends upon two facts:

1) x;(x) might have a mean value different from zero and the use
of x; («) only, could mask effects of dependence;

2) since we are interested in studying the correlation between the
magnitude of x,; («) —X; («) and R,; irrespective of the sign, an appropriate
variable seems to be | x; («) — %; () | .

The reason for the choice of the Spearman coefficient is that the variates
‘taken into consideration cannot be assumed as normal and therefore the usual
Pearson estimate of the correlation coefficient cannot be properly used.

(1) Of course other functions could have been chosen, e.g.

[ () — 7 ()2,
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The Spearman coefficient [2] is computed as follows:

given a set of # observations {£,,v;} (=1, 2,---, %) of two variables
€, m of which only one must be necessarily a random variable, and definin
| y y g

~

£, = the rank of &,

7; = the rank of v,

A

di: Zi—’_ﬁi

Z; » #; the number of tied values of & and 7 respectively
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the Spearman coefficient is
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where the sums ZTg and ET;} are extended to all the ties.
For a sufficiently large. % (7 > 10) the random variable

n-—2=2
-
has a Student distribution with 7% — 2 degrees of freedom.

We calculate for each line the value of # () for various values of a.
A likelihood function is then computed using for each line the probability:

F () =P(t>|2(@)]) = I——21<D_(z‘,-(rx),n,-—2)—-%

where @ (¢, #) is the Student distribution function with 7 degrees of freedom.
Finally the logarithm of the product of these functions, i.e.

L (&) = log i]j[l F (2 (o),

where £ is the number of independent samples, is calculated.
The value of « that maximizes L (x), minimizes the dependence of X,
on Ry, since the values of # («), and therefore 7, («), are the minimum ones.

2.3. Results of calculations.

The calculation was carried out taking into consideration the only 11 lines
for which we previously obtained results of randomness using the model (1).
The exclusion of the remaining 4 lines seems necessary in a search for consis-
tency, like the one undertaken here.
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The calculation of the values of L () was carried out and the results
appear in Table I.

As is well-known [3] the estimator « of a parameter «, obtained with a
maximum likelihood procedure is asymptotically normally distributed; there-

2 . .
) -+ £, where oo is the vari-
a

ance of the estimator and 4 is a normalisation constant.

This procedure, as a first approximation, can generally be used even
when the sample is rather small; therefore we have fitted, using the least
square method, the L («) values with a parabola:

o — ol

fore L () is asymptotically equal to —%(

L' (&) = aa? 4 6o + ¢,

obtaining:
@ = —42.55
b=+ 53.74
¢ = — 27.00

with a very good approximation, as can be seen from Table I.
The estimators of «, and o, are obtained from the following relations [3]:

/1 \” dL(@ _
%a = 2%L (o) v Tde
do?

from which, substituting for L () its approximate value L' (a), we obtain

- 1

Gy = = 0.11
V=24
~ b
o =——=0.63.
2a 3

We may now test the null hypothesis «; = 0.5 corresponding to the classical
theory against the alternative one: oy = 1, as proposed by other authors [5].
According to the above-mentioned results the acceptance interval of the null
hypothesis with a 5 9, significance level is given, with a good approximation,
using the most powerful test [3], by:

— oo < o < 0.68

in which falls the value & = 0.63.
On the other hand the power of the criterion relative to the comparison

of both hypotheses is 0.998, corresponding to a 2 ©/y, probability of an error
of the second kind.

Therefore the assumption of the value « = 0.5 seems confirmed by our
analysis.
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TABLE 1.
, : : L' () —L (%)
o L (o) L’ (o) L' () — L () ——L,W-
0,00 — 26,825 — 206,999 — 0,174 — 0,000
0,25 — 16,535 — 16,224 + 0,311 — 0,019
0,50 — 10,820 -— 10,767 + 0,053 — 0,005
0,75 — 10,350 — 10,631 -— 0,281 -+ 0,026
1,00 — 15,845 — 15,813 + 0,032 — 0,002
1,25 — 16,375 — 26,315 —- 0,060 — 0,002
L/ (a) = values computed by the regression model.

3. REGRESSION ANALYSIS OF DISCREPANCIES.

The indications we obtain from the previous results are that model (1)
seems adequate for describing a random variable independent of the distance
but, at this stage of our study, we extend our model introducing other kinds
of dependence, limiting our choice to linear dependence only.

3.1. Method of study.

Systematic effects, pointed out in [1] using model (1), are represented
by the mean values of x;; in each line, that are not equal to zero. Therefore
we can transform the model in this way

(3) Xy = Py T &
or
(3,> pij = WUy VRi-z/ + az’j VE

where y; is a constant for each line (mean value) and ¢ is generally a normal
variate with mean value zero and variance o?.

It seems quite natural to try to reduce the variance of p,; using a more
complicated model in which terms depending on R, and | AH,;| (difference
in elevation of two consecutive bench marks) are taken into account.

For this purpose we have chosen the model

(4) o5 = @ + 6; YRy + ¢; Ry + d; R+ ¢, V[AH,; [+ f; | AH; | +
+ g:| AH; 2 + 5 VR,
in which
a; through g; are constants in each line and ¢;, as above, is a random
variate with mean value zero,
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A stepwise linear regression calculation [4], which enables us to take into
account only the terms whose coefficients are significantly different from zero,
was in effect carried out using the variate

= bt o Ryt 4 VRS e

v — V\AHU\
Y VRrRy VR,,

z;!+ |AH; 2

A
ReL VR VR

+ €y

by reducing all terms to the same weight.

The computation was carried out for all the 15 lines irrespective of the
lack of normality and of randomness in some of them, in order to bring out
possible anomalous effects. The results show that, except for lines 5, 7 and 15,
model (3') is sufficient to explain the variance of p;. The coefficient of
model (4) for lines 5, 7 and 15 and relative F values obtained from the
analysis of variance of multiple regression, are shown in Table II.

TaBLE II.
F
Line pest| ||
LINE num- a; &,’ 7 dz é; fz E analysis | 71 | 772 F 7y 74 ;0.05
ber of variance
of the
regression
Firenze—Bologna 5 0.533 —o0.283|0.035 3.25 | 2 |186| 3.0%
Ferrara—Padova 7 0.533 —0.319 4.68 | 1| 90 3.95
Rimini-Bologna | 15 [0.253|0.351 —0.01; 3.37 | 2 |109] 3.08

We must notice however that line 7 showed non random behaviour and
lines 5 and 15 non normal behaviour. A more detailed analysis of the above-
mentioned lines should be carried out, but in agreement with the opinions
of other authors [3], there seems no point, on the basis of these results, in
introducing a more complicated model for p,; and (3') seems to be the most
appropriate.

An extension of our study to the whole Italian high precision levelling
net and eventually to other nets is planned to give further information on
this topic. A possible extension of such an analysis could be the creation
of a model in which other parameters such as the temperature or refraction
coefficient of the air can be taken into account.

4. CONCLUSIONS.

The results of our studies seem to confirm the validity of model (3') in
the jabsence of non-randomness effects according to the classical theory from
both points of view: consistency (§ 2) and regression analysis (§ 3). We
emphasize however the necessity of carrying out similar analyses on broader
samples, possibly covering nets of different countries, to confirm these results.
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