ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ESAYAS GEORGE KUNDERT

Structure Theory in s-d—Rings. Nota III

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **43** (1967), n.6, p. 477–479. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_43_6_477_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — Structure Theory in s-d-Rings. Nota III di Esayas George Kundert, presentata (*) dal Socio B. Segre.

RIASSUNTO. — Si completa l'indagine svolta in due Note precedenti [1, 2], effettuando uno studio della struttura moltiplicativa dell'insieme degli «inteals» di un s-d-anello.

We return in this note to investigate further the inteal structure on a s-d-ring [1]. We heavily exploit here the existence of the σ and τ homomorphisms in s-d-rings (see note II, [2]) to obtain:

- (I) a factorization theorem for inteals (see theorem I).
- (2) a characterization of the inteals in the case where the ring of constants is a field (theorem 2).
- (3) implications linking up the notions of prime and multiplicatively irreducible inteals in a s-d-ring with the same notions for ideals in the ring of constants (theorem 3).

Let \mathfrak{A} be a s-d-ring [1], and let A be an ideal in \mathfrak{A} .

Definition: Let $\bar{A} = \sigma(A) \cdot \tau(A)$ be called the norm of A.

It is clear that:

- (I) A is an ideal in R,
- (2) $\overline{AB} = \overline{A} \cdot \overline{B}$,
- (3) $\overline{\mathfrak{A}} = \mathbb{R}$.

Definition: An ideal N of $\mathfrak A$ is called a null-ideal if $\overline N=(o)$. If N is a null-ideal \Rightarrow N·A is also a null-ideal for any ideal A in $\mathfrak A$. LEMMA I. If A is an inteal in $\mathfrak A \Rightarrow (A\cap R)^2\subseteq \overline A \subseteq A\cap R$.

Proof: (I) To prove $\overline{A} \subseteq A \cap R$ we only have to show that from a, $b \in A \Rightarrow \tau(a) \cdot \sigma(b) \in A$. By \equiv in this proof we always mean $\equiv \mod A$. Let

$$a = \sum_{j=0}^{n} \alpha_{j} x_{j} \equiv 0 \Rightarrow s^{(n-i)}(x_{i} a) \equiv 0, \qquad 0 \leq i \leq n$$

$$\Rightarrow \left\{ s^{(n-i)}(x_{i} a) = \left(\sum_{j} \alpha_{j} \alpha_{ij}^{i} \right) x_{n} + \left(\sum_{j} \alpha_{j} \alpha_{ij}^{i+1} \right) x_{n+1} + \dots + \alpha_{n} \alpha_{in}^{i+n} x_{2n} \equiv 0 \right\}.$$

$$0 \leq i \leq n.$$

This is a system of n+1 homogeneous equations in x_n , x_{n+1} , \cdots , x_{2n} . [We used here the fact that $\alpha_{ij}^s = 0$ for s < i; in the case of a s-d-ring formula (3) in paragraph 3 [2] actually turns into $\alpha_{ij}^s = (-1)^{s-i+j} \binom{j}{s-i} \binom{s}{j}$.

By using formula (3) [2], we are able to eliminate successively x_{2n} , x_{2n-1} , \cdots , x_{n-1} and we end up with: $x_n \cdot \tau(a) \equiv 0$ and therefore also $s^{(k)}(x_n \cdot \tau(a)) = x_{n+k} \cdot \tau(a) \equiv 0$ for $k \geq 0$.

^(*) Nella seduta del 9 dicembre 1967.

