ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

JACQUES LUIS LIONS, ENRICO MAGENES

Quelques remarques sur les problèmes aux limites linéaires elliptiques et paraboliques dans des classes d'ultra-distributions. Nota II

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **43** (1967), n.6, p. 469–476. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1967_8_43_6_469_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Quelques remarques sur les problèmes aux limites linéaires elliptiques et paraboliques dans des classes d'ultra-distributions. Nota II di Jacques Luis Lions e Enrico Magenes, presentata (*) dal Corrisp. L. Amerio.

RIASSUNTO. — Continuando lo studio svolto nella Nota I per le equazioni ellittiche, si considerano i problemi ai limiti, in classi di ultradistribuzioni, per le equazioni paraboliche.

EQUATIONS PARABOLIQUES.

5. Rappelons et complétons les définitions des espaces de fonctions et de distributions de Gevrey à valeurs vectorielles que nous avons utilisées dans [15] (9) pour les problèmes aux limites paraboliques.

Soit donc F un espace vectoriel topologique, localement convexe, separé. On désigne par $\mathfrak{D}(\mathbf{R}; F)$ (resp. & $(\mathbf{R}; F)$, resp. $\mathfrak{D}_+(\mathbf{R}; F)$, resp. $\mathfrak{D}_-(\mathbf{R}; F)$) l'espace des fonctions indéfiniment différentiables sur la droite \mathbf{R} , à valeurs dans F; à support compact (resp. à support quelconque, resp. à support limité à gauche, resp. à droite), ces espaces étant munis des topologies de L. Schwartz [22].

Espace $\mathfrak{D}_s(\mathbf{R}; \mathbf{F})$.

On définit algébriquement l'espace $\mathfrak{D}_s(\mathbf{R}; F)$, s réel > 1, comme l'espace des fonctions $t \to \varphi(t)$ définis dans \mathbf{R} et à valeurs dans F, telles que

(14)
$$\varphi \in \mathfrak{D}(\mathbf{R}; \mathbf{F})$$

(15)
$$\begin{cases} \text{il existe un nombre L et un borné \mathbb{B} de F (dépendant de φ)} \\ \text{tels que } \frac{\varphi^{(k)}(t)}{L^k(k!)^s} \in \mathbb{B}, \quad k = 0, 1, \cdots; t \in \mathbf{R}. \end{cases}$$

On définit la topologie sur $\mathfrak{D}_s(\mathbf{R}\,;\mathbf{F})$ de la façon suivante. Soit $\{L_i\}$ une suite croissante de nombres positifs tendant vers $+\infty$. On désigne par $\mathfrak{D}_s^{(i)}(\mathbf{R}\,;\mathbf{F})$ le sous espace de $\mathfrak{D}_s(\mathbf{R}\,;\mathbf{F})$ des φ à support dans $[-i\,,i]$ et tels que (15) ait lieu avec $L=L_i$ fixé. Et sur $\mathfrak{D}_s^{(i)}(\mathbf{R}\,;\mathbf{F})$ on introduit la topologie définie par le système fondamental de voisinages de zéro:

$$\mathfrak{D} = \left\{ \varphi \left| \frac{\varphi^{(k)}(t)}{\operatorname{L}_{i}^{k}(k!)^{s}} \in \mathfrak{D}_{\mathrm{F}}, \qquad k = 0, 1, \dots; t \in [-i, i] \right\} \right\}$$

où l'on fait parcourir a \mathfrak{V}_F un système fondamental de voisinages de zéro dans F.

^(*) Nella seduta del 14 novembre 1967.

⁽¹⁾ Pour la bibliographie cf. la note précédente en ces « Rendiconti », vol. XLIII, fasc. 5, p. 293.

Alors on a

$$\mathfrak{D}_{s}\left(\mathbf{R}; \mathbf{F}\right) = \bigcup_{i} \mathfrak{D}_{s}^{(i)}\left(\mathbf{R}; \mathbf{F}\right)$$

et on munit $\mathfrak{D}_s(\mathbf{R}; F)$ de la topologie de limite inductive des $\mathfrak{D}_s^{(i)}(\mathbf{R}; F)$. On voit facilement qu'elle ne dépend pas de la suite $\{L_i\}$ choisie.

