ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

LUCIANO CHIARA

Contributi al problema dei due corpi di massa variabile

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **43** (1967), n.6, p. 497–501. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_43_6_497_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Meccanica celeste. — Contributi al problema dei due corpi di massa variabile (*). Nota di Luciano Chiara, presentata (**) dal Socio D. Graffi.

SUMMARY. — Continuing the investigations concerning the problem of two bodies of variable masses, the Author gives a new form of the equation of the variation of eccentricity suitable for revealing other cases of integration.

A case particularly notable for application purposes is pointed out.

Furthermore a deduction included in a preceding Paper is specified in an essential point.

1. – Con riferimento al problema dei due corpi di massa decrescente – ad orbita osculatrice ellittica – e con le stesse notazioni ed unità usate in una mia ricerca analoga inserita in questi « Rendiconti » (1), assumo come equazioni di avvio la (5) e la (9) della Nota citata; equazioni che riporto sotto forma lievemente diversa

$$\dot{e} = \sigma m r^{-1} \cos E$$

(2)
$$rm^{-1} (I - e^2)^{-1/2} \dot{E} = I - \sigma e^{-1} (I - e^2)^{-3/2} \operatorname{sen} E$$

avendo indicato con σ la quantità puramente numerica — $c^3 f^{-2} \dot{m}/m^3$ che, nelle nostre unità, si identifica col rapporto — \dot{m}/m^3 .

Questo parametro, da noi frequentemente introdotto in questo genere di indagini, è assai comodo sia perché la sua legge di variazione può assumersi quale « legge di emissione » del sistema binario, sia perché, nei problemi concreti riguardanti i sistemi binari celesti, esso è sempre estremamente piccolo rispetto ad *uno* e varia lentissimamente col tempo; tanto per dare una indicazione numerica supporremo

$$0 < \sigma < \sigma^* \le 10^{-7} \quad , \quad |\dot{\sigma}| < \sigma.$$

Dalla (2) si deduce che, per

(4)
$$\sigma < e (1 - e^2)^{3/2}$$

la È è positiva e finita e quindi la E (t) è invertibile ed ogni funzione monotona di t è funzione equimonotona di E e viceversa. In accordo con la (3) penseremo

(5)
$$10^{-6} \le e \le 1 - 10^{-4}$$
.

- (*) Lavoro eseguito nell'ambito del gruppo di ricerca n. 36 del Comitato per la Matematica del C.N.R., per l'anno accademico 1967-68.
 - (**) Nella seduta del 9 dicembre 1967.
- (1) Limiti superiori della variazione dell'eccentricità nei sistemi binari di massa decrescente. Nota I, « Rend. Acc. Naz. Lincei », Aprile 1959, fasc. 4.

Notiamo per il seguito che, se da un istante t in poi la m restasse costante, dalla (2) si avrebbe per $\dot{\mathbf{E}}$

(6)
$$\dot{\mathbf{E}}^* = mr^{-1} \left(\mathbf{I} - e^2 \right)^{1/2}.$$

2. - Dal prodotto in croce delle (1) e (2) si ottiene la relazione

$$\dot{e} - \sigma \dot{e} e^{-1} (I - e^2)^{-3/2} \text{ sen E} = \sigma (I - e^2)^{-1/2} \dot{E} \cos E$$

da cui si ricava

$$e\dot{e} = \sigma \{\dot{e} (I - e^2)^{-3/2} \text{ sen E} + e (I - e^2)^{-1/2} \dot{E} \cos E \}.$$

Quest'ultima, notando che si ha identicamente

$$\dot{e} (I - e^2)^{-3/2} \operatorname{sen} E + e (I - e^2)^{-1/2} \dot{E} \cos E = \{ e (I - e^2)^{-1/2} \operatorname{sen} E \},$$

può scriversi

(7)
$$e\dot{e} = \sigma \{ e (I - e^2)^{-1/2} \text{ sen E} \}.$$

Passiamo a dimostrare che

$$e (I - e^2)^{-1/2} \operatorname{sen} E = r\dot{r}.$$

Invero in ogni istante t il moto effettivo (del secondario P intorno al primario) ed il corrispondente moto kepleriano osculatore sono in P moti tangenti, sicché, con ovvio significato dei simboli, si avrà

$$P \equiv P_e \equiv P_k$$
 , $\overrightarrow{V}(P_e) \equiv \overrightarrow{V}(P_k)$

e quindi $\dot{r}_e = \dot{r}_k$, cioè nell'istante (generico) t la \dot{r} calcolata per m variabile è uguale alla \dot{r} valutata per m costante da t in poi.