Now let $b = \sum_{j=0}^{m} \beta_j x_j \equiv 0$. If m = 0 we have $b = \beta_0 = \sigma(b)$ and $\sigma(b) \cdot \tau(a) \equiv 0$. If $m \geq 1$ then $\tau(a) \cdot b = \tau(a) \cdot \sigma(b) + \sum_{j=1}^{m} \beta_j \tau(a) \cdot x_j \equiv 0$. Because $\tau(a) \cdot x_j \equiv 0$ for $j \geq n$ we may assume that m = n - 1 and to obtain $\tau(a) \cdot \sigma(b) \equiv 0$ it will suffice to prove that $\beta_j \cdot \tau(a) \cdot x_j \equiv 0$ for $1 \leq j \leq n - 1$. Now $\tau(a) s^{(n-1)}(b) = \beta_0 \tau(a) x_{n-1} + \beta_1 \tau(a) x_n + \cdots = \beta_0 \tau(a) x_{n-1} \equiv 0$. Assume that we already proved $\beta_k \tau(a) x_{n-1} \equiv 0$ for $k < i \leq n - 1$. Take $\tau(a) s^{(n-i-1)}(x_i b) = \sum_{k=0}^{n-1} \tau(a) \beta_k \sum_s \alpha_{ki}^s x_{s+n-i-1} \equiv \tau(a) \beta_i x_{n-1} \equiv 0$. (We used here again that $\alpha_{ki}^s = 0$ for s < i and also that $\alpha_{ii}^s = \pm 1$ for s-d-rings). Therefore by induction: $\tau(a) \beta_i x_{n-1} \equiv 0$ for all $i \leq n - 1$ and specifically $\tau(a) \beta_{n-1} x_{n-1} \equiv 0$. We can now assume that m = n - 2 and repeat the above argument to get $\tau(a) \beta_i x_{n-2} \equiv 0$ for all $i \leq n - 2$, and specially $\tau(a) \beta_{n-2} x_{n-2} \equiv 0$. Repeat for m = n - 3, \cdots , $\tau(a) \beta_i x_j \equiv 0$ for all $\tau(a) \beta_i x_j \equiv 0$ for all $\tau(a) \beta_i x_j \equiv 0$

(2) To prove $(A \cap R)^2 \subseteq \overline{A}$ let $\alpha \in (A \cap R)^2 \Rightarrow \alpha = \Sigma \alpha_i \beta_i$; $\alpha_i, \beta_i \in A \cap R$. Since $\alpha_i, \beta_i \in A \Rightarrow \alpha_i \beta_i = \sigma(\alpha_i) \tau(\beta_i) \in \overline{A} \Rightarrow \alpha \in \overline{A}$.

LEMMA 2. If A is an inteal in $\mathfrak A$ and $\bar A=R\Rightarrow A=\mathfrak A$.

Proof: By Lemma 1, we have $R = \overline{A} \subset A \Rightarrow A = \mathfrak{A}$.

Definition: An inteal in $\mathfrak A$ is called proper if it is not a null-inteal and not $\mathfrak A$.

Definitions: (1) A factorization of a proper inteal $A = \prod_{i=1}^{n} A_{i}$ is called proper if all A_{i} are proper inteals in \mathfrak{A} .

- (2) A proper refinement of a proper factorization is a proper factorization $A = \prod_{j=1}^{m} A'_{j}$ such that there exist indices $j_{0} = 1 < j_{1} < \cdots < j_{n} = m$ with m > n such that $A_{i} = \prod_{j=1,-1}^{j_{i}} A'_{j}$.
- (3) An inteal is called multiplicatively irreducible if A has no proper refinement.
- (4) A refinement chain of an inteal is a sequence of proper factorizations with each term being a proper refinement of the preceding one.
- (5) A refinement chain is said to terminate if there is a last term which cannot be properly refined. Note: This last term must have multiplicatively irreducible factors only.

Definition: We say that $\mathfrak A$ has property I if every refinement chain of every proper inteal terminates.

We also define all the above notions for the ring of constants R by replacing "inteal" by "ideal". It is well known that if R is a noetherian integral domain then R has property I. For an interesting theorem in connection with these definitions see [3].

Theorem 1. Let $\mathfrak A$ be a s-d-ring. If the ring of constants has property $I\Rightarrow \mathfrak A$ has property $I\Rightarrow every$ proper inteal factors into a finite number of multiplicatively irreducible inteals.

Proof: From Lemma 2 follows that if $A = \prod_{i=1}^{n} A_i$ is a proper factorization in \mathfrak{A} then $\overline{A} = \prod_{i=1}^{n} \overline{A}_i$ is also a proper factorization in R. Taking the norm of a non terminating refinement chain of A, we would get a non terminating refinement chain of \overline{A} in R which is a contradiction with property I in R. \mathfrak{A} must therefore have property I.