Espaces $\mathfrak{D}_{+,s}(\mathbf{R}; \mathbf{F})$.

Algébriquement l'espace $\mathfrak{D}_{+,s}(\mathbf{R};F)$, s réel > 1, est l'espace des fonctions $t \to \varphi(t)$ définies dans \mathbf{R} et à valeurs dans F telles que

(16)
$$\varphi \in \mathfrak{D}_{+} (\mathbf{R}; F)$$

(17)
$$\begin{cases} \text{ pour chaque } b \text{ il existe un nombre L et un borné } \mathfrak{B} \text{ de F (dé-} \\ \text{ pendant de } \varphi \text{ et de } b), \text{ tels que } \frac{\varphi^{(k)}(t)}{L^k(k!)^s} \in \mathfrak{B}, \quad k = 0, 1, \cdots, \text{ et } t \leq b. \end{cases}$$

Introduisons dans $\mathfrak{D}_{+,s}(\mathbf{R};F)$ la topologie de la façon suivante (la présentation est un peu différente que dans [15], mais les deux topologies coincident). On considère pour chaque intervalle [a,b] fixé et chaque L>0 fixé l'espace

(18)
$$\begin{cases} \mathfrak{D}_{a,s}\left(\left[a\,,\,b\right],\,\mathcal{L}\,;\mathcal{F}\right) = \left\{\varphi\,|\,t \to \varphi\,(t) \text{ est définie et indéfiniment differentiable dans } \left[a\,,b\right] \,\grave{\mathbf{a}} \text{ valeurs dans } \mathcal{F}; \;\; \varphi^{(k)}(a) = \mathbf{0} \;\; \forall k = \mathbf{0},\mathbf{1},\cdots; \\ \text{il existe un borné } \mathcal{B} \text{ de } \mathcal{F} \text{ tel que } \frac{\varphi^{(k)}\left(t\right)}{\mathcal{L}^{k}\left(k\,!\right)^{s}} \in \mathcal{B}, \quad \forall k \text{ et } t \in \left[a\,,b\right]\right\}. \end{cases}$$

On introduit dans $\mathfrak{D}_{a,s}([a,b],L;F)$ une topologie en définissant un système fondamental de voisinages de zéro par

$$\mathfrak{V} = \left\{ \varphi \mid \varphi \in \mathfrak{D}_{a,s} \left(\left[a \,,\, b \right] \,,\, L \,;\, F \right) \;\;,\;\; \frac{\varphi^{(k)} \left(t \right)}{L^{k} \left(k \,! \right)^{s}} \in \mathfrak{V}_{F} \,, \qquad \forall k \;\; \text{et} \;\; t \in \left[a \,,\, b \right] \right\}$$

où l'on fait parcourir à \mathfrak{D}_F un système fondamental de voisinages de zéro dans F.

On définit ensuite l'espace

(19)
$$\mathfrak{D}_{a,s}\left(\left[a\,,\,b\right]\,;\,\mathcal{F}\right) = \bigcup_{i}\,\mathfrak{D}_{a,s}\left(\left[a\,,\,b\right]\,,\,\mathcal{L}_{i}\,;\,\mathcal{F}\right)$$

où $\{L_i\}$ est une suite quelconque croissante tendant vers $+\infty$, avec la topologie de *limite inductive* (elle ne dépend pas de la suite $\{L_i\}$).

Soit ensuite $\{b_i\}$ une suite croissante tendant vers $+\infty$; on voit aisément que les espaces $\mathfrak{D}_{a,s}([a,b_i];F)$, où l'on suppose $a < b_i$, donnent lieu à un *spectre projectif* (cfr. par exemple [24]) par rapport aux applications

 $\rho_{i,j} (i < j)$ définies comme les restrictions des φ définies dans $[a, b_j]$ à l'intervalle $[a, b_i]$. On définit alors l'espace

(20)
$$\mathfrak{D}_{a,s}\left(\left[a\,,\,+\,\infty\right]\,;\,\mathrm{F}\right)=\underset{b_{i}\,\rightarrow\,+\,\infty}{\mathrm{limite\ projective}}\,\,\mathfrak{D}_{a,s}\left(\left[a\,,\,b_{i}\right]\,;\,\mathrm{F}\right).$$

On voit aisément qu'il ne dépend pas de la suite $\{b_i\}$.