Ma allora, dalla ben nota espressione di r

$$r = a (I - e \cos E), \quad \text{con} \quad a = m^{-1} (I - e^2)^{-1}$$

e ricordando l'osservazione che ci ha condotto alla (6), si ricava

$$\dot{r} = ae \text{ sen E } \dot{E}^*$$

= $r^{-1} m (I - e^2)^{1/2} ae \text{ sen E}$
= $r^{-1} e (I - e^2)^{-1/2} \text{ sen E}$

epperò

$$r\dot{r} = e (I - e^2)^{-1/2} \text{ sen E}, \quad \text{c.v.d.}$$

Tenuto conto di questa, la (7) si scrive

(8)
$$e\dot{e} = \sigma(r\dot{r})$$

o anche

$$(9) (e^2) = \sigma(r^2).$$

Da questa si deduce inoltre successivamente.

$$(e^2)' = \sigma(r^2)' - \dot{\sigma}(r^2)'$$

= $\sigma(r^2)' - (\dot{\sigma}r^2)' + \ddot{\sigma}r^2$

ed infine

(IO)
$$\left(e^2 - 2 \sigma \frac{e \operatorname{sen E}}{V_{\mathrm{I}} - e^2} + \dot{\sigma} r^2\right) = \ddot{\sigma} r^2;$$

quest'ultima nuova forma dell'equazione della variazione dell'eccentricità mette in luce nuovi casi notevoli d'integrazione.

3. – Ci limitiamo qui ad indicarne uno particolarmente semplice: quello in cui σ sia una funzione lineare di t e ϑ , corrispondente perciò ad una legge di emissione del tipo

$$-\dot{m} = (\alpha + \beta t + \gamma \vartheta) m^3.$$

In tale ipotesi sarà $\dot{\sigma} = \beta + \gamma \dot{\vartheta} = \beta + \gamma/r^2$, epperò

$$\ddot{\sigma}r^2 = -2 \, \gamma \dot{r}/r = -(2 \, \gamma \log r),$$

sicché alla (10) può darsi la forma

$${e^2 - 2 \sigma e (I - e^2)^{-1/2} \operatorname{sen} E + \beta r^2 + 2 \gamma \log r} = 0$$

da cui, integrando, si ricava

(12)
$$e^2 - 2 \sigma e (I - e^2)^{-1/2} \operatorname{sen} E + \beta r^2 + 2 \gamma \log r = \text{costante.}$$

Il caso segnalato ci sembra notevole ai fini applicativi perché, come è noto, i maggiori autori (Jeans, Eddington, Fesenkov, etc.) che si sono occupati della questione, propendono per una legge di emissione che sia, o addirittura

(13)
$$-\dot{m}/m^3 = \sigma = \text{costante} = \alpha , \qquad (\alpha > 0)$$

o si «discosti poco» da essa.

Ebbene, una maniera di realizzare la seconda alternativa è quella di pensare nella (13) la σ lentissimamente variabile dando alla legge di emissione la forma generica (11), o, più semplicemente, la forma (11) con $\gamma=0$. L'equazione (12) dà allora in termini finiti, la legge di variazione della eccentricità nei sistemi binari nell'ipotesi che l'emissione (radiativa e corpuscolare) avvenga secondo la legge così generalizzata di Jeans-Eddington-Fesenkov.

Con riferimento ai sistemi binari celesti e considerato un lasso di tempo T - dell'ordine di grandezza dell'età massima di quei sistemi - entro cui la

massa della doppia si riduca magari ad 1/20 di quella iniziale si scorge dalla (12) che la variazione dell'eccentricità (entro quel lasso di tempo) è enormemente piccola.

Non indugeremo qui in un'analisi minuziosa della (12), preferendo invece riesaminare – nell'ambito di validità della (4) – il caso più interessante

$$\sigma$$
 = funzione monotona di t

nell'intervallo t_0 , $t_0 + T$, essendo t_0 un istante prossimo al primo stadio di vita della doppia. Ritorniamo su questo caso – da noi studiato in altra precedente ricerca $^{(2)}$, inserita in questi « Rendiconti » – allo scopo di rimuovere una svista in cui siamo ivi incorsi.

4. – Dalla (I) si deduce che la e in ogni periodo (iniziato per comodità, dal punto di anomalia eccentrica — $\pi/2$) ha un minimo per $E = -\pi/2$, cresce per E crescente da — $\pi/2$ a $\pi/2$ dove raggiunge il massimo e poi decresce sino alla fine del periodo ($E = -3\pi/2$) in cui sarà di nuovo minima, e così via. Tenuto conto della (I), si vede inoltre dalla (7) che $\{e \ (I - e^2)^{-1/2} \ \text{sen } E\}$ è concorde con \dot{e} , pertanto sarà positiva tra — $\pi/2$ e $\pi/2$, negativa tra $\pi/2$ e $3\pi/2$.