Theorem 2. If the ring of constants R of a s-d-ring is a field \Rightarrow the only inteals in $\mathfrak A$ are the null-inteals and $\mathfrak A$ itself.

Proof: Let A be a proper inteal in \mathfrak{A} . By Lemma $2 \Rightarrow \overline{A}$ is a proper ideal in R. Contradiction!

Definition: R is said to have property II iff $\mathfrak{a} \cdot \mathfrak{b} = \mathfrak{a}$ for any two proper ideals in R. If R has property $I \Rightarrow R$ has property II.

Theorem 3. Let $\mathfrak A$ be an s-d-ring, A an inteal in $\mathfrak A$. The following implications hold true:

- (1) $\mathbf{\bar{A}}$ multiplicatively irreducible in $R \Rightarrow A$ multiplicatively irreducible in $\mathfrak{A}.$
- (2) If R has property II and A is a proper prime inteal in $\mathfrak{A}\Rightarrow A$ is multiplicatively irreducible in \mathfrak{A} .
- (3) If R is the ring of integers and A is a prime inteal in $\mathfrak{A} \Rightarrow \overline{A} = A \cap R$ and \overline{A} is a prime ideal in R.
- *Proof*: (1) Suppose $A=B\cdot C$, $B \neq \mathfrak{A}$, $C \neq \mathfrak{A} \Rightarrow \overline{A}=\overline{B}\cdot \overline{C}$ and by lemma $2\Rightarrow \overline{B} \rightleftharpoons R$, $\overline{C} \rightleftharpoons R \Rightarrow \overline{A}$ multiplicatively reducible. Contradiction!
- (2) Suppose $A = B \cdot C$, $B \neq \mathfrak{A}$, $C \neq \mathfrak{A} \Rightarrow B \supset A$ and $C \supset A$ because if say $B = A \Rightarrow \overline{A} = \overline{A} \cdot \overline{C}$ and by Lemma 2, \overline{A} , \overline{C} are proper ideals. Contradiction with property II. Let $b \in B$, $b \notin A$ and $c \in C$, $c \notin A \Rightarrow b \cdot c \in A \Rightarrow A$ not prime!
- (3) A prime \Rightarrow A \cap R prime = (p). By Lemma 1 we have $(p)^2 \subseteq \bar{A} \subseteq (p)$. So either $\bar{A} = (p)$ in which case we are finished, or $\bar{A} = (p)^2$. We show that if $\bar{A} = (p)^2 \Rightarrow A$ not prime. Since $p \in A \Rightarrow p \cdot x_p \in A$, but in a s-d-ring we have $x_1 \cdot x_{p-1} = p \cdot x_p (p-1) \cdot x_{p-1}$ or $(x_1 + p-1) \cdot x_{p-1} \in A$. Now if A were prime it would follow that $x_{p-1} \in A$ or $x_1 + p-1 \in A$. In the first case, we would have: $\tau(x_{p-1}) \sigma(p) = 1 \cdot p \in \bar{A}$. Contradiction! In the second case we would have: $\sigma(x_1 + p-1) \tau(p) = (p-1) p \in \bar{A}$, but $p^2 \in \bar{A} \Rightarrow p \in \bar{A}$. Contradiction!

Remark: The implications in Theorem 3 are not reversible. This can be easily shown by counter-examples.

LITERATURE.

- [1] E. G. KUNDERT, Structure Theory in s-d-Rings. Note I, «Accademia Nazionale dei Lincei», Ser. VIII, vol. XLI, fasc. 5, November, 1966.
- [2] E. G. KUNDERT, Structure Theory in s-d-Rings. Note II, «Accademia Nazionale dei Lincei», Ser. VIII, vol. XLIII, fasc. 5, Novembre, 1967.
- [3] H. S. Butts, Unique Factorization of Ideals into Nonfactorable Ideals, « Proc. of the Amer. Math. Soc. », vol. 15, No. 1, February, 1964.