Enfin soit $\{a_i\}$ une suite decroissante tendant vers $-\infty$; il est évident que $\mathfrak{D}_{a_i,s}([a_i,+\infty];F)$ est un *spectre inductif* (au sens par exemple de [24]) par rapport aux applications $\rho_{i,j}$ (i< j) définies comme prolongements par zéro dans $[a_i,a_j]$ des fonctions définies dans $[a_j,+\infty]$. On définit alors l'espace

(21)
$$\mathfrak{D}_{+,s}(\mathbf{R}; \mathbf{F}) = \text{limite inductive } \mathfrak{D}_{a_i,s}([a_i, +\infty]; \mathbf{F})$$

et on voit aisément qu'il ne dépend pas de la suite $\{a_i\}$ choisie et qu'il coincide algébriquement avec l'espace des φ satisfaisant à (16) (17).

On définit de façon analogue (on échange le rôle de a et b, etc.) l'espace

$$\mathfrak{D}_{-,s}(\mathbf{R}; \mathbf{F})$$

des fonctions à support limité à droite.

Espace $\mathcal{E}_s(\mathbf{R}; \mathbf{F})$.

Algébriquement l'espace $\mathcal{E}_s(R;F)$, s réel > 1, est l'espace des fonctions $t \to \varphi(t)$ définies dans \mathbf{R} et à valeurs dans \mathbf{F} , indéfiniment différentiables, telles que

(22)
$$\begin{cases} \text{ pour chaque intervalle } [a,b] \text{ il existe un nombre L et un borné} \\ \mathcal{B} \text{ de F tels que } \frac{\varphi^{(k)}(t)}{\operatorname{L}^k(k!)^s} \in \mathcal{B}, \quad k = 0, 1, \cdots, \text{ et } t \in [a,b]. \end{cases}$$

De façon évidente on peut introduire la topologie sur $\mathscr{E}_s(\mathbf{R}; \mathbf{F})$ en suivant la méthode utilisée ici pour $\mathfrak{D}_{\pm,s}(\mathbf{R}; \mathbf{F})$ ou en suivant [15].

Remarque 3. – On peut généraliser les espaces précédents en utilisant des suites $\{M_k\}$ convenables au lieu de la suite $\{M_k=(k\,!)^s\}$, cfr. [15].

6. Supposons maintenant en outre que F soit réflexif et notons F' son dual fort. Par définition l'espace $\mathfrak{D}'_s(\mathbf{R};F)$ des distributions de Gevrey d'ordre s à valeurs dans F est l'espace dual de l'espace $\mathfrak{D}_s(\mathbf{R};F')$, i.e.

$$\mathfrak{D}_{s}'(\mathbf{R}; F) = (\mathfrak{D}_{s}(\mathbf{R}; F'))'.$$

On munira cet espace de la topologie forte de dual, sauf dans des cas exceptionels explicitement notés,

De la même façon on pose par définition

$$(24) \qquad \mathfrak{D}'_{+,s}(\mathbf{R};F) = (\mathfrak{D}_{-,s}(\mathbf{R};F'))' \qquad (\text{resp. } \mathfrak{D}'_{-,s}(\mathbf{R};F) = (\mathfrak{D}_{+,s}(\mathbf{R};F'))')$$

avec la topologie forte de dual, sauf mention expresse de contraire; et on démontre que $\mathfrak{D}'_{+,s}(\mathbf{R};F)$ (resp. $\mathfrak{D}'_{-,s}(\mathbf{R};F)$) coincide avec le sous-espace de $\mathfrak{D}'(\mathbf{R};F)$ des distributions à support limité à gauche (resp. à droite).

La dérivation et la multiplication par des fonctions (scalaires) de $\mathscr{E}_r(\mathbf{R}; \mathbf{C})$ (= $\mathscr{E}_r(\mathbf{R})$), 1 < r < s, se définissent dans $\mathfrak{D}'_s(\mathbf{R}; \mathbf{F})$ comme pour les distributions ordinaires.

