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Matematica. — Structure Theory in s—d-Rings. Nota I1I di
Esavas GeEorGE KUNDERT, presentata ® dal Socio B. SEGRE.

RIASSUNTO. — Si completa I’indagine svolta in due Note precedenti [1, 2], effettuando
uno studio della struttura moltiplicativa dell’insieme degli « inteals » di un s-d-anello.

We return in this note to investigate further the inteal structure on a
s—d-ring [1]. We heavily exploit here the existence of the ¢ and © homo-
morphisms in s-d-rings (see note II, [2]) to obtain:

(1) a factorization theorem for inteals (see theorem 1).

(2) a characterization of the inteals in the case where the ring of
constants is a field (theorem 2).

(3) implications linking up the notions of prime and multiplicatively
Jirreducible inteals in a s—d-ring with the same notions for ideals in the ring
of constants (theorem 3).

Let A be a s—d-ring [1], and let A be an ideal in .

Definition: Let A =6 (A)-7(A) be called the norm of A.

It is clear that:

(1) A is an ideal in R,

(2) AB = A-B,

(3) A=R.

Definition: An ideal N of % is called a null-ideal if N = (o).

If N is a null-ideal = N-A is also a null-ideal for any ideal A in .

LEMMA 1. If A is an dnteal in A= (ANRRZ2CACANR.

Proof: (1) To prove ACANR we only have to show that from
a,beA=x(a)-c(b)€A. By=in this proof we always mean = mod A. Let

”
azza/xj:—to=>s(”“">(xia)Eo, o<7i<n
7=0

, s ) i+1 itn .
= g s (x; @) = (E aja§j>xn -+ (E oL Oyz >xn+1 F a0y, X, = OE.
J 7
o<z <.
This is a system of # -+ 1 homogeneous equations N %, ; X,41," "y X2,-

[We used here the fact that oj; = ofor s <¢; in the case of a s—d~ring formula (3)

in paragraph 3 [2] actuélly turns into ol = (— 1) ( 7 ><s)}

s—i)\J
By wusing formula (3) [2], we. are able to eliminate successively
X9m s Xgn—1, ", Xn—1 and we end up with: x,-7 (@) = 0 and therefore also

s® (2,7 (@) = 2,447 (@) = o for £=>o.

(*) Nella seduta del 9 dicembre 1967.
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Now let é=i(3,x-so If m =0 we have é:;s(,:c(b) and
o)
6()-t(@) =0. If m >1 then T(a)é—r(a)c(é)—l-zﬁlr(a)x:o

Because 7 (2)-x;,=o0 for j># we may assume that » —n—I and to obtain
7 (a)-0 () =0 it will suffice to prove that Bit(@-x,=o0 for i1<;j<n—T1.
Now 7 (2) s#=D (8) =Byt (@) 1+ Br7(@ 2, + =By 7 (@) y1 = 0. As-
sume that we already proved B,7 (@) x,_.1 =0 for k<i<n—1. Take

7 (@) "7V (x, 8) = E T (a) B, E % Xsrn—io1 = 7 (@) B; %s1 = 0. (We used

here again that a3 =0 for s <7 and also that of; = 4 1 for s—d-rings).
Therefore by induction: t (@) B; x,_1 =0 for all 7 <#-—1 and specifically
7 (@) By—1 %»—1 = 0. We can now assume that 7 — % -— 2 and repeat the
above argument to get 7 (a)B,;x,_2 =0 for all 7 <#%—2, and specially
7 (@) Bu—2 ¥s—2 = 0. Repeat for m =n—3, .-, 1. We get t(a)Bix, =0
for all 7> 1.
(2) To prove (ANREZCA let ae(ANRE= a=2Xo,; B;;o;, B, €ANR.

Since o, ,B; €A=0,B, =0 (o) 7 (B,)€EA=a€A.

LEMMA 2. If A is an inteal in W and A = R= A = U,

Proof: By Lemma 1, we have R=A C A=A = 9.

Definition: An inteal in % is called proper if it is not a null-inteal
and not .

Definitions: (1) A factorization of a proper inteal A= H A,
called proper if all A; are proper inteals in 9.

(2) A proper refinement of a proper factorization is a proper factori-
m

zation A = H Aj such that there exist indices jo = 1< j; <--. < In=m
7=1

with 7 >z such that A; = H A

i1
(3) An inteal is called multiplicatively irreducible if A has no proper
- refinement.

(4) A refinement chain of an inteal is a sequence of proper factori-
zations with each term being a proper refinement of the preceding one.

(5) A refinement chain is said to terminate if there is a last term which
cannot be properly refined. Note: This last term must have multiplicatively
irreducible factors only.

Definition: We say that U has property I if every refinement
chain of every proper inteal terminates.

We also define all the above notions for the ring of constants R by replac-
ing ' inteal ”’ by ""ideal ”. It is well known that if R is a noetherian integral
domain then R has property I. For an interesting theorem in connection
with these definitions see [3].

THEOREM 1. Let U be a s-d—ring. If the ring of constants has property
L= has property 1= cvery proper inteal factors into a finite number of
multiplicatively irrveducible inteals.
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Proof: From Lemma 2 follows that if A = HA is a proper factori-

zation in ¥ then A = H A, is also a proper factorization in R. Taking the
=1

norm of a non terminating refinement chain of A, we would get a non
terminating refinement chain of A in R which is a contradiction with
property I in R. U must therefore have property I.

THEOREM 2. [If the ring of constants R of a s—d—ring is a field = the
only inteals in U are the null-inteals and N itself.

Proof: Let A be a proper inteal in . By Lemma 2= A is a proper
ideal in R. Contradiction!

Definition: R is said to have property II iff a-b = a for any
two proper ideals in R. If R has property I = R has property II.

THEOREM 3. Let U be an s—d-ring, A an inteal in N. The following im-
plications hold true:

(1) A multiplicatively irreducible in R = A multiplicatively irreduc-
ible in .

(2) If R has property II and A is a proper prime inteal in Y= A
is multiplicatively irreducible in 9.

(3) If R is the ring of integers and A is a prime inteal in ¥ A=A N R
and A is a prime ideal in R.

Proof: (1) Suppose A=B-C,B==%,CF=UA=A =B-C and by lem-
ma 2=B==R,Cg=R=A multiplicatively reducible. Contradiction!

(2) SupposeA B-C,B==¥, C==%= BDAand CD A because if say
B=A=A=A.C and byLemma 2, A, C are proper ideals. Contradiction
with property II. Leté€B,6¢A and c€C,ceA=56-c €A = A not prime!

(3) A prime=AnN R prime = (). By Lemma 1 we have (p)2C
CAC(p). So either A = (p) in which case we are finished, or A = (p)2.
We show that if A = (p)2= A not prime. Since p €A=p-x,€A, but in

a s—d-ring we have x,- X, =px,—(p—1)x,  or (@ +p—1)x, €A
Now if A were prime 1t would follow that x,_, EA orx;+p—1€A In
the first case, we would have: 7 (x x, )o(p)=1-p€A. Contradictign! In
the second case we would have: ¢ (#;+p—1)7(p) = (p —1)p €A, but
€A =peA. Contradiction!

Remark: The implications in Theorem 3 are not reversible. This can
be easily shown by counter-examples.
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