Supponiamo ora che σ sia una funzione non crescente di t (epperò di E) e, con riferimento ad un periodo, siano t_1 , \bar{t}_1 , t_2 gli istanti in cui la E assume ordinatamente i valori — $\pi/2$, $\pi/2$, e 3 $\pi/2$. Integrando la (7) in quel periodo si ottiene

Internamente al primo intervallo la $\{e(\mathbf{I}-e^2)^{-1/2} \operatorname{sen} \mathbf{E}\}$, come si è già notato, è positiva, nel secondo è negativa. Sarà allora

$$(15) e_2^2 - e_1^2 = 2 \lambda \left\{ \frac{\bar{e}_1}{\sqrt{1 - e_1^2}} + \frac{e_1}{\sqrt{1 - e_1^2}} \right\} - 2 \mu \left\{ \frac{e_2}{\sqrt{1 - e_2^2}} + \frac{\bar{e}_1}{\sqrt{1 - \bar{e}_1^2}} \right\},$$

essendo λ e μ due convenienti valori medi di σ nei rispettivi intervalli, epperò

$$\sigma_1 \ge \lambda \ge \bar{\sigma}_1 \ge \mu \ge \sigma_2 > 0.$$

Posto $\lambda = \mu + \alpha \quad (\alpha \ge 0)$, la (15) diventa

(16)
$$(e_2+e_1)(e_2-e_1) = -2\mu\left\{\frac{e_2}{\sqrt{1-e_2^2}} - \frac{e_1}{\sqrt{1-e_1^2}}\right\} + 2\alpha\left\{\frac{\bar{e}_1}{\sqrt{1-\bar{e}_1^2}} - \frac{e_1}{\sqrt{1-e_1^2}}\right\}.$$

Osservando che delle due quantità in parentesi a graffe, la prima è concorde con $e_2 - e_1$ e la seconda è positiva, scriveremo

(17)
$$(e_2 + e_1) (e_2 - e_1) = -2 \mu (e_2 - e_1) h^2 + 2 \alpha k^2$$

(2) Limiti superiori della variazione dell'eccentricità nei sistemi binari di massa decrescente. Nota III, « Rend. Acc. Naz. Lincei », fasc. 1–2, luglio 1961.

e quindi

$$(e_1 + e_2 + 2 \mu h^2) (e_2 - e_1) = 2 \alpha k^2.$$

Ne discende

$$(18) e_2 - e_1 \ge 0,$$

l'alternativa = valendo per $\sigma = costante$ ($\alpha = 0$) in $t_1 < t < t_2$.

Spostando in avanti di π l'origine del periodo, l'integrazione analoga alla (14) ci porta alla ineguaglianza

$$(19) \bar{e}_2 - \bar{e}_1 \le 0;$$

ripetendo poi il procedimento per σ non decrescente si perviene nei due casi a

$$(20) e_2 - e_1 \le 0 , \bar{e}_2 - \bar{e}_1 \ge 0.$$

Vengono così ritrovate le ineguaglianze fondamentali (18), (19) e (20) contenute nella mia precedente ricerca, sicché valgono, con tutto rigore, le conclusioni cui siamo pervenuti nei numeri 2 e 3 della Nota citata.

In particolare: se σ è una funzione monotona di t (in t_0 , t_0 + T), la variazione totale Δe dell'eccentricità in qualunque lasso di tempo (contenuto in t_0 , t_0 + T) non supera, in valore assoluto, l'oscillazione Ωe della e relativa ad un solo semiperiodo (il primo quando σ è non crescente, l'ultimo quando σ è non decrescente).

Eseguendo l'integrazione della (7) relativa a siffatto semiperiodo – ed indicando con e_1 ed e_2 rispettivamente il minimo ed il massimo valore della e – si ottiene

$$\left. \left(e_1 + e_2 \right) \Omega e = 2 \, \lambda \, \left\{ \, \frac{e_2}{\sqrt{1 - e_2^2}} + \frac{e_1}{\sqrt{1 - e_1^2}} \, \right\} < 2 \, \lambda \, \frac{e_1 - e_2}{\sqrt{1 - e_2^2}}$$

epperò

$$|\Delta e| \leq \Omega e < \frac{2 \sigma^*}{\sqrt{1 - e_2^2}}$$

o, se si vuole, a meno di quantità del tutto trascurabile,

$$|\Delta e| < \frac{2 \sigma^*}{\sqrt{1-e^2}}$$
,

con e indicando il valore dell'eccentricità in un istante qualsiasi del lasso di tempo considerato.