Remarque 4. – A vrai dire les définitions données par (23) et (24) des distributions de Gevrey à valeurs dans F n'est pas la plus générale possible; par analogie avec les distributions ordinaires [23] on pourrait appeler « espace des distributions de Gevrey à valeurs dans F » l'espace $\mathfrak{L}(\mathfrak{D}_s(\mathbf{R}; \mathbf{F}))$ des applications linéaires continues de $\mathfrak{D}_s(\mathbf{R})$ (= $\mathfrak{D}_s(\mathbf{R}; \mathbf{C})$) dans F, au lieu d'utiliser (23); mais dans les applications que nous avons en vue c'est la définition (23) qui est la plus commode. En tout cas on a

$$\mathfrak{D}'_{s}(\mathbf{R}; F) \subset \mathfrak{L}(\mathfrak{D}_{s}(\mathbf{R}); F)$$

Remarque 5. – Dans la suite nous utiliserons pour F les espaces $\mathfrak{D}(\Omega)$, $\mathfrak{D}'(\Omega)$, $\mathfrak{D}_r(\Omega)$, $\mathfrak{D}_r'(\Omega)$ (avec r > 1); signalons alors que l'on a les relations d'inclusions suivantes; où r et s sont des réels > 1:

$$\mathfrak{D}_{-,s}\left(\mathbf{R}\;;\,\mathfrak{D}_{r}(\Omega)\right)\subset\,\mathfrak{D}_{-,s}\left(\mathbf{R}\;;\,\mathfrak{D}\left(\Omega\right)\right)\subset\,\mathfrak{D}_{-}(\mathbf{R}\;;\,\mathfrak{D}\left(\Omega\right))$$

chaque espace étant dense et continuement plongé dans les suivants; on en déduit alors, grâce à (24),

$$(26) \qquad (\mathfrak{D}_{-}(\mathbf{R};\mathfrak{D}(\Omega)))' \subset \mathfrak{D}'_{+,s}(\mathbf{R};\mathfrak{D}'(\Omega)) \subset \mathfrak{D}'_{+,s}(\mathbf{R};\mathfrak{D}'_{r}(\Omega)).$$

Définissons

(27)
$$\mathfrak{D}'_{+}(\mathbf{R};\mathfrak{D}'(\Omega)) = (\mathfrak{D}_{-}(\mathbf{R};\mathfrak{D}(\Omega)))'.$$

Alors (26) devient

(28)
$$\mathfrak{D}'_{+}(\mathbf{R};\mathfrak{D}'(\Omega)) \subset \mathfrak{D}'_{+,s}(\mathbf{R};\mathfrak{D}'(\Omega)) \subset \mathfrak{D}'_{+,s}(\mathbf{R};\mathfrak{D}'_{r}(\Omega))$$
 s et $r > 1$.

Notons que la définition (27) diffère de celle de L. Schwartz [23]; notre définition est plus restrictive: on a

(29)
$$\mathfrak{D}'_{+}(\mathbf{R};\mathfrak{D}'(\Omega))\subset\mathfrak{L}(\mathfrak{D}_{-}(\mathbf{R});\mathfrak{D}'(\Omega)).$$

Nous renvoyons aussi pour une question analogue à la Remarque 4. Rappelons aussi que

$$\mathfrak{L}(\mathfrak{D}_{-}(\mathbf{R});\mathfrak{D}'(\Omega))\subset\mathfrak{D}'(\Omega)$$

où Q est le cylindre $Q = \Omega \times \mathbf{R}^1$ et $\mathfrak{D}'(Q)$ est l'espace des distributions (scalaire) sur Q; et donc

(30)
$$\begin{cases} \mathfrak{D}'_{+}(\mathbf{R};\mathfrak{D}'(\Omega)) & s'identifie \ a \ un \ sous-espace \ de \ distributions \\ (scalaires) \ sur \ Q. \end{cases}$$

7. On considère maintenant dans $\mathbf{R}^{n+1} = \mathbf{R}_x^n \times \mathbf{R}_t^1$ le cylindre

$$Q = \Omega \times \mathbf{R}_t^1$$

 Ω vérifiant les hypothèses du n. 1; et on désigne par

$$\Sigma = \Gamma \times \mathbf{R}_t^1$$

la frontière de Q. Dans Q on considère l'opérateur

(31)
$$P = A(x, t; D_x) + \frac{\partial}{\partial t}$$

où A est donné par

(32)
$$Au = \sum_{|p|, |q| \le m} (-1)^{|p|} D_x^p(a_{pq}(x, t) D_x^q u)$$

 D_x désignant la dérivation par rapport aux variables x_1, \dots, x_n . On suppose que les coefficients a_{bq} vérifient

(33)
$$a_{bq} \in \mathcal{E}_{2m} \left(\mathbf{R} ; \mathcal{H} \left(\bar{\Omega} \right) \right)$$

où $\Re\left(\overline{\Omega}\right)$ désigne l'espace des fonctions analytiques dans $\overline{\Omega}$. On se donne aussi un système d'opérateurs « frontière »

(34)
$$B_{j}u = B_{j}(x;t;D_{x})u = \sum_{|h| \leq m_{j}} b_{jh}(x,t) D_{x}^{h}u \qquad j = 0, \dots, m-1$$

d'ordre m_j , avec $0 \le m_j < 2 m$, à coefficients b_{jh} appartenant à $\mathcal{E}_{2m}(\mathbf{R}; \mathcal{H}(\Gamma))$. Et on suppose que:

(35) pour chaque
$$t_0$$
 le système $\{B_j(x, t_0; D_x)\}_{j=0}^{m-1}$ est normal sur Γ ;

$$\begin{cases}
pour chaque & \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text{ et chaque } t_0 \text{ l'opérateur } A(x, t_0; D_x) + \\
+ (-1)^m e^{i\theta} \frac{\partial^{2m}}{\partial y^{2m}} \text{ est Proprement Elliptique dans } \Omega \times \mathbf{R}_y^1 \text{ et le} \\
système d'opérateurs «frontière» $\{B_j(x, t_0; D_x)\}_{j=0}^{m-1} \text{ recouvre l'opérateur } A(x, t_0; D_x) + (-1)^m e^{i\theta} \frac{\partial^{2m}}{\partial y^{2m}} \text{ sur } \Gamma \times \mathbf{R}_y^1
\end{cases}$$$

On a alors la formule de Green

$$\int_{Q} \operatorname{P} u \, \overline{v} \, dx \, dt - \int_{Q} u \, \overline{\operatorname{P}^{*} v} \, dx \, dt = \sum_{j=0}^{m-1} \int_{\Sigma} \operatorname{S}_{j} u \, \overline{\operatorname{C}_{j} v} \, d\sigma \, dt - \sum_{j=0}^{m-1} \int_{\Sigma} \operatorname{B}_{j} u \, \overline{\operatorname{T}_{j} v} \, d\sigma \, dt$$

$$\forall u \, , \, v \in \mathfrak{D}(\mathbf{R} \, ; \, \mathfrak{D}(\overline{\Omega})) \, ,$$

où P* est l'adjoint formel de P et $\{S_j\}_{j=0}^{m-1}$, $\{C_j\}_{j=0}^{m-1}$, $\{T_j\}_{j=0}^{m-1}$ sont des systèmes, déterminés de façon analogue aux opérateurs $\{S_j\}$, $\{C_j\}$ et $\{T_j\}$ de la formule de Green (3).

8. Nous considèrons le problème aux limites parabolique

$$(38) Pu = f dans Q$$

(39)
$$B_{i}u = g_{i} \quad \text{sur} \quad \Sigma, \qquad j = 0, 1, \dots, m-1$$

(40)
$$f, g_i$$
 étant à support en t limité à gauche,

et nous chercherons la solution u dans les espaces $\mathfrak{D}'_+(\mathbf{R};\mathfrak{D}'(\Omega))$, $\mathfrak{D}'_{+,s}(\mathbf{R};\mathfrak{D}'(\Omega))$ et $\mathfrak{D}'_{+,s}(\mathbf{R};\mathfrak{D}'_r(\Omega))$, $s \geq 2 m$ et r > 1 (10). Pour cela on va introduire les espaces:

$$(41) Y = \{ u \mid u \in \mathfrak{D}'_{+} (\mathbf{R}; \mathfrak{D}'(\Omega)) , Pu \in \mathfrak{D}'_{+} (\mathbf{R}; K'(\Omega)) \}$$

$$(42) Y_s = \{ u \mid u \in \mathfrak{D}'_{+,s}(\mathbf{R}; \mathfrak{D}'(\Omega)) , Pu \in \mathfrak{D}'_{+,s}(\mathbf{R}; K'(\Omega)) \}$$

$$(43) Y_{s,r} = \{ u \mid u \in \mathfrak{D}'_{+,s}(\mathbf{R}; \mathfrak{D}'_r(\Omega)) , Pu \in \mathfrak{D}'_{+,s}(\mathbf{R}; K'_r(\Omega)) \}$$

munis de la topologie localement convexe la moins fine rendant continues les applications $u \to u$ et $u \to Pu$ de Y (resp. Y_s , resp. $Y_{s,r}$) dans $\mathfrak{D}'_+(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega))$ (resp. $\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega))$, resp. $\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega))$) faible et $\mathfrak{D}'_+(\mathbf{R}\;;\,\mathbf{K}'\;(\Omega))$ (resp. $\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathbf{K}'\;(\Omega))$, resp. $\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathbf{K}\;(\Omega))$) faible (i.e. on suppose ici, à la différence de ce que l'on a fait dans le cas elliptique et pour éviter des difficultés topologiques qui alourdiraient le problème de façon inessentielle, que $\mathfrak{D}'_+(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega)),\,\,\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega)),\,\,\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega)),\,\,\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega)),\,\,\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega)),\,\,\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega)),\,\,\mathfrak{D}'_+,{}_s(\mathbf{R}\;;\,\mathfrak{D}'\;(\Omega)),\,\,\mathfrak{D}'_-,{}_s(\mathbf{R}\;;\,\mathfrak{D}(\Omega)),\,\,\mathfrak{D}_-,{}_s(\mathbf{R}\;;\,\mathfrak{D}(\Omega)),\,\,\mathfrak{D}_-,{}_s(\mathbf{R}\;;\,\mathfrak{D}(\Omega)).$

Par les mêmes méthodes qu'en [15] (signalons que sous les hypothèses plus générales sur P et les B_j faites ici au n. 7 on utilisera les résultats d'Agranovich-Vishik [1] et de Cavallucci [6], pour l'existence des solutions régulières du problème adjoint, et que les difficultés topologiques rencontrées dans [13], p. 393 peuvent maintenant être surmontées grâce aux resultats récents de Geymonat [9]) on démontre alors les théorèmes:

Theoreme 5 (de trace): L'espace $\mathfrak{D}(\mathbf{R}; \mathfrak{D}(\overline{\Omega}))$ est dense dans Y (resp. Y_r, resp. Y_{s,r}, avec $s \geq 2m$ et r > 1) et l'application $u \rightarrow Bu = \{B_0u, \dots, B_{m-1}u\}$ définie au sens usuel de $\mathfrak{D}(\mathbf{R}; \mathfrak{D}(\overline{\Omega}))$ dans $[\mathfrak{D}(\mathbf{R}; \mathfrak{D}(\Gamma))]^m$ se prolonge par

$$\mathfrak{D}'_{+}(\mathbf{R}; K'(\Omega)) = (\mathfrak{D}_{-}(\mathbf{R}; K(\Omega)))';$$

cfr. aussi remarque 5.

⁽¹⁰⁾ Notons que si u est dans ces espaces Pu a un sens (par la définition usuelle $\langle Pu, \varphi \rangle = \langle u, P^* \varphi \rangle$).

⁽¹¹⁾ Nous définissons

continuité en une application linéaire continue encore notée $u \to Bu$, de Y (resp. Y_s , resp. $Y_{s,r}$) dans $[\mathfrak{D}'_{+,2m}(\mathbf{R}; \mathcal{X}'(\Gamma))]^m$ faible (i.e. muni de la topologie de dual faible de $[\mathfrak{D}_{-,2m}(\mathbf{R}; \mathcal{X}(\Gamma))]^m$).

THEOREME 6 (d'existence): Le problème aux limites

$$(44) Pu = f$$

au sens de $\mathfrak{D}'(\mathbb{Q})$ (resp. $\mathfrak{D}'_s(\mathbb{R};\mathfrak{D}'(\Omega))$, resp. $\mathfrak{D}'_s(\mathbb{R};\mathfrak{D}'_r(\Omega))$, avec $s \geq 2$ m, et r > 1,

$$(45) B_j u = g_j j = 0, \dots, m-1$$

au sens du Théorème 5, admet une solution unique u dans Y (resp. Y_s , resp. $Y_{s,r}$) pour tout $f \in \mathfrak{D}'_+(\mathbf{R}; K'(\Omega))$ (resp. $\mathfrak{D}'_{+,s}(\mathbf{R}; K'(\Omega))$), resp. $\mathfrak{D}'_{+,s}(\mathbf{R}; K'_r(\Omega))$) et tout $g_j \in \mathfrak{D}'_{+,2m}(\mathbf{R}; \mathcal{K}'(\Gamma))$; en outre l'application $(f; g_0, \dots, g_{m-1}) \to u$ est continue, chaque espaces étant muni de la topologie faible de dual.

Remarque 6. – On pourrait dans les Théorèmes 3 et 4 prendre au lieu des espaces $K'(\Omega)$ et $K'_r(\Omega)$ des espaces plus généraux de distributions ou d'ultra-distributions, dépendant des opérateurs « frontière » $\{B_j\}_{j=0}^{m-1}$.

9. Grâce aux théorèmes 5 et 6 les diffèrents espaces Y, Y_s , $Y_{s,r}$ ont tous le même espace de «traces»: $[\mathfrak{D}'_{+,2m}(\mathbf{R};\mathcal{H}'(\Gamma))]^m$. On en déduit alors, en utilisant aussi (30) une conséquence analogue à celle obtenue pour les équations elliptiques au Corollaire 1:

COROLLAIRE 2: Toute ultradistribution u de $\mathfrak{D}'_{+,s}(\mathbf{R}\;;\mathfrak{D}'(\Omega))$ ou de $\mathfrak{D}'_{+,s}(\mathbf{R}\;;\mathfrak{D}'_{r}(\Omega))$ avec $s\geq 2$ m et r>1, solution de l'equation Pu=f avec (par exemple) $f\in\mathfrak{D}'_{+}(\mathbf{R}\;;\Xi'(\Omega))$ est une distribution ordinaire (scalaire) dans Q (i.e. $u\in\mathfrak{D}'(Q)$).

Le Corollaire 2 réduit donc le problème de la régularité des solutions ultradistributions de Gevrey (d'ordre $s \ge 2m$ en t) des équations paraboliques au cas déjà résolu des solutions distributions ordinaire, au moins pour les ultradistributions à support scalairement limité à gauche. Dans le cas des opérateurs à coefficients constants un résultat de ce genre est contenu aussi dans le travail [6] de Björck, qui étude par des méthodes différentes de la notre le problème de la regularité des solutions ultradistributions de Beurling pour les opérateurs hypoelliptiques à coefficients costants.

- 10. Signalons enfin que par des méthodes analogues on peut étudier les mêmes questions dans d'autre situations:
- a) on peut caractériser les espaces de traces sur Σ des $B_j u$ pour les solutions de l'equation Pu = f, ultradistributions à support quelconque, et étudier le problème aux limites (38) (39) dans le cylindre Q.

b) on peut étudier les problèmes aux limites paraboliques dans un cylindre fini, $Q_T = \Omega \times]o$, T[, $T < \infty$:

$$egin{array}{lll} \mathrm{P}u &= f & & \mathrm{dans} & \mathrm{Q_T} \\ \mathrm{B}_j u = g_j & & \mathrm{sur} & \Sigma_{\mathrm{T}} = \Gamma imes \mathrm{]o} \, , \, \mathrm{T}[\\ u \, (x \, , \, \mathrm{o}) = u_0 & & \mathrm{dans} & \Omega. \end{array}$$

c) on peut étudier les problèmes précédents pour les opérateurs du deuxième ordre en t (du type $Au + \frac{\partial^2 u}{\partial t^2}$) et de Schroedinger (du type $iAu + \frac{\partial u}{\partial t}$) avec A symmétrique.

Les difficultés techniques sont beaucoup plus grandes; nous renvoyons au vol. 3 de notre livre [17] (cfr. déjà [14] et [16]).